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Introduction

Let F' be a global field of positive characteristic, i.e. the function field of a smooth
projective curveX over a finite fieldF,.

In a series of works [Dri87], [Dri88], [Dri89] Drinfeld introduced the notion
of shtukas f'-sheaves in his terminology) and used it to prove the Langlands cor-
respondence foGL, over function fields by showing that this correspondence is
realised in the cohomology of the moduli space of shtukas of 2anRoughly
speaking a shtuka is a vector bundle¥n» F, which differs from its Frobenius
twist by the simplest non-trivial modification. Previously Drinfeld already had
shown that for a certain class of automorphic representations the Langlands corre-
spondence is realised in the cohomology of the moduli space of elliptic modules
(‘Drinfeld modules’) or, equivalently, elliptic sheaves of rapkwhich may be
considered as a special case of shtukas.

In a wide generalisation of Drinfeld’s approach Lafforgue [Laf02] proved the
Langlands correspondence fGi., over function fields, which in a certain sense
is realised in the cohomology of the moduli space of shtukas of dafikie main
difficulty is that like in casel = 2 this space is not proper and not even of finite

type.

The situation changes whé#l; is replaced by an anisotropic inner form, i.e.
the multiplicative group of a central division algekpaover F'.

Laumon, Rapoport and Stuhler [LRS] showed thaelliptic sheaves have a
proper moduli space and calculated its cohomology. They proved that for certain
automorphic representationsthere exists an irreduciblé-dimensional Galois
representatiom () which is unramified outside a fixed infinite place, the rami-
fication locus ofD and the ramification locus of such that on this open set the
L-functions ofr ando (7) coincide. From their global results they can deduce the
local Langlands correspondence in positive characteristic.

D-shtukas have first been studied by Lafforgue [Laf97]. Their moduli space
is of finite type, but contrary to the expectation not proper in all casesd Fop
itis proper if and only ifD is ramified in at least places. Lafforgue’s calculation
of the cohomology assumes a proper moduli space and shows that in this case
for any automorphic representation there exists at least a multiple of the expected
corresponding-dimensional Galois representation (see below). In the non-proper
cases the only difference is that the assertions related to purity of cohomology get
lost.

Already in [Dri87] Drinfeld indicated that one can consider shtukas with more
general modifications as well. Moduli spaces of generaliBeshtukas in this
sense are the object of the present work. They are always of finite type, and

\



they are proper ifD is ramified at sufficiently many places with respect to the
size of the modifications. We will restrict ourselves to a sufficient criterion for
properness following a remark of Lafforgue. In the cdse 2 we show that this
criterion is optimal and return to the general case in a later work. Moduli spaces
of generalised-shtukas have also been studied bydoNBpo Clau [Ng03] (see
below). Varshavsky [Var] considered similar moduli spaces for an arbitrary split
reductive group ovef,.

Our main interest is the description of thadic cohomology of moduli spaces
of generalised>-shtukas as a common module of the Hecke algebra, the product
of some copies of the Galois group 6% and certain symmetric groups. For
precise statements we need a few notations.

We choose an idele € A}, of degreel which is concentrated in a finite set
of places. The type of the modification of a generaligedhtuka in one point is
given by a sequenck = (A > ... > M) ¢ Z? (elementary divisors theo-
rem). These are the dominant coweights@ar,. For any sequence of such types
A= (A1... ) of total degree zero and for a non-empty finite closed subscheme
I C X there is a quasiprojective moduli spaceI®fshtukas with modifications
bounded by)\ and with a levelf-structure modulo twisting with multiples of a
line bundleZ(a)

™ Sht[SA/aZ — (X'\ I)".

Properness of the moduli space means that this morphism is projective. In the case
A= (ut,p7) with ™ = (1,0...0) andp~ = (0...0, 1) we obtain Lafforgue’s
D-shtukas.

The direct images of the intersection cohomology sheaves by this morphism
naturally give rise to representatiof§', of the product

Hr x (m(X'\ 1))" x Stab(}).

Here™H; is the subalgebra of the Hecke algebraxif defined by/, andStab())
is the subgroup of the symmetric group:oalements which stabilises Let H; ,
be their alternating sum in an appropriate Grothendieck group.

Lafforgue has shown that (in the proper case)

Hyut, )y = @ m! - 7* R o' () Ko’ (7)Y (1)

with 7 running through the irreducible automorphic representation®pfa”
having non-trivial K ;-invariants. Heren! divides the automorphic multiplicity
m, of m, ando’(7) is a semisimpld-adic representation aff» of dimension
d - \/m,/m. which is unramified outside the ramification locus bfand I.
Moreover on a dense open subsetdfthe L-function of ¢’(7) coincides with
the \/m./m/-th power of theL-function ofr.
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Our main results are the following. Assume that the moduli space of ordinary
D-shtukas is proper.

(@) In equation (1) one can choosé = m,. That is, for any irreducible
automorphic representatianof D} /a” there exists d-dimensional-adic Galois
representatiomr () which is unramified outside the ramification loci afand
of D such that on a dense open subsefXothe L-functions ofr and of o (7)
coincide.

(b) If the moduli space of>-shtukas with modifications bounded Byis
proper as well, then the virtu&t; x =1 (X" \ I)"-moduleH, , takes the form

Hyy = @ mx- 7" & (pr, 0 0(m)) B... & (pa, 0 0(7)) (2

with 7 running through the irreducible automorphic representation®pfa”
having non-trivial K;-invariants. Herep, : GL4(Q;) — GL(V,) denotes the
irreducible representation with highest weight

(c) If o(m) does not contain any irreducible factor with multiplicity greater
than1 (this would follow from a Jacquet-Langlands correspondence), then the
description of ther-isotypic components

Hiy(m) =mg - (p>\1 o O'(?T)) X...X (p)\r o 0'(7'('))

corresponding to (2) holds including the action of the grStgh()\), which acts
on the right hand side by permutation of the factors.

The usual approach to prove these assertions is to compare the trace of a Hecke
correspondence times a Frobeniusin, with the trace of an associated Hecke
function on the space of automorphic forms. In simplified notation:

Tr (Heckex Frol?, H; ,) = Tr (assoc.HeckeAut) 3)

SinceD*\ D; /a” is compact, the calculation of the right hand side via the Selberg
trace formula is trivial and gives a certain sum over the conjugation clasges in

of adelic orbital integrals. By the Lefschetz formula, in order to calculate the left
hand side we have to count fixed points. This results in the same sum, where
at finitely many places the local orbital integrals are replaced by twisted orbital
integrals. That these coincide is the assertion of the fundamental lemr@a.for

in positive characteristic, for which presently only in two cases a published proof
exists [Lau96]: for the unit element of the Hecke Algebra (Kottwitz) and for the
coweightsu™ andy~ (Drinfeld).

However, for the proof of equation (2) the general case of the fundamental
lemma is not needed: if the existenceadfr) is settled, it is sufficient to show
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the equality of the traces of Hecke Frob® on both sides of (2) in the case=
(1...1). For those places where tliefunctions ofr and ofo () coincide, this
is equivalent to equation (3), which in this case contains no twisted integrals.

That o’(7) is the multiple of ad-dimensional Galois representation follows
from a simple argument related to the casdes (u*...u", = ... u7) with se-
qguences of arbitrary length. Since this exceeds the range of proper moduli spaces,
the Lefschetz formula can be applied only for sufficiently large exponemikich
means that here Drinfeld’s case of the fundamental lemma must be used. This had
also been necessary for Lafforgue’s calculation of theinction of o’ () under-
lying our reasoning.

One might expect that the-functions ofr and ofo () coincide at all places
x € X"\ I. Since for this question the idetemay be changed, we can assume
thata is supported outside. In that case a violation of the equatidn(w, T') =
L.(o(m),T) is equivalent to the existence of two different irreducible automorphic
representations dp; /a” which are unramified at and which coincide outside
A closer investigation shows that the occurrence of this phenomenon would imply
that in the case = (1™ + ) equation (3) does not always hold. Thus conversely
the fundamental lemma fqr* + = would imply that the localL-functions in
guestion coincide, which in turn would imply equation (3) in all cases.

We remark that the fundamental lemma would also permit to calculate the
cohomology with compact support of the non-proper moduli spaces. In this case
twisted orbital integrals cannot be avoided, because the local terms at infinity in
the Lefschetz formula are in general known to vanish only for sufficiently high
powers of Frobenius. However, the assertions related to the actions of symmetric
groups do not carry over to the non-proper cases directly, for it is not clear on
which open set the direct images are smooth sheaves.

The proof of (c) relies on the following decomposition, which is a relatively
formal consequence of the Springer correspondencelfar We consider the
sequence\ = (ut...pt,u ... p7) of length2m. The restriction of the repre-
sentationH}'; to the square of the diagonal of lengthis a representation of

Hr x m(X'\ 1)? x (&,,)*.

Then with respect to a certain bijectign— A(y) between the irreducible repre-
sentations of the grou(,,,)*> and a subset of the sequengesf length2 there is
a natural isomorphism df(; x (X’ \ I)>-modules

Hisx () = Hlx - (4)

In view of the classical relation between the irreducible representations of the
symmetric groups and polynomial representations of the general linear groups
this is compatible with equation (2).
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An immediate consequence of this decomposition is the descriptibin gir)
as a virtuakr (X’ \ I)? x (&,,)2-module. Though this does not determine its struc-
ture as ar(X’\ 1) x (&,,)*-module in general, it does so under the assumption
ono(m) we made in (c).

For sequence;’é consisting only of:™ andu~ with more than than two blocks,
there is a decomposition analogous to (4) in which each block corresponds to
one component ok(x). Moreover this is compatible with the action of certain
symmetric groups. Using this, (c) can be proved by decomposing one se@ence
in two different ways.

Many results on generalisg@tshtukas can also be found in a recent preprint of
Ngb Bao Clau [Ngd03] which appeared while | was working on the final chapters
of the present work. As above, Bghows that the number of fixed points of
a Hecke correspondence times a Frobenius on moduli spaces of genefalised
shtukas can be expressed as a sum of partially twisted orbital integrals, but he
restricts his attention to the subalgebra of those functioft;iwhich are the unit
element at points of. This enables him to handle the modifications of the shtukas
and the Hecke correspondences in a symmetric way.

Ngd’s aim is to avoid the fundamental lemma completely in the calculation
of the cohomology of the moduli spaces. To explain his approach we consider
D-shtukas with only one modification, i.2. = (\). For any integes > 1 let
s - A be the sequendg\. .. \) of lengths, and letr be the cyclic permutation on
s letters. N@ proves the equation

Tr (Heckex Frob’, Hy ) = Tr (Heckex Frobx 7, Hy .») (5)

without using the fundamental lemma and shows that the right hand side equals
the desired automorphic trace using a sheaf theoretic description of cyclic base
change for the Hecke algebra [6@P]. Equation (5) can also be viewed as a
relatively direct consequence of (2) and the general form of (4).

The restriction of this approach is that it depends on the properness of the
moduli space of>-shtukas with modifications bounded by, such that in each
situation only finitely manys are allowed. Thus a direct calculation of tihe
functions of the occurring Galois representations is not possible in this way. As
pointed out above, using Drinfeld’s case of the fundamental lemma we can calcu-
late thesel-functions outside some finite set of places. Moreover one additional
instance of the fundamental lemma (the case- 1, ~) would give theL-functions
at all unramified places.

Nevertheless, Ngstates that his results imply the fundamental lemmaé:ioy
and sketches a proof for semisimple regular elements. This is not affected by the
problems with properness, because for base change of any fixed degree one can
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choose an appropriate division algeli?aln addition he writes that Henniart has
proved the fundamental lemma foiL, in positive characteristic (unpublished)
using similar methods as Clozel and Labesse used in characteristic zero.

Using this, the computation of the cohomology of the moduli spaces is a stan-
dard matter. Thus the interest of the present work must be seen in showing how
far one can get without or with little use of local harmonic analysis.

This work is divided into three parts.

The first part deals with the geometric properties of stacks of different kinds
of generalised>-shtukas. Logically this includes appendix A on properness in
the casel = 2.

Our calculation of the number of fixed points in the second part closely follows
the presentations in [Lau96] and [Laf97]. It is preceded by a short exposition of
the statement of the fundamental lemma and by a discussion of the category of
(D, p)-spaces.

In the third part we construct the cohomology as a representation of the Hecke
algebra, the Galois groups, and the symmetric groups. Starting from the compu-
tation of the fixed points we describe these representations as announced above.
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Notations

The following notations are in use in the entire work unless they are replaced by
different conventions in some single sections.

Let X be a smooth, projective and geometrically irreducible curve over the
finite field I, with ¢ elements and lef’ be its function field. LetD be anOx-
algebra which is locally free of rank as an® x-module and such thd = D F
is a division algebra with centrE. We denote byX’ C X the dense open subset
whereD is an Azumaya algebra.

For any closed point € X we denote byD, the completion of the local ring
Ox, and byF; its quotient field, and we choose a generator of the maximal ideal
w, € O,. We assume thdd, = D ® O, is a maximal order ilD, = D ® F,, for
all z, which implies that the closed points &f are characterised by the condition
inv, (D) = 0.

For a finite set of closed poinis C [X'| the schemeX(,, is defined to be the
intersection of all open subsdtsC X’ containing’'.

Let F, be a fixed algebraic closure &f. An overbar generally denotes the
corresponding base change:

X = X x SpecF, D=DKF,
F=F®F, D=D®F,
0,=0,8F, D, =D,®F,
_x:Fz®Fq DIZDI®FQ

For a given embedding : k(z) C F, overFF, we use the notation:

Oz = Oy Q) By D; = D, &) Fy
Fy = F, Qo F, D; = D, @) Fy

For any positive integer let F, . be the unramified extension &f, of degreer,
letO,, C F,, beitsring of integers, and accordingly:

Dz,r = Dx ®Oz O:p,r
D:c,r = Da: ®Fz F:c,r

LetT" C |X| be afinite set of places. We write

AT = H;GX\T(F17 Oy) Di=D®A"
Oi = [oex\r Ox Df =D® O}
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Let u” be the invariant measure on the unimodular topological gr@up)*
which is normalised by.” ((DI)*) = 1. For a finite closed subschenfec X
with 7 NT =0 let

K] =Ker((D})" — (Dr)*).

The corresponding Hecke algebra is the spade€/obiinvariant rational functions
on (DT)* with compact supportt? = Cy((DL)*//KT, Q). The multiplication is
given by convolution with respect j@". We writeH; = H?.

We choose an idele € A* of degreel such that, = 1 outside a finite set of
placesT’(a) C |X| (this is possible because tRéc% -torsorPicy, is trivial).

Let P be the set of dominant coweights for the grdsip,

Pr={x=0">... >\ ez}

and letP*+ c P be the subset of thosefor which all \() have the same sign.
The degree oh ¢ Pt isdeg()\) = > A\, and for every integer we denote by
Pl c PtandPt+ c Pt the subsets of elements of degreelLet ™ € P
andy~ € P*' be the unique elements, i.e.

pt=(1,0,...,0) p =(0,...,0,—1).

The setP™ will be given the partial order in which; < ), if and only if)\gl) +
AN <A 4 AP forall 1 < i < d— 1 anddeg(A;) = deg(As).

For a central simple algebrd over an arbitrary field: we denote byi(A)
its Schur index, which meang A)? is the k-dimension of the division algebra
equivalent toA. If £ is a global field, this is the least common denominator of the
local invariants ofA.

S will always be a (variable) scheme ovgy.
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Part |
Geometry of the Moduli Spaces

Basically, aD-shtuka ovelS is a diagram & — £’ « €] of locally freeDX Og-
modules of ranKk with injective maps such that the length of both cokernets is
i.e.£ and its Frobenius twist differ by the simplest nontrivial modification. The
moduli space of these objects has been studied by Lafforgue in [Laf97].

Already in [Dri88] Drinfeld indicated that one can consider more general mod-
ifications as well. However there are a number of possibilities for a precise def-
inition of the moduli problem. Diagrams as above without the condition on the
lengths are generalisédshtukas in the sense of [Laf97] 1.1, Definition 6. These
will be discussed in the first section of the present work. One can also consider
longer chains of such modifications (section 2).

As stated in the introduction, our main interest is thedic cohomology of
moduli spaces of generalisédshtukas with modifications in a given set of points
which are bounded by a given set of dominant coweights. These will be introduced
in section 3. They could be studied independently of the previously defmed
shtukas with free modifications, but in section 10 these will play a role.

1 Modifications of Arbitrary Length

In this section we will consider the simplest definition of generaliBeshtukas,
which already shows most interesting geometric phenomena. Many arguments
are similar to those in [Laf97] for the case = 1, which might not be well
documented in all cases.

1.1 Definitions

It is clear that the following definitions yield fpgc-stacks ofer

Definition 1.1.1. Let an integern > 0 be given. For an¥,-schemeS we denote
by Coh7; (.S) the groupoid of coherer® . s-modulesK” with the structure of a
D X Os-module and with the following properties:



— The supporBupp(K) is finite overS and contained iX” x S,
— (prq). K is alocally freeOg-module of rankim.

Definition 1.1.2. For any integefn > 0 let Sht™(S) = Sht}(S) be the groupoid
of diagrams

on X x S of the following type:

— &£ and&’ are locally freeD X Og-modules of rank,

— "€ = (id x Frob,)*¢&,

— j andt are injective homomorphisms,

— Coker(j) andCoker(t) € Cohp(S).
These objects will be calleB®-shtukas of lengthn (and of rankl) overS.
Definition 1.1.3. For a given finite closed subscheme- X, a leveld-structure

for a D-shtuka overS is a pair of two isomorphisms : D; X Og = &; and
! D; X Og = & such that the following diagram commutes.

5[ = >5}< = Tg[

t

[ 1

DiXOs =Dy ROs = D; K Og

We denote bySht}'(S) the groupoid ofD-shtukas of lengthn over S with a
level-I-structure.

The groupPic;(X) of invertible Ox-modules.Z equipped with a level-
structure, i.e. with an isomorphis@; = .}, acts orSht}" by

[5—>5’<—75} — [5®$—>5'®$<—T5®$]

with the obvious new level structure. We fix the homomorphism— Pic;(X)
given byb — O(—b) with the multiplicationb : O; = O(—b); as level structure.
This gives an action of the chosen idelec A* of degreel on Sht}". If we
decompose this stack accordingligy(£) € Z, the quotient

Sht}* /a”
can be identified with the union of finitely many of the pieces.
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We have the following commutative diagram.

7 : Sht™/a* —* Cohp x Cohp o m) o xrm)

I I

7+ Sht}/a” s (XI\ 1) x (X' I)™

Here« is given by the quotients’ /"€ and&’ /€, and( is defined by forgetting
the level structure. The noriv : Cohl} — X'0™) will be explained below. Our
next aim is to prove the following basic facts.

1. Coh, is an algebraic stack of finite type ovEf and smooth of relative
dimension zero.

2. The morphisna is smooth of relative dimensidimd.
3. The morphisnp is representable ar&tale and is &;-torsor outsidd.

4. The morphismr; is of finite type and is representable quasiprojective if
I#0.

5. If the division algebra is sufficiently ramified, them; is proper.

The second and third statement and their proofs remain valid Whisrreplaced
by any central simple algebra ovet

1.2 Norm and determinant

We begin with a general remark. For an Azumaya algebdefined over an open
subset/ C X let Coh’y be given by the obvious variant of Definition 1.1.1. In
the following sense this stack only depends on the equivalence clagsnothe
Brauer group.

Lemma 1.2.1.Any equivalence of Azumaya algebrés End(€) = A'®&nd(E")
with locally freeOy-modules® and €&’ induces a 1-isomorphisiioh’y = Coh’y.
Two of these are locally itV 2-isomorphic.

Proof. The functork’ — K®¢& gives a 1-isomorphismg : Coh’y = Cohgg,q(e),

and the compositiomg,1 o ug Is the asserted 1-isomorphism. For its local inde-
pendence of the given equivalence we have to show that any 1-automorphism
u : Coh’y = Cobhj induced by an isomorphism: A® &nd(E) = A®End(E') is
locally in U 2-isomorphic to the identity. By the theorem of Skolem-Noether over
local rings, cf. [Gr68] Theorem 5.10, the isomorphiancomes from an isomor-
phism of rightA-modulesd ® £ ® . = A ® &£ with an invertibleO x-module

Z. Using thisu is 2-isomorphic to the functak’ — K @ £~ O

3



Now we return to our situation. By Tsen’s theorem the Azumaya algebra
D ® F, is trivial on X’ ® F,. This holds already over some finite fiely., i.e.
there are two vector bundlgsand&’ on X’ ® F,» and an isomorphisniD &
Fpn) @ End(E) = End(E'). The induced 1-isomorphism

is unique up to an automorphism@bhy, ®F,» which locally inX" is 2-isomorphic
to the identity.

Remark.If we assumel > 2 thenX' is affine, and a multiple of any vector bundle

on X" is trivial (over a Dedekind domain any finitely generated projective module
is isomorphic to a direct sum of an ideal and a free module, the direct sum of
projective modules corresponding to the product of ideals). Thus for some integer
r > 1 there even is an isomorphisid, (D ® F;n) = M,4(Ox @ Fyn).

Proposition 1.2.2. The stackCoh’; is algebraic, of finite type and smooth oWy
of dimension zero.

Proof. The isomorphism (1.2.1) reduces the assertion to theRase&) -, which
can be found in [Lau87], page 317 (the stadak'y is isomorphic to the quotient
Quot”/ GL,, with a certain open substa€kiot’ C Quot gy /s, )- O

Following [Laf97] 1.1, Lemma 3, the reduced nothi.(D) — F' has a unique
extension to a homomorphism of monoids

nrd : M, (D) — Ox.

This allows the definition of a functaf — det(&) (determinant) from the cate-
gory of locally freeD X Og-modules of rank into the category of locally free
Ox xs-modules of rank along with a natural isomorphistet(£)®? = A™°€,

Definition 1.2.3. LetInj™ (.S) be the groupoid of injective mags2 £’ of locally
free D X Og-modules of rank: with quotient€ /£’ € Coh%(S). These objects
will be called (upper) modifications of length and of rankr.

In the caseD = Ox andr = 1, £ and&’ are invertible sheaves, and the quotient
& /&' is locally free of rankl over a uniquely determined relative divisor of degree
m. We denote by

div : Injé’m — X

the thereby defined morphism.



Proposition 1.2.4. The above defined determinant is a morphism
det : Injp"™ — Injy™ .

Moreover there is a unique morphisi (norm) which makes the following dia-
gram commutative for alt.

Injp" ——4 s InjLm (1.2.2)

£ /s’l ldiv

Cohr —Ny x7(m) ¢ x(m)

The norm is additive in exact sequences. In the ease 1 it can be characterised
by the fact that’ € Coh},(9) is a locally free sheaf of rank over the graph of
N(K): S — X"

Lemma 1.2.5.Let€ be aD X Og-module which is locally free of finite rank over
Oxxs. Then€ is locally free overD X Oy if and only if for any geometric point
y € X x S the fibre&; is locally free ove(D X Og)j.

Proof. This is an immediate consequence of [Laf97] 1.2, Lemma 4. ]

Lemma 1.2.6.Let& be alocally freeD X Og-module of finite rank and l&t’ C £
with £/’ € Coh’;(S). Then&' is locally free overD X Og as well.

Proof. Since& /&’ is flat overS, £’ is flat overS and for any points € S the
fibre £ is torsion free, thus flat oveX x {s}. By EGA IV, Corollary 11.3.11 this
implies thatf’ is locally free ovelOx 5. ThatE’ is also locally free oveD X O
must only be proved ovek’ x S and may in view of Lemma 1.2.5 be checked
over the geometric points ¢f. This means we have to show ti&atand &L are
locally isomorphic overX’ x {s}. There the algebr® is trivialisable, and for
D = Oy the assertion is clear. O

Proof of Proposition 1.2.4To prove the first assertion, let a modificatigh:
&' — & (with S-flat cokernel) be given. Then for any poiate S the fibre
fs is injective, which implieslet(f), = det(f,) is injective, too. Thuslet(f)
is injective with S-flat cokernel. The degree of the divisor can be seen at the
geometric points of, where a trivialisation oD | x- is available.

In order to constructV, for a givenK € Coh%;(S) we chose locally inS a
presentatio) — & — £ — K — 0 with a locally freeD X Ogs-module€. Then
&' is locally free as well by Lemma 1.2.6. So locally $hthe moduleX” comes
from a modification, and diagram (1.2.2) determifégx’). One can show that



this is independent of the presentation, which also impliesAfdt) is defined
globally.

The norm is additive because a short exact sequenkeésdbcally in .S admits
a simultaneous presentation. The last assertiomfer 1 needs to be proved only
overF,, i.e. only in the cas® = Oy. Then anyK € Coh)(9) is locally in S a
quotient ofOx s, and the assertion follows from the definitiondf. O

Remark.The reduced norm for = 1 induces a morphismdet : Sht; — Shtg,
which fits into the following commutative diagram.

Shtf det > Sht!}

al l

Coh2 x Cohlt — XM o xritm) o x/(m)

Herer is given by the divisors o C £ and& C &'.

1.3 Smoothness

Now we consider the geometric properties of the maps
Shty /a® 2 Sht™ /a” —“— Cohf x Cohlg .

Definition 1.3.1. Let Vect},(S) be the groupoid of locally fre® X Og-modules
€ of rankr.

By [Laf97] 1.2, Lemma 5,Vect, is algebraic, locally of finite type and smooth
overl,.

Lemma 1.3.2. The two morphisms
Inj3"™ — Vecty, x Cohp

given by(&,£/&") and by (&', E/E’) are representable quasiaffine of finite type
and smooth of relative dimensiedm. Consequentlynj;™ is algebraic, locally
of finite type and smooth ov&y.

Proof. A D-modification0 — & — & — K — 0 overS is equivalent to the dual
D°P-modification

0— & — &Y ﬁgxt%gos(K,D@OS) — 0

with £¥ = Hompro, (£, DR Og). Thus we have to consider only one of the mor-
phisms, for example the first one defineddbgnde /E'. Its fibre over a given pair
(€, K) is the open subsheaf of surjective homomorphisnigdnHompxro, (€, K)
(their kernel is automatically locally free by Lemma 1.2.6). ]
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Definition 1.3.3. Let Hecke™(.S) be the groupoid of diagrams ot x S
[5 N g/ — 5//]
such that’ O £ and&’ O £” are upper modifications of length and of ranki.

This definition and the following consequence of Lemma 1.3.2 could also have
been stated for arbitrary rank.

Lemma 1.3.4. The three morphisms
Heckey — Vecty, x Cohl} x Cohll

given by€&, £ or £” in the first component and by’ /E”,E'/€) in the second

and third component are representable quasiaffine of finite type and smooth of
relative dimensiorzdm. Consequentl{eckey; is algebraic, locally of finite type

and smooth ovef,. O

Proposition 1.3.5. The morphism
a : Sht™ — Cohf; x Cohpy

given by&’ /7€ and &’ /€ is algebraic, locally of finite type and smooth of relative
dimensior2md. Consequently the sta&t™ is algebraic, locally of finite type
and smooth ovelF, with dimensior2md.

Proof. The following 2-cartesian diagram is a restatement of the definition of
Sht™.
Sht™ ——— > Vectp

l ] l(Frobq ,id)

Heckep™ ) Vecty, X Vecty,

DenotingY” = Coh7; x Cohly andU = Vecty, x Y, the assertion follows from
Lemma 1.3.6 below. Here both= (£”,&'/E",£'/€) andg = (£,E'/E",E/€E)
are representable smooth morphisms. O

Lemma 1.3.6.LetY be an algebraic stack ovéf, and letU — Y,V — Y be

two algebraic morphisms which are locally of finite type. Denotébyhe base
change ofU by the absolute Frobeniusrob, : ¥ — Y and byF : U — U

its relative Frobenius. We consider the following 2-cartesian diagram of stacks in
which f : V' — "U is assumed to be representable.

W—7——">U

l [] l(F ;1d)

V —— U xy U
(f.9)



Then the morphisil” — Y is algebraic and locally of finite type, and the diag-
onal W — W xy W (automatically representable, separated, and of finite type)
is everywhere unramified, thus quasifinite.

If in additionU — Y is smooth and is smooth of relative dimensiorn then
W — Y is smooth of relative dimensionas well.

Proof. Any fibred product of algebraic morphisms which are locally of finite type
has the same property. The remaining assertions are reduced to the casesthat
a scheme by a smooth presentation— Y. In this case the lemma is (almost)
literally [Laf97] 1.2, Proposition 1. O

Definition 1.3.7. For a finite closed subschende C X let Sht, (S) be the
groupoid of locally freeD; X Og-modulesE of rank 1 plus an isomorphism
EXE.

In [Laf97] 1.3 this stack is caIIe(Tr%I (trivial shtukas) and it is proved that the
morphism
SpecF,/D; — Shty,

given byD; € Shtj, (F,) is an isomorphism. (Since the stagk:, is étale over

F, by Lemma 1.3.6, this follows from Drinfeld’s lemma 8.1.1 below.) The defini-
tion of a level{-structure can be expressed by the following 2-cartesian diagram
in which the lower arrow is given byf — &' « €] — [£; = &) < "&;).

Shty" —————— SpecF,
e
Sht™ } (X)) x (XN\T)(m) ——7 ShtpDI
This implies

Proposition 1.3.8. With respect to the right action of the finite grolyj on Sht’*
by twisting the level structure, the morphism

Sht " — Sht™ | e 1y x (1o

given by forgetting the level structure i -Torsor. O

1.4 Quasiprojectivity

The following is mainly a reproduction of the corresponding arguments from
[Laf97] for the casen = 1.



We begin with some general remarks. bett, ; be the stack of vector bun-
dles€ on X x S with a leveld-structure, i.e. with an isomorphisim O7, ¢ = &;.
A pair (£,1) is called/-stable if for any geometric poirgt € S and any proper
submodule # F C &; the following inequality holds:

deg(F) — deg() _ deg(&s) — deg(])
rk(F) k(&)

This is a special case of [Sesh] 4.1, Definition 2. A vector burftlien X ® k
with an algebraically closed field admits arbitrary level structures and becomes
I-stable as soon as the degred @ sufficiently large.

Theorem 1.4.1 (Seshadri).The open substack dfstable vector bundles with
fixed rankr and degreel

r,d,stab r
Vecty 7 C Vectp

is a smooth quasiprojective scheme with dimenst¢n—1+deg I). In particular
it is of finite type.

Proof. See [LRS] 4.3 or [Sesh] 4.1II. O]

Lemma 1.4.2. The two morphisms
Inj3™ — Vecty,
given by€ or £ are representable quasiprojective, in particular of finite type.

Proof. As in the proof of Lemma 1.3.2 we only need to consider the map given by
E. ltsfibreina giver€ € Vect,(.5) is alocally closed subscheme of the relatively
projectiveS-schemeQuotyy , /s- O

Lemma 1.4.3. The two morphisms
Sht™ — Vectch

given by€ or £ considered a®) x . s-modules are representable quasiprojective,
in particular of finite type.

Proof. Both morphisms can be written as compositiGs™ — Hecke;m —
Vecty, — Vect‘gx. The first map is a closed immersion, and the remaining
two maps are representable quasiprojective by Lemma 1.4.2 and by [Laf97] 1.2,
Lemma 2, respectively. O



Lemma 1.4.4.LetY C X' x S be a closed subscheme which is finite o¥er
and let€ be aD X Og-module which is locally free ova?y . s. If there is an
isomorphism

Elxxs—y 27E| xxs-v

then¢ is locally free overD X Og.

Proof. Though the statement of the lemma slightly differs from [Laf97] I.4, Propo-
sition 7, the proof is literally the same. O

Proposition 1.4.5. The stackSht™ / a” is of finite type oveF,.

Proof. Cf. [Lau97], Lemma 4.2. For any Harder-Narasimhan poly§othe open
substack inVect‘gx of vector bundles with polygor. P and fixed degree is of
finite type overF,. (This follows from Theorem 1.4.1.) Hence by Lemma 1.4.3 it
suffices to show that foP-shtukas with modifications of fixed length over an
algebraically closed fiel@ the polygon of th&) x,-modulef is bounded.

Assume it is not bounded. Then there &Peshtukas|& — &£ «— €] plus
Oxgr-submodulesF C & with locally free quotient and) # F # £ such that
the jump of the slopes = = (F) — u*(E/F) becomes arbitrary large. Here
" denotes the maximal slope of a subsheaf @ndienotes the minimal slope of
a quotient. Since thé&x-moduleD can be written as a quotient 6¥(n)", the
mapF @ D — &/F vanishes for sufficiently largé, which meansF C £ is a
D X k-submodule.

Let 7/ C &' be the inverse image of the torsion partédf . The difference
ut(&'/F) — ut(E/F) is bounded bymnd, so the mapgF — &'/F' vanishes
for larged as well. Thugd F — F' < "F| is a diagram ofD X k-modules with
F'JF C&/EandF'/7TF C £/7€. Then by Lemma 1.4.4 is locally free over
D X k, contradicting the assumption. O

Proposition 1.4.6. In the casel # ( the stackSht}”/aZ IS a quasiprojective
scheme ovef,.

Proof. Let Sht}"*™" /a% C Sht}" /a” be the open substack whefeconsidered as
an Oxys-module with the induced level structure fisstable. TherSht?”‘/aZ is
the ascending union of the open substacks

Sht!"*" /a” K, , K, = Ker(D;; — Dj),

each of which is a quotient of a quasiprojective scheme modulo a finite group by
Theorem 1.4.1 and Lemma 1.4.3. From Proposition 1.4.5 it follows that this chain
of substacks becomes stationary at some finite level

So it remains to prove that the grouf, acts without fixed points. An equiv-
alent statement is that the only automorphism &f-ahtukal® = [ — &' « €]
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with non-trivial leveld -structure over an algebraically closed fiélds the iden-
tity. Denoting byZ C Ox the ideal of/, such an automorphism induces a
homomorphism

1—U . S. E— €‘®OXI.

From Lemma 1.4.4 follows that the saturation of its image consists of locally free
DX k-modules. Sd —  is injective or zero, but the former is impossible in view
of deg(Z) < 0. L

Corollary 1.4.7. All stacksSht™ are Deligne-Mumford stacks. O

1.5 Properness

Contrary to the expectation the morphiSht™ /a” — X'™ x X'(™) js not always
proper, not even in the case = 1. Here we only give a sufficient criterion for
properness, but in appendix A we show that this is optimal in the ¢ase. In
particular, for anym > 1 there are division algebras for which the morphism

77" is not proper. In the present work we will (almost) exclusively be interested in
the proper case.

Definition 1.5.1. The division algebraD is called sufficiently ramified with re-
spect tom if for any set ofmd places off” the least common denominator of the
local invariants ofD at the remaining places equals

Proposition 1.5.2.1f D is sufficiently ramified with respect to, then the mor-
phism
7 ¢ Sht} /a? — (X' \ D)™ x (X'\ 1)™

is proper, so in the case # () it is projective by Proposition 1.4.6.

Proof. Following a remark of L. Lafforgue, in the sufficiently ramified case a
slight modification of the proof of [Laf97] IV.1, Theorem 1 is correct. By Propo-
sition 1.3.8 we may assunie= (), and we have to prove the valuative criterion of
properness for" or equivalently for the morphistht™ — X'(™ x X',

Let A be a complete discrete valuation ring with quotient fiéld residue
field k&, and a uniformising element, and letA’ be the local ring ofX ® A
in the generic point of the special fibore. We must show that a giveshtuka
[Ex — & «— "Ex | overK with divisorsX, = N(E)/€x) and X, = N (& /Ek)
in X' (A) can be extended toR-shtuka overA after a finite extension of.

LetV = Ex @ K(X) be the generic fibre and let= ;!¢ : "V — V.

Since vector bundles over the punctured spectrum of a two-dimensional regu-
lar local ring extend uniquely to the entire ring, the desired extension is given by
an A’-lattice M C V with o("M) C M. By [Laf98] 2, Lemma 3 (cf. also [Dri89]
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Proposition 3.2) there is a maximal lattifé&, with this property, and after a finite
extension ofA (which changed/,) the induced mag : "My ® k — My ® k is
not nilpotent. Then the diagrams

[Ex 255 &1 B g1 — g

[ My = My = M, <+ "My

induce a similar diagram of locally fre X A-modules of rank on X x S

&L Lgr Lg]
such that; andt are modifications with divisorX, and X,. It remains to show
thatt’ or equivalentlyp is an isomorphism.

Let0 # N C M, ® k be the intersection of the images ofall: "M, ® k —
My®kandletF C £k, F' C £ ® k be the maximal submodules with generic

fiboresN. We get a diagram db X k-modules
[ F— F «— F]

with injective maps plus an injectiaf’/F C Coker j ® k. The support ofF’ /"F

lies over at mostnd different closed points ok becauser’/F andF’/"F have

the same length. Therefore the hypothesidomplies that there is a finite set of
placesr; ...z, at which the above diagram induces isomorphisms of the comple-
tions F,, = "F,, such that the least common denominator of the local invariants
inv,, (D) equalsd. Like in the proof of [Laf97] 1.4, Proposition 7, this implies
that the rank ofF over Oxg,, is a multiple ofd?, i.e. F = £ @ kasF = 0 is
excluded. O

1.6 Partial Frobenii

The absolute Frobenius Bht* can be written as a product of two partial Frobenii
between this stack and its variant with reversed arrows. Outside the diagonals
these two stacks are canonically isomorphic.

Definition 1.6.1. For a given integei > 0 let the fibre of the morphism of stacks
a : Sht;™ — Cohjy x Cohp
overK, andK,, € Coh}(S) be the groupoid of diagrams of locally fréex O-

modules of rank
t

(£ L& LsE]
with £/&" = K, and€ /&’ = K, plus a levelf-structure in the obvious sense.
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All properties of Sht}* and their proofs carry over t6ht;™: the morphismo

is algebraic, locally of finite type, and smooth of relative dimensiond. Its
composition with the normy : Sht;™/a? — (X'\ 1) x (X’\ 1)), is of finite
type. In the casé +# () it is representable quasiprojective, and in the sufficiently
ramified case it is proper.

Proposition 1.6.2. The symmetric produck ™ classifies divisors of degree
onX. LetU C X x X pe the open subscheme where the two divisors are
disjoint. OverU there is a canonical isomorphisfiht} | ; = Sht;™ | which is
compatible with the morphisms

Proof. Any sequence of two modificationg — &’ «— £” | with disjoint divisors
X, =N(£'/E")and X, = N(E'/E) can be extended uniquely to a cartesian and
cocartesian diagram

g s 8//

| o]

E—¢

and vice versa. Any such diagram induces isomorphi§ig” =~ 8/5 and
E'NE=E/E. O

Definition 1.6.3. We define two partial Frobenius morphistis,, : Sht}" —
Sht; ™ andFr, : Sht;™ — Sht}" by

Fro, : [€L8 €] — [& L€ L]
and , . .

Fr, : [ & L] — [&LE e,

With respect tax these partial Frobenii commute with the absolute Frobenius of
the corresponding componedbhyp, i.e. there is a commutative diagram:

Froo Fr,

Sht’ > Sht;™ > Sht7"

Coh% x Coh b, Coh% x Coh% ) “Frobxid” Coh% x Coh%

The compositiond*, o Fr,, and Fr,, o Fr, are canonically isomorphic to the
absolute FrobeniuBrob, of the respective stacks.
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2 Chains of Modifications

The following variant of the stack&it}* does not present any new difficulties. We
have tried to write down all relevant commuting diagrams, but compatibilities of
the corresponding 2-isomorphisms have largely been ignored.

2.1 Definitions

First we extend Definition 1.2.3 of upper modifications to negative lengths.

Definition 2.1.1. For a given integem let Inj7" (S) be the groupoid of injective
maps of locally freeD X Os-modules of rank

EDE ifm>0
ECE ifm<O

with quotient€ /E" € Coh(S) or £'/E € Cohy,™(S). These objects are called
modifications of lengtn.

Definition 2.1.2. For a given sequence of integers= (m; ... m,.) with the sum
zero letSht7*(.S) be the groupoid of diagrams

[(E=&=86=... 56 ="¢]

onX x Swith (§_, = &) € Injg™ plus alevelf-structure in the obvious sense.

The connection to Definition 1.1.2 and Definition 1.6.1 is expresseshby =
Shtf,‘m’m) for any integem.

As before there is an action Bic;(X) onSht7*, and we can form the quotient
Shtlm/az. We consider the following commuting diagram in whjgs defined by
forgetting the level structure, while is given by the quotients; /& or&;/&; 1
depending on the sign of;;.

m ¢ Sht™/a? —% T]_, Cohlml — TT7_, X"(miD)

I [

T o Shtlm/ozZ s H;le(X/ \ ])(Imi\)

The following extensions of Propositions 1.3.5, 1.3.8, 1.4.5, 1.4.6, and 1.5.2 result
from the obvious variants of their proofs.
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Theorem 2.1.3.The morphisna is algebraic, locally of finite type and smooth of
relative dimensior » _ |m;|. Outsidel the morphisng is a Dj-torsor.

The stackSht}*/a” is of finite type oveff,, and in the casd # (it is a
guasiprojective scheme. Consequentlysak™ are Deligne-Mumford stacks.

If D is sufficiently ramified with respect o, |m;|/2, then the morphismy; is
proper, thus projective in the cade# (. O

2.2 Permutations and partial Frobenius

If m' is a permutation of the sequenge thenSht7* and Shtlm/ are isomorphic
outside the diagonals. More precisely, for ang S, we denote the correspond-
ing permutation of the sequengeby m - s = (my) ... my()), and we denote
the right permutation action by

i(s) : J[Cong! = TTCohp @, (Ki... K,) — (Ky)- - Ky) -
=1 =1

Proposition 2.2.1.LetU C [[X(™) andU’ C ] X(™@D be the open sub-
stacks where the divisors are pairwise disjoint. Then there is a canonical isomor-
phismj(s) which fits into the following commutative diagram:

Sht?” |y —2 5 Sht™* | 4 (2.2.1)

aml im

r m| () r [mg(ayl
[Tz COh‘D | [[i=; Cohp, v

In particular we obtain an action of the stabilis8tab(m) C &, on Sht;* such
that o, iS equivariant.

Proof. Any sequence of two modifications — & « £"], [€ E— &, or
[ — & — &' with disjoint divisors can uniquely be extended to a cartesian and
cocartesian diagram

g }5//
| = |
E——¢&

and any such diagram induces canonical isomorph&;ﬁNs’:“ E'/E"andE’ /€ =
E" /€. This implies the assertion for thosavhich exchange two adjacent letters,
which generaté,.. [
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Remark 2.2.2. It is sufficient that the divisors of those pairs of modifications
are disjoint whose order is actually changed by the permutatioAssume for
examplem = m;m,ms; andm - s = m;msm,. ThenSht7 and Sht7*” are
isomorphic over the open subgétC [] X (™) where any divisor with index in
m,, is disjoint from any divisor with index im.

Definition 2.2.3. Let ¢ € &, be the cyclic permutation such that - ¢ =
(ms...m,, my). The partial Frobenius

Fr, : Sht7* — Sht7**
is defined by the assignment
Fro : [&0=&...76] — [&...76 =& ]
with the obvious level structure.

The compositiortEr,)" is canonically isomorphic to the absolute Froberitish,
of Sht7*, and there is a commutative diagram:

Fro

Sht™ > Sht” (2.2.2)

l la

., | i(a)o(Froquidx("'71>) oo |
[T;-, Cohp” > T1;_, Cohp "

Moreover the partial Frobenius is compatible with the permutations af the
following sense: for any integér < k£ < r and any permutation € &, which

fixes the sef1...k}, outside appropriate diagonals (see Remark 2.2.2) there is
the following commutative diagram.

m (FrO)k .ok
St —— s gpme (2.2.3)

j(s)l% %lj(a’fsa’“)

.S Fro k
Sht[m % Sht[m-sak

2.3 Collapsing maps

Letm; andm;,, be two neighbouring elements of the sequemnceith the same
sign, and letn be the collapsed sequenge; MG, M M1, My - Smy).

Forgettingé; defines a morphisiiht;* — Sht7".
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The composition of such morphisms gives more general collapsing maps as

far as this is permitted by the signs of the. In order to fix a notation, let
r=ry + ...+ r, be adecomposition such that in any single block

(ml .. .mr1)7 (mr1+1 .- -m’l‘1+7’2)7 s

all signs agree, and lek be the corresponding collapsed sequence of length
|e7:h‘7 = m7,1+.__+rj71+1 + e + mrl_;,_“__,_rj.

Definition 2.3.1. With this notation the collapsing map
p(r) : Sht? — Sht?"
is given by forgetting alE; except&y, &,,, &, +r,, €1C.
Let Coh”' be the stack of¢ € CohZ"' plus a filtration
K=Ky2...2K,, =0 or 0=KyC...CK, =K
depending on the sign of; such that the length of each quotiefs}_,/K; or

Ki/Ki_1is|m. 1 4, 4. Then there is a natural 2-commutative diagram

Sht2 — " g (2.3.1)

o o b

A~ | |75
Hj COhD W Hj COhD

in which ¢(r) is given by forgetting the filtrations. The graduation ®f, is
canonically isomorphic tey,,. From Lemma 1.2.6 follows that this diagram is
2-cartesian, s@(r) is representable projective (the fibresqf) are given by
closed conditions in certain flag varieties).

Moreoverp(r) is compatible with permutations and with the partial Frobenius:
assume that for somee &, the images of the chosen blocksmafremain con-
nected inn - s, and denote by € &, their permutation. Then outside appropriate
diagonals there is the following commutative diagram.

Sht? — ", gy (2.3.2)

j(S)lN Nlj(ﬁ)

Shs HE, g s
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Compatibility with the partial Frobenius is expressed by the commutative diagram

drawn below.

Sht — 2y gpem (2.3.3)

(Fro)rll J/Fro

m-o" r-7) m-&
St 2D gy

2.4 Hecke correspondences

The Hecke correspondences could be defined without leaving the context of finite

level structures. Nevertheless we follow the presentations in [LRS] and [Laf97],

which use infinite level structures, because this seems to clarify the construction.
LetT C | X| be a fixed finite set of places. The projective limit

Sht™" /a” = lim Sht}*/a”
—
INT=0

/(I

is a quasicompact scheme O\HgX(T) ) by Theorem 2.1.3. It§-points are the
set of isomorphism classes DBfshtukas ovel' plus compatible isomorphisms

L DINOg = &®0T

modulo the action ofZ. Here we use the notatidh! X Oy = lim (DrX0Os) and

similarly on the right hand side, the projective limit taken over 7' = (). There

are a natural action af”* and a natural right action ¢©} )* on this scheme: the

former is defined via the homomorphism

22O, pieT(X) = lim Pics(X)
—

INT=0

AT’ *

and the limit of the previously defined actionBfc;(X) on Sht}*/a”, while g €
(DT)* acts by twisting the level structurgi— ¢; o g.

Over[] X/ we have
Sht™"/a” K| = Sht}*/a”.

Lemma 2.4.1. The actions of D])* and of A”* on Sht”” /a” can be extended
to an action of{ D1)* such that the natural morphism

a Sh‘cm’T/aZ — H Cohllgm|

is invariant, i.e. for anyy € (DI)* there are compatible 2-isomorphismgs: o =
aog.
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Proof. It is sufficient to construct an extension of the action(®f])* to the
monoidl’ = (D})* N DI whose restriction to the intersectidm A”* coincides
with the given action oA”*. So forg € T we have to define

[o=.. 56 ="6,1]-9g=&=...5E="E,/].

We definef! via the following cartesian diagram

& —— &SR0T «+—— DIROg (2.4.1)
] = ]
&l » DT X Og

and let its level structure be the inverse of the isomorphisth® O =~ DT K Og
induced by the lower arrow. Since the m&p— Coker g is surjective, we have
&i/E! = Cokerg. This being flat overS, it follows that&! is locally free over
Oxxs (see the proof of Lemma 1.2.6).

That&! is locally free overD X Og as well needs to be shown only over the
geometric points ofX by Lemma 1.2.5. Over geometric points’lhthe mod-
ules&; and&! are isomorphic, and outside the moduleS; admits arbitrary level
structures.

From (2.4.1) we get isomorphisngs/&; 1 = E//E_,or &1 /E = E_/E!
depending on the sign of,;, which is the invariance at. O

Definition 2.4.2. For giveng € (D})* and a finite closed subschenieCc X
satisfyingl N T' = () the associated Hecke correspondence is

(p,q) : T%(g) = Sht™7 /a®(KT noKT) 1290, ghe™ /% x Sht! /o”

plus the 2-isomorphism, : ap = aq. Restricted tq | X(('T”)”') this is a finiteétale
correspondence ovgf Coh‘g”‘ in the sense of the following intermediate section.

Remark.The morphisni'7*(g) — (Sht}*/a”)? is representable finite and unram-
ified, but not in general an immersion. Aside from this technical point, Definition
2.4.2 is conform with [Laf97] I.4, while in [LRS] (7.5) the inverge! is used
instead ofg. Since this is equivalent to the exchangepadnd ¢, our action on
cohomology (section 8.2) is conform with [LRS].

Finite étale correspondences

A finite étale correspondence of algebraic stacks 6yas a diagram
XLz 4L X
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with three algebraic stacks, X', Z and two representable finite agthle mor-
phismsp andq. For another algebraic stadk along with two fixed morphisms
a: X — Y andd : X’ — Y afiniteétale correspondence ovEris a correspon-
denceX «— Z — X' as before plus a 2-isomorphism: ao p = o' o q. Any
correspondence is a correspondence dVer SpecF,. We define an associative
composition of correspondences oYeby

(X £ 7 L X o[X L7 L X" = [ X & 7 Xy 242 X

with the obvious 2-isomorphismpp; = aq'ps.

Let Corr(X | Y) be theQ-algebra generated by the pajts < Z & X, w :
ap = aq| with this product and with the following additional relations: for any
representable finitetale morphism : 7’ — Z of constant degree we demand

n[X+z5HX]=[x+£ 725 X].
A morphismf : Y’ — Y induces a homomorphism @f-algebras
/5 Corr(X|Y) — Corr(X xy Y'|Y’)
by base change, and a morphismY — Y induces a homomorphism
g« : Corr(X|Y) — Corr(X | Y").

by prolonginga. For a representable finitetale morphismh : X’ — X of
constant degree the assignment

h#[X<—Z—>X}:%[X’—>X]0[X<—Z—>X}0[X<—X’}

defines a homomorphisii* : Corr(X | Y) — Corr(X’|Y). The antiinvolution
of Corr(X | Y') exchanging andg will be called transposition.
Equivariant correspondences

A correspondence of two morphismisand &' of algebraic stacks ovéf, is a
commutative diagram

X, 22—z 25X (2.4.2)
J/h D J/ " D J/ /
Xo ¢ — 22— X

20



in which both rows are finitétale correspondences and both squares are 2-carte-
sian. Again we can define correspondences over aYjase Y; and get for any
2-commutative diagram

X — X
Yi —— Y,

aQ-algebraCorr(X; — X, | Y] — Y3) equipped with morphisms Gorr (X | Y7)
and toCorr( X5 | Ys). The above mapg* andg. extend to homomorphisms into
Corr(X xy Y — XY= Y)orCorr(X = X |Y — Y”), respectively.

Notation. In the following, all stacks ovef] X ™ will be replaced by their
restrictions tq [ X' Eﬁ’)”') which will not be expressed by a change of notation.

Proposition 2.4.3. The class of the corresponden&&*(g), u,] only depends on
the double cosek! ¢ K7 Thus the assignment

is well defined. It gives a homomorphigift of Q-algebras with the following
compatibility for/ C J:

hit : Hi — Corr(Sht}*/a” | HCohlg”l)
| e
h5 : H} — Corr(Sht’}/a” | HCohlfg”l)

Here the left vertical arrow is the inclusion amt: Sht’;” — Sht}" is the reduction

of level structure.

Proof. DenotingX = Sht™” /a”, the Hecke correspondences can be written as
i) = X /(K] N*K}) = X x"T K{gK[ | KT ,

where the isomorphism is given by the map- (z, g). Then the first assertion is
clear. The following calculation implies that the diagram commutesi(set K7
andK’ = K7):

XK' X (X x5 KgK /K) xxx XK' =X x¥ KgK | K’

= || ax¥EKyk'/K'= || X/(K'n'K')

yeK"\KgK /K’ yeK"\KgK /K’
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We also use that the degree of the mepK’ — X /K equalsy” (K)/u’ (K').
The product of the correspondendg%(g) andI'7*(¢’) can be calculated as

(X xX KgK | K) xx/x X/(KNYK)
=X <N KgK [ (KN9K) =X x" Kgk x* K¢K | K
and has an obvious finitetale map to

XxNKgRgK /K= || X/(KN'K).

g"eK\KgKg'K/K

The degree of this map over th&-component is the number of inverse images of
g"underthe mag g K x* K¢ K — KgK ¢ K, and this number equald (K )~
]IKgK*]IKg’K(g”)- D

Lemma 2.4.4. The Hecke correspondences are compatible with permutations of
m, with the partial Frobenius, and with the collapsing maps, i.e. if

X — X,

L

Yi — Y,

is one of the diagram@.2.1) (2.2.2) or (2.3.1)then the map&7* can naturally
be extended to homomorphisms into the algebsar(X; — X5 |Y; — Y5).

Proof. Since the mapg(s), Fr,, p(r) are equivariant with respect to the action
in Lemma 2.4.1, we get diagrams of the form (2.4.2). In the case(:9f we
also have to observe that the morphigm from (2.3.1) is invariant under this
action. The relevant squares are 2-cartesian because for sufficiently/large
they can be written as a quotient of a maprof / K7 -torsors modulo a suitable
subgroup. O

Remark 2.4.5. The homomorphisma7}* are also compatible with the change of
T. More precisely, forl” C T there is a natural inclusiofy 1 : HE C HT,
which using the obvious decompositiéty = H? ® Hrp\r is given by f7 —
ff®l. Thenhj, o ipq is the restriction ofi}, to [ XE%”‘).

3 D-Shtukas with Base Points
In this section we consider moduli spacedbthtukas with modifications of pre-

scribed type in a fixed set of points. The constructions and results of the preceding
sections carry over to this case without difficulties.
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3.1 Definitions

The following definitions all depend on tifey-AlgebraD, which will sometimes
be suppressed in the notation.

Definition 3.1.1. A modification in the point € X'(S) is a triple(&, £, i) with
two locally freeD X Ogs-modules€ and&’ of rank1 and an isomorphism of these
outside the graph of

i & ‘XXSfI‘Z > ¢ }XXSsz ~
We writei : £ = £'. LetMod,(S) be the groupoid of such modifications and let
Modp — X'
be the map given by.

Inthe cases' = Spec k with a fieldk, the type of a modificatiomv(€ = £') € P
can be defined as follows. For a point X'(k) we denote byO,, F.,, D,, D,
the completions i of the base changes 6fx, F, D, D to k. There is a natural
isomorphism

where the first map is given by— \(w,) and the second map is induced by any
isomorphismD, = M,(O.,).

Definition 3.1.2. Let £ = £’ be a modification i € X’ (k). Any pair of genera-
tors of theD,-modulese € £, ande’ € £ determines a unique € D} such that
e/ = eg. We set

inv(€ = &) = 41 (DigD})
which is independent of the choice @f, ¢’).

In order to give a precise definition for arbitrary basewe fix a trivialisation of
the Azumaya algebr® |x/sr, . as in section 1.2. Using this, the restriction of a
modification inModp(.S) to X’ x Spec F,» x.S can be considered as a modification

£ = & of locally free O r, . xs-modules of rankl.

Definition 3.1.3. For A € P let Mod3 € Mod., be the closed substack where
foranyl < i < d the restriction of the modification t&" x SpecF,» x S can be
extended to a homomorphism

NE e— NE((AD 4. 4 Ay 2)

which in addition is an isomorphism fér= d. We denote byMod}, € Mod3*
the open substack where these homomorphisms are surjectivedor all
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That this really defines closed substacks may be checkedfgveand there this
is clear. The partial order of thod%A by inclusion coincides with the order in
P introduced on page xii, in particuladody, C Mod%A is the complement of
the (finite) union of alMod3" for N < .

For a fieldk, Mody, (k) € Mod), (k) is the subset of modifications of type

Remark.We do not claim that Definition 3.1.3 is ‘correct’ in the sense Matl;;

is the schematic closure aflod},. Nevertheless for the cofinal set afwith

A2 = .. = \@ this holds. We ignore such questions in the sequel because they
do not play a role fof-adic cohomology.

Definition 3.1.4. For any integern we set

Mody = | ] Mod3

\eP;;
andModp = |J,, Modp.

In other wordsMod}; C Mody, is the closed substack where the determinarit of
(defined using the reduced norm) extends to an isomorphisi &nS

det(i) : det(&) = det(E')(m - 2).

Lemma 3.1.5. The involution ofModp which exchange& and &£’ mapsl\/lod7§A

isomorphically toMod5"*" with woAY = (=A@ ... — AM),

Proof. Over a field this is clear. Over a general basthe dual of the (potential)
map in Definition 3.1.3 coincides with (€) ® (=AM — ... = X[*9) . z) —
A4=¢(£") up to multiplication with an invertibl®x . s-module. O

Definition 3.1.6. Let a sequencg = (\; ... \,) of dominant coweights foGL,
with > deg(A;) = 0 be given. Let

Ty @ Sht=* — (XY

be the morphism of stacks whose fibre ower ..z, € X'(S) is the groupoid of
chains of modifications

E=6E=...=627

on X x S suchthatany&, | = &) € ModgAi(S) is a modification in the point
x;. Here we use the notatidé, = (id x Frob,)*&. These objects will be called
D-shtukas (with base points) of tyge A. We denote by

jx : Sht* C Sht=2
the open substack where the type of the modifications equalghich means
(gi—l = 52) € MOd%Z(S)
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Definition 3.1.7. Let I C X be a finite closed subscheme. A levestructure
for aD-shtuka as above with; € X'\ [ for all ; is a sequence of isomorphisms
1+ DX Ogs = (&) which together with the given modifications form the
following commutative diagram.

&1 = &y —— - =& = o1
LOT% LIT% ETLT ETTLO
DiXOg =D;XKOg = - =D KOy = D; KOg

We denote by

TN - ShtISA — (XI \ I)r
the stack ofD-shtukas of type< \ with a level-/-structure and bﬁht% - ShtfA
the open substack where the type equals

As in section 1.1 the groupic;(X) acts onSht>2, and the quotien$ht 2 /a”
can again be identified with a finite union of componentsmifé. The following
theorem summarises the main geometric properties of these stacks.

Theorem 3.1.8.The morphism
Ty - ShtISA/aZ — (X'\I)"

is always of finite type and is representable quasiprojective # 0. If D is
sufficiently ramified with respect toin the sense of Definition 3.3.5 below, then
the morphismr; , is proper. Its restriction tc&;ht%/aZ Is always smooth of relative
dimensior2 ) ,(p, \;) € 2Z wherep denotes half the sum of the positive roots of
GLg4. The morphism

Sht7* — Sht=2 | (xn yr

which is defined by forgetting the level-structure iBatorsor.

In section 3.3 these assertions will be deduced from the corresponding properties
of the stacksSht?"/a” by considering théht;/a” as inverse images of strata in

a stack of coherent sheaves. (The last assertion of the theorem is an immediate
consequence of the isomorphi@imt%l = SpecF,/D; on page 8.)

Resolution of singularities

Let\o = (1,...,1) € P;. Any dominant coweighA € P* can up to reordering
uniquely be written as

)\ = ’I’L/\O —I— Z,u]
7j=1
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with minusculey;, i.e.pu; = (1,...,0) with 1 < deg(y;) < d — 1. For a given
sequence\ with total degree zero we choose such representations n;\g +
> ;o iy for all i and form the sequence

A= 3(1) = -A(T) with A(i) = (niXo, ity - - - His,)-

LetA; : X — X* bethe diagonal and &k = A, 1 X ... X Ag 41.

Proposition 3.1.9. Forgetting all &; but &y, &, 11, Es, 45,42, - - - defines a repre-
sentable projective morphism

q: A"‘Sht%/aZ — ShtISA/aZ

which over the open substaSllat%/aaZ is an isomorphism. With respect to the

stratification by theSht%’/aZ for )’ < )\ the morphismy is semismall, more
precisely the dimension of any irreducible component of a fibre equals half the
codimension of the corresponding stratum in the base.

The proof can be found in section 3.3.

3.2 Stratification of Cohp

The stackCoh'y classifies coheren® x-modules of lengthn, this is the case
D = Ox of Definition 1.1.1. Laumon [Lau87] defines the following stratification
indexed by the set of partitions = (m; > ... > m,) of m. Let

X (m) — x(mi—m2) o o x(me—1—ms) o x(mr)

and leti,, : X™ — Coh% be the morphism which maps a sequetigec
X@)(S) to
Op =0p,+.+0, ®Op,1.+p, ®...®Op, .

The image ofi,, is the m-stratumCoh’;, whose sections ove¥ will be called
coherenOx . s-modules of typen. The situation can be explained more detailed
as follows.

Proposition 3.2.1. The assignmen® — Op defines a morphism
[X(m)/Aut(OQ)] — Coh%¥

which identifies the quotient on left hand side with a locally closed substack
Coh’y C Coh%. In particular the restriction of the norm factors as

Coh% 2, x(m) _, x(m)
such that the first map/™ is smooth of relative dimension (1 — 2i)m; and the
second map is given by — > iD; (this is a finite morphism).
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Proof. Smoothness of the mapX ™/ Aut(Op)] — X™@ and its relative di-
mension follow from the fact that fab € X (™) (S) the sheaf of automorphisms
Aut(Op) — S is the open subsheaf of invertible element&id(Op) — S. The
latter is the direct sum of all

Hom(ODi"r----i-Drv ODj-i-----‘rDr) — S

which can be identified with the vector bundle).Op, ..., p, in casei < j or
(p2)«Op,+..+p, In casej < .

For the first assertion of the proposition we have to show that there is a lo-
cally closed substackohy C Coh'y over whichi,, factors, such that ani ¢
Coh’%(S) locally in S (it turns out for the Zariski topology) is of the ford.

Let F; be thei-th Fitting ideal of K € Coh'¥(S). We defineCoh by the
locally closed conditions that ea¢h,).(Oxxs/F;) is a locally freeOs-module
of rankm, 1 + ...+ m,. Certainlyi,, factors over this substack, so assume some
K satisfies these conditions.

We claim that the invertible idedlF, : F;) C Oxys annihilatesk. Since
F._1is an invertibleO x . s-module by assumption, locally ifi there is an exact
sequenc® — K' — K — K" — 0 with a locally freeOx «s/F,_1-module K
of rankr. The fitting ideals ofK’ are F| = (F; : F/—}), so the claim follows
inductively.

Let E C X x S be the divisor defined biF, : F;). For anys € S there is an
embeddin@z®k(s) C K®k(s) as adirect factor, which in some neighbourhood
can be extended to an exact sequehee Op — K — K; — 0 with S-flat K.
Using &ty (K1, Op) = 0 this splits in a possibly smaller neighbourhood. This
implies F;(K;) = F;41, and we can proceed inductively. O

The stratification can be carried over@oh?y, for arbitraryD:

Corollary 3.2.2. For any m there is a unique locally closed substaCkh? C
Coh7 which over a finite extensidf,» of F,, coincides withCoh;, via any of the
isomorphismg : Cohp, ® Fyn = Cohy, ® F,n from(1.2.1) The restriction of the
norm factors as

CohZ =, x'm —, x'(m)

Y

such thatV™ is smooth of relative dimension (1 — 2i)m; and the second map
is given byD — > iD;.

Proof. The locally closed substagk ! (Coh’, ® F,») and the morphisniv o j
from there toX"(™) are defined oveF, becausg is locally unique. O

27



Definition 3.2.3. The following fibred product is the stack of coherent sheaves of
lengthm which are concentrated in one (variable) point.

cohpy —— X/

| 5 I
Cohlt —~ 5 xr(m)
Letm : X — X™@ be the map — ((m; — ms) - z,...,m, - ). We define the

stack of coherent sheaves of typewhich are concentrated in one point via the
2-cartesian diagram below.

cohy — X'

| o |
Coht — xr(m)
In the following sense this is the inverse image of the given stratification by the

morphismcohy; — Coh.

Proposition 3.2.4. The natural morphisneohy; — Coh3 X y/m) X' identifies
cohyy with the maximal reduced substack of the fibred product. The morphism
cohy — X' is smooth of relative dimension (1 — 2i)m;.

Proof. Using Corollary 3.2.2 the staalohyy is smooth ovetX’ and in particular
reduced. Since the first map in the proposition is a base change, af) : X —
X™ » .y X, itis a closed immersion with a nilpotent ideal, which proves the
first assertion. O

From the proof of Proposition 3.2.1 we get the following description of the strata
in coh'y .

Lemma 3.2.5.Assume thaD = Oy. LetF; C Ox s be thei-th Fitting ideal of
K € coh¥(S) and letx € X (S) be the base point ak. Then the locally closed
substackeoh’y C Coh’, is defined by the conditions

Fi = Oxxs((=mip1 — ... —my) - )
for0<i<r. l

For generalD this gives a description of the stratadshy, over somef ».
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Definition 3.2.6. In the caseD = Oy let coh§m C coh§ be the closed substack
where
Fi € OXXS((_mi-i-l — . —my) x)

for 0 < i < r (equality fori = 0). In the general case Iebh%m C cohy, be the

<m

closed substack which ovEy. coincides withcohy,” via one of the isomorphisms
(1.2.1).

Remark.One might find it more natural to defireh5™ as the schematic closure
of cohy in cohf;. This makes no difference for the geometric points.
Resolution of singularities of the closures of the strata

The sum of two partitions, = (m; > ... > m,) andm’ = (m; > ... > m.,) of
the integersn andm’ will be understood componentwise, i.e.

m+m' = (my+mj >mg+my>...)

Here we have to fill up the shorter partition with zeros in the end. Using this
notation, anymn can up to reordering of the summands uniquely be written as

m = m; (3.2.1)

=1
such that alln, have the form(1...1) of various lengths.

Definition 3.2.7. We fix a decomposition (3.2.1). LebhZ(S) be the groupoid
of coherentD X Og-modulesk plus a filtration

0=KyCK, C..CK,=K

with quotientsK;/K; ; € cohp’(S) all of which have the same base point in
X'(S).

Proposition 3.2.8.We denote byA : X — X* the diagonal. The morphism
cohr — A* H cohp’
=1

given by the quotigﬂﬁ’i/Ki_l is of finite type and smooth of relative dimension
zero. Consequenthph? is smooth ovef with relative dimensiory (1 — 2¢)m;.

Proof. By Proposition 3.2.4 the second assertion follows from the first, which can
be proved inductively using Lemma 3.2.9 below. O
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Lemma 3.2.9. For given K; and K, € Cohp(S) let &xt(K, K,) be the stack
over S whichtof : S — S assigns the groupoid of extensiohs— f*K, —
K — f*K; — 0. Then&rt(K,, Ky) — S is of finite type and smooth of relative
dimension zero.

Proof. Locally in S we can chose a presentation— &’ — & — K; — 0 with
two locally freeD X Og-modulesE and &', cf. the proof of Proposition 1.2.4.
Then we have

Eut(Ky, Ks) = [ (p2) Homprog (E', K2) / (p2)sHomprog (€, K») |
withp, : X x S — S. ]

Proposition 3.2.10. Forgetting the filtration defines a representable projective
morphism

o <m
q : cohp — cohp

which is an isomorphism over the dense open substaicg. For anym’ < m

the fibres of overcoh%' have pure dimensiol’ i(m) — m;), i.e. the morphism
is semismall with respect to the chosen stratification.

Proof. The morphismy exists because the natural morphi?ﬂ% — cohp fac-
tors overcohs™ pointwise andtoh’z is reduced. Since the filtrations of a given
K e coh%m(S) can be considered as sections of a flag variety with certain closed
conditionsq is representable projective.

It is an elementary fact that induces a bijection on geometric points over
cohy. That thereg is an isomorphism can be seen as follows. Locallyiany
K € cohp(S) has standard forn®p and thus admits a filtration of the given
type, so we only have to prove its uniqueness. Inductively this can be reduced to
the cases = 2, however allowing more general, andm,. Assume the lengths
satisfy/(m,) > ¢(m,). Then the maximal submodules ity and in K on which
the idealZ of the given embedding C X x S acts trivially coincide, and we
can proceed inductively with the quotients. In the cése,) < ¢(m,) we argue
similarly using the maximal quotients &f and K, on whichZ acts trivially.

To calculate the dimension of the fibres we can work dugand may there-

fore assume thab is trivial. For a givenK ¢ coh%'(I_Fq) let W C K be the
kernel of multiplication by the uniformising elemeat. Thenn = dim(W) is
the length of’. Letk = deg(m,). The first step in the filtration is parametrised
by the Grassmannia@r™* of k-dimensional subspac&s C W, which carries a
stratification according to the type &f = K/V. Inductively it suffices to show
that when passing fromk’ to K’, the numben_ i(m, — m;) decreases precisely
by the dimension of the stratum.
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For this we need a closer description of the strata. The imagés whder
multiplication by induce a filtration

W=W,2...2Wy=0

with dimensions! = dy > ... > dy = 0. The strata are described by the numbers
k; = dim(V NW;), which satisfy the conditions; < d; andk; —k;—y < d; —d;_;.
The dimension of the stratum definedbgqualsy (d;—k;_1)(ki—k;—1). Adirect
calculation gives the same value for the decrease ofm;, — m;).
By Proposition 3.2.4 the such calculated dimension of the fibres equals half
. . - <m
the codimension of the stratainhy . O

3.3 Proof of the geometric properties

Definition 3.3.1. A modification€ = £’ in the sense of Definition 3.1.1 is called
definite if it can be extended to a m&p— £’ (positive) or€ — £’ (negative).

For any integem let Mod%ef’m C Mod7 be the closed substack of definite mod-
ifications. This is connected with the stadlacq'gm (Definition 2.1.1) by the fol-
lowing 2-cartesian diagram.

Mod"" —— X'

J/ 0 lm
Inji™ — s x(ml)
Thus the quotienf /&’ or £’ /€ depending on the sign of defines a morphism
q : Moddpef’m — cohl{jn|
overX’. Lemma 1.3.2 implies
Lemma 3.3.2. The two morphisms
Moddpef’m — Vect}, x coh'én |

given by(&,q) and by (£, q) are representable quasiaffine of finite type and
smooth of relative dimensiafin. O

A modification over a field is definite if and only if its type lies# . This holds
over arbitrary base as well: aiy/’* has the uniqgue maximal element

max

~J(m,0...0) ifm>0
~1(0...0,m) ifm<0
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and we haveMod®"™ = Mod3""". Form > 0 this follows directly from
Definition 3.1.3, and in the case < 0 we may apply Lemma 3.1.5. For any
integern the assignmeré — £(n - x) defines an isomorphism

S)\ ~Y S/\‘FTL)\O
Mody" = Mod,

with Ao = (1,...,1) € P/, so all stacksMod3* can be embedded into some
Mod"™. In particular they are of finite type ov&y.

Lemma 3.3.3.For any A € P+ the locally closed substaddods* € Mody""™
is the inverse image underof coh%A+ - coh‘{)”‘ with

N = A ifm>0 (3.3.1)
Tl weN ifm <0 o

Proof. In the casen > 0 the assertion follows from a comparison of Definition
3.1.3 and Definition 3.2.6, and in the case< (0 we can apply Lemma 3.1.5.[]

Let a sequence of total degree zero be given. In order to reduce the proof of
the geometric properties of the staél«hf_c;[SA to the definite case we chose integers
ni ...n, and set

N = (=nmido, A+ 1o, .., —nedo, A+ 1, 00) (3.3.2)

with \y = (1,...,1) as before. Lef\ : X" — X?" be the mapz;...z,) —
(x1,21...2.,2,). Then clearly

Lemma 3.3.4. With the above notations, forgetting the ofilddefines isomor-
phismsA* (Sht7) = ShtT* and A* (Sht7 ) = Sht?. 0

Definition 3.3.5. The division algebraD is called sufficiently ramified with re-
spect to) if one of the following conditions holds:

1. All )\, are definite and is sufficiently ramified with respect fp’ | deg(\;)|/2
in the sense of Definition 1.5.1.

2. Thereis a\’ like in (3.3.2) satisfying condition 1.
Proof of Theorem 3.1.8By Lemma 3.3.4 we may assume thatgllare definite.

Let m; = deg \; and define\! by (3.3.1). In view of Lemma 3.3.3 there is the
following commutative diagram with 2-cartesian left half.
TIA - Shtfg/az sy Hcohg)‘i+ —r (XN (3.3.3)
| e | |

Trm @ Shtf/a* —— ] Cohlrl —— [T x"(m:D
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This allows to deduce all assertions from Theorem 2.1.3:

Sincei is representable finite, the same holds for its base chéngéus the
morphismr; , is of finite type, is representable quasiprojectivé i () and is
proper in the sufficiently ramified case, because the same holds for

Moreover the morphism’ is smooth of relative dimensiah) _ |m;| because
this is true fora. Thus the smoothness assertions follow from Proposition 3.2.4
and the elementary equation

dlmi| +> (1 =2) ATV =2(p, \) .
J

Outside/ the mapSht7* — Sht™ is aDj-torsor, so the same holds for its base
change. m

Corollary 3.3.6. If all \; are definite, then the morphism
Sht[g/aZ — H cohg’\i

given by the quotients; ;/&; or &; /&, depending on the sign afeg()\;) is
smooth of relative dimensiah) _ | deg \;|. O

Proof of Proposition 3.1.9The morphisng in Proposition 3.1.9 is the base change
of a product ofr morphisms; from Proposition 3.2.10. O

3.4 Partial Frobenii

Conforming to section 2.2 we denote the cyclic permutation of a sequente
lengthr by A -0 = (Ao ... A\ Aq).

Definition 3.4.1. The partial Frobenius is the morphism
Fr, : ShtISA — Sht[SA'U
given byFI'O : [50 igl = ... iTgo} [ — [81 = ... ﬁTEO iTgl].

This morphism is compatible with the endomorphiBmb, x id*"! of the base
(X" \ I)" followed by an appropriate permutation. The compositibn,)” is
canonically isomorphic to the absolute Frobenkisb,, so Fr, is a universal
homeomorphism.

For any permutation € &, we denote by - s the sequenc@\,) ... Ay ).
We have the following variant of Proposition 2.2.1.
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Lemma 3.4.2.LetU C (X' \ I)" be the complement of all diagonals. Then there
are canonical isomorphisms

j(s) : Sht;* [y 22 ShtF** |y
which are compatible with the corresponding permutations of the base. [

The isomorphismg(s) are compatible with the partial Frobenius in the following
way: if s € &, fixes the sef{1...k}, then over the intersectiobi N (id** x
Frob; ("=k)(U7) there is a commutative diagram:

<x (Fro)¥ <ok
Sht;* —— Sht>* (3.4.1)

j(S)\% %J/j(ﬂ_kwk)

Fr,)F
gpeye ok Sht 257"

Let F; : (X’ \ I)" — (X’ \ I)" be the product ofrob, in the i-th component
and the identity in the remaining components. For any 1...r we chose a
permutations; € &, with s;(1) = 1.

Definition 3.4.3. The partial Frobeniust; : Sht; | ;. p-1 ) — Sht7?| p@yw
is the compositior¥r; = j(s;0)~! o Fr, o j(s;).

This morphism commutes with; : U N F; *(U) — F;(U) N U and is a universal
homeomorphism. Using the cake= 1 of the commutative diagrams (3.4.1) we
see that the definition does not depend on the choieg ahd we havé™; j(s) =
J(s)Fry for anys € &,. The casé: = 2 of (3.4.1) implies that the different

Fr; commute. Their product in any order (over an appropriate open subset of the
base) is naturally isomorphic to the absolute Frobehio$,.

Definition 3.4.4. For any sequence € (Z>)" let
F2% = (Frob,)™ x ... x (Frob,)* : (X'\I)" — (X' \ I)".

Let U C (X' \ I)" be the complement of all diagonals and AetC X" be the
intersection of alFrob* (U'). We denote by

Fre . ShtISA A — ShtlSA | A

the product of Fr;)* for: = 1...r (in any order).
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3.5 Hecke correspondences

The construction of Hecke correspondences is completely analogous to section
2.4 and could in fact be formally reduced to that case.
For a fixed finite sef” C | X| the projective limit

Sht=*" /a® = lim Sht;*/a”
INT=0

is a quasiprojective scheme 0\(éf(’T))’”. It carries an action of”"* via the given

homomorphismi”™* — Pic’ (X) and a right action of D1)* by twisting the level
structure. Like in Lemma 2.4.1 these actions can be extend@d’tp'. Then for
a finite closed subschendec X with INT = (),

IF2(g) = Sht=>T /(KT n9KT) 22 Sht7? /a® x Sht;>/a®
is a finiteétale correspondence o»{eYET))T. The assignment
<
]lKITgKIT — ' (K7) - [FI_A<9)]

defines a homomorphism @‘-algebrash% which for I C J fits into the following
commutative diagram.

. HE — Corr(Sht;*/a” | (X)) (3.5.1)

| [

h% c HT — Corr(Sht?A/aZ ‘ (XZT))T>

Hered : Sht5?/a” — Sht;*/a” is given by reduction of the level structure. The
isomorphisms from Lemma 3.3.4 are equivariant, i.e. the composition

)\/

HT TN Corr(Sht3* /a” | (X{r)?") 25, Corr(Sht*/a” | (Xr)")

equalsh%. If all \; are definite, then the morphisihfrom diagram (3.3.3) is
equivariant as well. More precisely we havg = N,i*h"* with 17" as defined in
Proposition 2.4.3. Similarly the partial Frobenitis, and the isomorphisnj(s)
from Lemma 3.4.2 are equivariant. In particular, denoting, = A N (XET))T,

the homomorphisnh} can be extended to

hy @ HY — Corr(ShtF /a® 25 ShtF /a” | Ary ) .
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3.6 Groupoids of fixed points

For a schem& of finite type ovetf, and an integet > 1 we denote by (a) C Y
the subscheme of fixed points of the endomorphiBmb,)®. This is the disjoint
union over the closed pointse Y with deg(y) | a of the schemeSpec k(y).

Let T C |X| be as before. For any sequence of positive integets(Z>,)"
the intersection

Aay(a) = Ay N H X(a;)

is the disjoint union of alSpec k(x;) X ... x Speck(z,) for pairwise distinct
closed points;; € X’ N'T which satisfydeg(z;) | a;.

Definition 3.6.1. We restrict all relevant stacks o). Let a finite closed sub-
schemel ¢ X with I N'T = (), a sequencea of lengthr and total degree zero,
an elemeny € (D1)*, and a sequence € (Z-,)" be given. The associated
groupoid of fixed points is the following fibred product:

Fix}(g,a) —— Sht/a” (3.6.1)

l ] \L(Fra, id)

(g) —2s Shi?/aZ x Sht?/a®

This is the stack of fixed points of the composition of the finite correspondence
(Fr2,id) and the transposed of the correspondeits.

Lemma 3.6.2. The natural morphisni¥ix} (g, a) — A(ry(a) is of finite type and
étale.

Proof. The stackFix%(g,g) is a Deligne-Mumford stack of finite type ovél,
because the same holds ﬁht%/az and the morphisnil, g) is representable
finite. Therefore it suffices to show thix> (g, a) is smooth oveF, of dimension
zero, which follows from Lemma 1.3.6. H
Definition 3.6.3. For a givenz € A (a)(F,) let Fix}(g,a)(2) C Fixy(g, a)(F,)
be the inverse image of that point. We set

#Fix}(g,a Z #Aut (3.6.2)

with y running through a system of representatlves of the isomorphism classes of
the groupoid. This is a finite sum of rational numbers by Lemma 3.6.2.

Remark.In the casd # () the groupoid of fixed points is a scheme, which means
that in (3.6.2) all groups\ut(y) are trivial. For the computation of these sums
this will however make no difference.
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Part [l
Counting Fixed Points

In the third part of this work we will study the cohomology of the varieties
ShtISA/aZ. The starting point for this is the calculation of the cardinalities of the
groupoids of fixed points which have been defined in section 3.6. Our approach is
based on the presentations in [Laf97] and [Lau96].

The computation of the number of fixed points will be a consequence of their
adelic description, which rests on the classification of the generic fibres (isogeny
classes) ofD-shtukas ovelF,. One important point is a transfer between con-
jugacy classes of generic automorphism@eshtukas and conjugacy classes in
D*. At first, the computation results in a sum of adelic orbital integrals which are
twisted at finitely many places. Using the fundamental lemmasfiog (in those
cases where it is known) the twisted integrals can be replaced by untwisted inte-
grals. In view of the Selberg trace formula this means that the number of fixed
points can be expressed as the automorphic trace of a certain Hecke function.

Prior to the actual computation we give a detailed description of the category
of (D, ¢)-spaces, which arise as generic fibre®eghtukas (section 6). In section
5 the statement of the fundamental lemma and some general notions are explained.
In order to clarify the principle of the computation we first consider the case of
D-shtukas without modifications.

4 ‘D-Shtukas without Modifications

Let A = () be the empty sequence. In view of Drinfeld’s descent lemma 8.1.1, a
D-shtuka of type\ overF, is the same as a locally fré&-module of rankl. Thus
there is a canonical isomorphism

Sht? /a” (F,) = D*\Dj /Ka” (4.1)

such that the natural action dfut(F, | F,) on the left hand side corresponds to
the trivial action on the right hand side. Since the stack /a” is of finite type
andétale overF,, the groupoid of its geometric points is finite. Using (4.1) this
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translates to the quotied?*\ D7 /a” being compact, which of course can also be
proved directly (see [Weil] Lemma 3.1.1). In the cdse ) the stackSht? /a”
is a scheme, which means that the double quotient on the right hand side of (4.1)
has trivial stabilisers.

Let/ c X andg € D7 be given. The groupoid of fixed poinkixY(g) is then
defined by the right half of the following 2-cartesian diagram, while its left half is
an auxiliary definition.

Fix’(g) > Fixl(g) ———— D*\D}/Kd”

I A -

D; /(K1 N9K;) — D*\D}/(K; N9IK;)a” X [D*\Dj /K a”]?

Here the second component of the map denote(llby) is the map induced by
right multiplication byg. We can identify the fibred produtﬁt&?(g) with the
subset of

Dy /(KiNIK) x D* X Z

consisting of all element§y, 0, n) satisfyingygK; = da™yK;. Then the natural
map identified'ix(¢) with the subset oD’ / K x D* x Z defined by the condition
y~1éa™y € K;gK;. The action ofy’ € D* is given byy — §'y andd +— 6§66’ L.
We denote byD; a system of representatives of the conjugacy classés iand
get

Fix}(g) = D"\Fixj(g) /a”
= | Di\{y € Di |y 00"y € KigK }/Kia® (4.2)

6€Dg
neZ

As Fix?(g) is a finite groupoid, only finitely many of the double quotients on the
right hand side are non-empty. In particular any compact sétiiimeets only
finitely many conjugacy classes of elements of the fouh with 6 € Dy and

n € Z. From (4.2) we get the following equation for the number of fixed points.

: em 1 d
w0 =Y [ s a) 49
sep; YYEDF\Dy Ho

nez

This calculation can be interpreted as a proof of the Selberg trace formula.
Let Aut = C>(D*\Dj}/a”) be the space of locally constant rational functions
on the compact topological spa¢& '\ D} /a* on which the groupD; /a” acts
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by right translation and the Hecke algeliia= C>(D}) by the corresponding
convolution. The restricted action ®f; on the invariants
Aut™ = C(D*\D} /K;d")

can be identified with the transpose of the action defined via the Hecke correspon-
dences, which mean& (1x,,x,, Aut) = u(K;) - #Fix}(g). Linear extension of
(4.3) gives for allf € ‘H the Selberg trace formula

_ dp

LA =3 [t (4.4)

5EZDg yeD;\D; djtg
nez

Here for anyf almost all summands are the integral of the zero function.
A more direct direct proof of (4.4) is given in [Laf97] IV.4, Proposition 1.

5 Preliminaries on Orbital Integrals

A detailed reference for the following explanations is Chapter 4 in [Lau96], cf.
also [ArCl], Chapter 1.

5.1 Norm for GLg4

Let F' | F' be a cyclic field extension of degreewith fixed generator of the
Galois group. We denote [yL,(F"), the set of conjugacy classes@i () and
by GL4(E)7 the set obr-conjugacy classes idL,(E). Hereo-conjugation by an
elementh € GLy4(E) is the mapy — h~'go(h). There is a norm morphism

N, : GL4(E) — GL4(E), g+ go(g)...c" '(g).

Lemma 5.1.1. Any norm inGL4(E) is conjugate to an element 6fL;(F'). The
thus well-defined map

Nr : GLd(Fj)EI — GLd(F)u

is injective. For a giveny € GL4(E) with N(v) € GL4(F) the o-centraliser
(Respr GLqg)7 is an inner form of the centralis€iGLg) v ()

Proof. See [ArCIl] Lemma 1.1. and its proof or [Lau96], Proposition 4.4.2.[]

An elementy € GL,(F) is called elliptic if the algebrd’'[d] is a field, and) is
called semisimple i#’[0] is a product of fields. In the latter case a decomposition
F[6] = ] F; with fields F; induces a corresponding decompositiéh = @ V;
plus elliptic elements; € GL(V;) with F; = F[4;].
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Lemma 5.1.2.Let F' be a local field and let € GL,(F') be semisimple. Theh
is a norm if and only if aldet(d;) are norms forE' | F.

Proof. Cf. [ArCl] Chapter 1, Lemma 4. Since any inverse imagel einder N,
commutes withd, the element is a norm if and only if ally; are norms. By
multiplicativity of the determinant it remains to show that an elligtis a norm
as soon adet(d) is a norm forE | F.

In the non-archimedian case we choose an extersion /'[6] with [F": F] =
d plus an embedding” C M,(F) over F[§]. Then we haveVp | p(0) = det(d).
Let £ be afactor ot @ F”, i.e. a common field extension éfandF” generated
by these two. It suffices to show thais a norm forE” | F’. This holds because
the map

NF’\F . F/*/NE/|F/E/* e F*/NE|FE*

is isomorphic to the restrictiofal(E’ | F') — Gal(F | F'), which is injective.
In the archimedian case we can argue similarly. O

Fory € GL4(E) theo-centraliser(Res| » GLg)J is the multiplicative group of
the F-algebraM,(E)7. If N(vy) € GL4(F') is semisimple, then from the follow-
ing lemma we obtain a description of this algebra.

Lemma 5.1.3. For a given elliptic element € GL4(F') we write [’ = F'[¢] and
d = d/[F':F]. Leta € H*(F,Z) = Hom(Gr,Q/Z) be the homomorphism
defined byx(o) = 1/r.

If & = N,(v) is a norm, thenM,(E)7 is a central simpler”-algebra of di-
mensiond? with class—res(a) U € H*(F',G,,). Hered is considered as an
element o 7°(F’, G,,).

Proof. The algebratl @ F” can be decomposed into a product of fie[ds , !
such that ®id induces isomorphisms; = £ ,. Each extensiof] | F” is cyclic
of degree-/s with Galois group generated by = (o ® id)®.

The given embeddind” C M,(F) gives rise to a decompositioR? =
b;_, V; corresponding to the decompositionfof F’. We define do®id)-linear
endomorphismy of E4 viavy = v o 0% Inview of " = §andy : V; & Vi,
the algebra

My(E)] = Endggp (E?, 1) = Endg (V;, ¢°)

can be identified with the centraliser of the cydiicalgebrark!{r}/(7"/* — §) in
Endy(V;), which has the asserted classfii. Since theF’-dimension ofV; is
d'r /s, we obtain the asserted dimension as well. ]

Corollary 5.1.4. Let F' be a non-archimedian local field with valuatien Then
in the situation of Lemma 5.1.3 we have r/(Mq(E)7) = —v(det §)/(rd’).

Proof. invp/(resa U d) = invp(a U cord) = v(Npr | pd) /7. O
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5.2 Satake isomorphism

In the following let ' be a non-archimedian local field with valuation with
residue fieldF,, and with a fixed uniformising element. We write

~ G =GLy(F),

— K = GLy4(Op),

— A= Q[ 1/2 —1/2]_

Let H = Hg = CO(G//K,@) be the Hecke algebra df -biinvariant rational
functions onG with compact support. Its multiplication is given by convolution
with respect to the biinvariant measur®f G normalised by(K) = 1.

For a parabolic subgroup C GL, defined overO with a Levi group.M
defined ove® and with unipotent radical/ we write P = P(K), M = M(K)
and N = N(K). We denote byH,, = Co(M//K N M,Q) the corresponding
Hecke algebra, by, : M — ¢* the modulus character and by, the measure
on N normed bydn(K N N) = 1. Then there is an injective homomorphism of
algebras

HG®A—>HM®A frfr

given by f7(m) = 65/*(m) - [ f(mn)dn. This does not depend dh and is
transitive in the obwous sense.

For a split maximal toru§” C GL, defined ovetOr andT = 7 (F) there
is a canonical isomorphisti;y = Q[X.(7)]. Moreover the choice of a Borel
group B containingZ determines an isomorphisfi = G¢ and accordingly
Hr =2 Qlz1, 27t 20,271

Using these notations the mgp— f? induces an isomorphism (Satake iso-
morphism)

He @A (Hr @ AW = Az, 27t 2,279, write f— fY,

which does not depend ¢h or B. Herel denotes the Weyl group af C G.

Similarly, for T C M we get an isomorphisri,; @ A = (Hy ® A)"». Using

this, the mapf — f¥ can be considered as the inclusion of subringi(ef® A.
Let £/ | F' be the unramified extension of degreand let

- G, = GLy(P),
_ Kr = GLd(OE>1
- H, = Co(Gr//KruQ)

Letb, : Alz1...2;"] — Alz ... z;'] be the homomorphism defined by 2!,
Via the Satake isomorphism this defines a homomorphism

by : H, A —HRQA.
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5.3 Fundamental lemma

We keep the notations of section 5.2. By [Lau96], Corollary 4.3.3 the conjugacy
class of an elemenit € G is closed with respect to the-adic topology if and
only if ¢ is semisimple, i.e. if the algebr&[d] is a product of fields. In that case
for any f € C3°(G) the orbital integral with respect to a biinvariant measumn
the centraliset:s

Osfd) = [ flg7d0)

Gs\G v

is absolutely convergent.

Let 0 € Gal(E| F) be the Frobenius. A given semisimple elemént G
determines a decompositidrf! = @ V; plus elliptic elements; € GL(V;). By
Lemma 5.1.2 is a norm if and only if allu(det §;) are multiples ofr. In that
case for anyy € G, with N,(v) = § the o-conjugacy class of; is w-adically
closed inG,., because it is the inverse image undérof the conjugacy class of
the semisimple element € GL,(E). Thus for anyf € C;°(G,) the twisted
orbital integral with respect to a biinvariant measuren thes-centraliser(G,.)

10, d) = [ g ote) L
(Gr)3\Gr v
converges absolutely. Sin¢€',)] is the group of rational points of an inner form
of (GL4)s (Lemma 5.1.1), there is a canonical transfer of invariant measures be-
tween(G,)7 andGs.
Questions about orbital integrals of functiongirand twisted orbital integrals
of functions inH,. can be reduced to the case of ellipiis as follows. For a
given semisimple) € G, after conjugation we may assume that the associated
decomposition® = @ V; is defined ove®. Then the stabiliseM C GL, of
this decomposition is the Levi group of a parabdidefined ovelOr, andGs is
contained inM(F'). By [Lau96], Proposition 4.3.11 there is a constelial € F*
such that for anyf € H the following equation holds.

Os(f, dv) = [c(8)| > O3 (¥, dv)

If in addition & = N(v) is a norm, then((,)7 is contained inM(E), and by
[Lau96], Proposition 4.4.9 for any € H,. we have

TO,(f, dv) = [e(8)| 2 TOF(f, dv)
with the same constantd). Thus we may pass frod to M.

Lemma 5.3.1.Let§ € G be semisimple and let € H,. If Os(b,.f,dv) # 0
thend is a norm. If in additionf" is homogeneous of degréethen we have
v(det d) = kr.

42



Proof. Using the above reduction we can assume dhselliptic. Then it suffices
to note that forf € H the Satake transfornfiv is a homogeneous polynomial
of degreek € Z if and only if f is supported in the set of elemenjse G
with v(detg) = k. For suchf the integralOs(f,dv) can be nonzero only if
v(detd) = k. O

We denote byu* € Pt and byu~ € P the unique elements, see page Xii.
The following statement for alf € H, is called a fundamental lemma foil,.

The corresponding statement in characteristic zero is known, cf. [ArCI] 4.5 and
3.13.

Theorem 5.3.2 (Drinfeld). Let 6 € G be semisimpley = N(~), and letf <
H, be the characteristic function of one of the double codéts™ (w) K, or
K,pu~ (w)K,. Then we have

Os(by(f), dv) = £(8) TO,(f, dv)
With £(8) = (—1)rkr1s Go—rkris (Gr)T

Proof. The case.* is [Lau96], Theorem 4.5.5. Using the involutign— g~! of
GL, this implies the casg™ as well. O

6 Some Semilinear Algebra

We recall Drinfeld’s results oF, ¢)-spaces including some proofs and generalise
them to(D, ¢)-spaces in the obvious way. Afterwards we explain a transfer of
conjugacy classes which is needed for the computation of the groupoids of fixed
points.

6.1 (F,p)-spaces

Here we explain the results from [Dri88] @i, v )-spaces and their localisations,
cf. also [LRS], Appendices A and B. As usualis the function field of the given
geometrically irreducible smooth projective cut¥eoverF,.

Definition 6.1.1. We write F' = F ® F, ando, = id ® Frob,. An (F,¢)-space
(over[F,) is a finite dimensional vector spateover F' plus a bijectives,-linear
mapy : V — V.

Let £ be a finite dimensional commutativE-algebra and lefl € E* ® Q.
The functorE — E* ® Q commutes with fibred products and in particular
with intersections, so there is a unique minimal subalgétiifl C FE such that

IT e F[IIJ*® Q.
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Definition 6.1.2. An F'-pair is a pair( £, I1) as above satisfying = F[II]. The
pair is called indecomposableif is a field.

Remark.The minimality of £ implies £ = F - EP, which means thak is an
étaleF-algebra. In the indecomposable case we also iEve Q = Div’(E) ®

Q whereDiv’(E) denotes the group of divisors of degree zero on the smooth
projective curve with function field.

The following construction of Drinfeld assigns to af#, ©)-space arf’-pair plus
an embedding of into the centre oEEnd(V, ). The given(F, ¢)-space is de-
fined over a finite field ., i.e.

V=V,®r.F, and ¢ =y, @ Frob,.

Thenr, = (v,)" ®id is a (linear) automorphism dfV’, ¢) which commutes
with all endomorphisms ofV, ) defined overF,.. The subalgebrd’[r,| of
End(V,, ¢,) € End(V, ¢) has finite dimension ovef’ and we can definél =
()™ € Flr,)*® Q andE = F[M]. This does not depend on the choicenof
and of(V,,, ¢,).

Theorem 6.1.3 (Drinfeld). The abelian category dfF, »)-spaces is semisimple.
The above construction defines a bijection between the set of isomorphism classes
of simple(F, ¢)-spaces and the set of isomorphism classes of indecomposable
F-pairs.

Let (V, ) be a simpleg F, ¢)-space and let £, IT) be the associated-pair.
ThenA = End(V, ) is a finite dimensional central division algebra ov@with
local invariants

inv,(A) = —deg, (IT) = — deg(y)y(II) .

Letd(IT) = d(A) be the least common denominator of&lg, (IT). Then we have
dimp(V) = [E: F]d(II).

This is [Dri88], Proposition 2.1. The proof iloc. cit. also gives the following
explicit description of the inverse mag, I1) — (V, ¢).

For a given indecomposablé-pair (£, IT) the set of representatiofis= b'/"
with b € E* is made into an inductive system using the or@dern) < (b, nm).
LetC, ., be the category afF’, ¢)-spaces oveF ,» with (F[¢"], ") = (E,b). This
category is equivalent to the category of finite modules over the algebra

A=EQ@F{r}/(t" =)

which is a central simpl&-algebra of dimension? with local invariantsnv, (4) =
deg, (IT). So the category,, is semisimple and has a unique simple object

44



Vi Whose endomorphism ring is the division algebra equivalent®®o From
dimg(Vy,,) = nd(ll) we getdimpgr, .. (Vi,n) = [E: F]d(II). Since the category
of (F, ¢)-spaces with associatédpair (¥, I1) is the direct limit of the categories
Cp.n, the desired simpleF’, p)-space iV, ¢) = (Vo , 7) O, F,.

Dieudonné modules

For a closed point € X we denote by, the completion of atx. Letw, € F,
be a uniformising element.

Definition 6.1.4. We write F, = F, ® F, ando, = id ® Frob,. A Dieudonre-F, -
module (overF,) is a finitely generated’,-moduleV" plus a bijectives,-linear
mapy : V — V.

V is a freeF,-module becausg, is a product of fields and, permutes the factors
transitively. In particular its rankk; (V') is well defined. We fix an embedding
k(z) C F, overF, and write

Fy=F,&wF,, o0, =id®(Frob,)!s®.

Then a Dieudoné-F,-module (V, ) is the same as a finite dimension&y-
module W plus a bijectives,-linear mapy : W — W. We call (W, ) the
reduced representation Of, ¢).

LetO, = O, ®F,. A lattice in a freeF,-moduleV of finite rank is a finitely
generated),-submodulel/ C V which generate¥” over F, (this implies)M is
free over®,). The degree of a DieudoérF,-module is

deg(V, ) = dimg, (M / M N M) — dimg, (oM / M N M)

which does not depend on the chosen latfi€¢e_ V' and could have been defined
using Oz-lattices inWW as well. Its slope igt = deg(V, )/ rk(V). A detailed
proof of the following proposition can be found in [Lau96], Appendix B.

Proposition 6.1.5.The abelian category of Dieudo@#F,-modules is semisimple.
For any i € Q there is a unique simple objefY,, »,,) with slopeg. Its rank is
the denominator of:, while End(V,,, ,,) is a finite dimensional central division
algebra overF, with local invariant— . The natural functor from Dieudo@aF’, -
modules to Dieudorer, [wi/”]-modules respects isotypic objects and multiplies
all slopes byn.

Corollary 6.1.6. Let (V, ) be a simple Dieudor&F,.-module and letA be its
ring of endomorphisms. Thehz (V) = d(A). O
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In view of the proposition the isomorphism class of a Dieudonmodule is given
by the sequencg:; > ... > u,) of its slopes in which the multiplicity of; is the
rank of theu-isotypic component. There is a lattice withd/ C M (respectively
M C M) if and only if all slopes aré> 0 (respectively< 0).

A Dieudonre-F,-module is called trivial if it is isotypic with slope zero. An
equivalent condition is that there is a lattice witi/ = M. In the trivial case
such lattices are the same@s-lattices in theF,-vector spacé’ v=! = W1,

Let (V,¢) be a Dieudon@-F,-module and let{V, ) be its reduced repre-
sentation. For a given automorphignof (V, ) or equivalently of(W, y) we
form (W, 4 o b), which is the reduced representation of a DieudsArmodule

(Vb ) SOb)-

Lemma 6.1.7. We assume that the subalgebita= F'[b] of End(V, ¢) is a field
and denote by its unique discrete valuation over Then the slopes of thtetwist
(Vi 1) equal the slopes dlV, ¢) plusy(b)/e(y | ) (including multiplicities).

Proof. It suffices to consider an isotypic Dieudd@nmodule. Adjoiningz}/" we
may assume that both its unique slope aftd/e(y | z) are integers. Multiplying
1 andb with powers ofw, we can further assume thét’, ) is trivial and that
b € O%. Then anOg-lattice in theE-vector spacél’¥=! corresponds to af;-
lattice M/ C W with YoM = M, which implies(V},, ;) is trivial as well. O

Letr > 1 be an integer and I€t,, C F; be the unramified extension &f,
of degreer. For any Dieudon@-F,-module (V, ¢) with reduced representation
(W, %) the pair(W, ") determines a DieudogaF, .-module(V "), ().

Lemma 6.1.8. The functor(V, ¢) — (V" ) multiplies all slopes withr,
respecting their multiplicities.

Proof. After adjunction ofes/™ all slopes ofV/ are integers, in which case the

assertion is obvious. O]

Localisation
The localisation of afiF, )-spacgV, ¢) atz € |X| is the Dieudona-F,-module

Let (E,11) be the associateA-pair. The algebr&, = F @ F, is the product
of the completiongy, of E at the placeg | x, so the given action of on (V, ¢)
induces a decomposition

(Vi ) = @ (Vys oy) -

ylz

The following description of the localisations is given in [Dri88].
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Proposition 6.1.9.Let (V, ¢) be the simplé F, ¢)-space with associateH-pair
(E,II). Then the Dieudor&F,-module(V,, ¢,) in the above decomposition of
(Vz, @) is isotypic with slope

n(y) = ?egy(n)

B, 5]~ ) Ty

and its rank is £, : F;,] d(II).

Proof. Cf. [LRS] Appendix B for a different proof. Since, permutes the fac-
tors of the product of field& © F, transitively, V' is free overE @ F, of rank
dimz(V)/[E: F] = d(II). This implies that/, is free overE, @ F,, of rankd(IT)
as well, which gives the asserted rankgfover F, & T,.

In order to compute the slopes we choose a sufficiently divisible integer
rdeg(x) such tha(V, ¢) is defined oveF,. and such that there is a representation
IT = b'/™ with b € E*. From the construction of the simpl&’, ¢)-spaces we get
an isomorphism between a multiple of the Dieud@tm,r-module(vy("),goz(]"))
and theb-twist of a trivial Dieudong module. Using Lemma 6.1.8 and Lemma

6.1.7 the equality of their slopes means

oy ny(I)
eyl T ey )

for all slopesy of (V,,, ). Dividing by r gives the desired equation. O

6.2 (D, p)-spaces

Using the following general observation the preceding result§fo)-spaces
and their localisations generalise directly(iD, ¢)-spaces (Definition 6.2.2 be-
low).

Letk be afield and lef be ak-linear semisimple abelian category in which all
spaces of homomorphisms are finite dimensional. For a central sivglgebra
A we denote byC(A) the category ofil’ € C plus a homomorphismi°® —
End¢(W).

Lemma 6.2.1. The abelian categor¢(A) is semisimple. The forgetful functor
C(A) — C maps simple objects to isotypic objects, and the thus well defined
map from the set of isomorphism classes of simple objeci&An into the set of
isomorphism classes of simple objectgiis bijective.

For two simple object$l” € C and W’ € C(A) with an isomorphismy”’ =
W™ in C we write A = End¢(W) and A" = Endea)(W’). These are finite
dimensional division algebras ovérwith canonically isomorphic centr&’, and

a7



A’ is equivalent to the central simpl€-algebraA @, A. The multiplicity ofii/

in W"is AA
m = +/dimy(A) d((A)) : (6.2.1)

Proof. As the A-action respects the decomposition igt@sotypic components,
we may assume that up to isomorphigninas a unique simple objeét,. Let

A = End¢(Wp). ThenW +— Home(W,, W) is an equivalence of categories
C = Mod-A, which means tha€(A) is equivalent to ModA ®; A). From
this all assertions follow (the multiplicity can be computed as quotient ofithe
dimensions). O

Remark.In the cased = M, (k) the categorie€ andC(A) are equivalent (Morita
equivalence): a homomorphisid, (k) — Endc (V) is the same as a decomposi-
tion W = W<,

Definition 6.2.2. A (D, )-space is &F, p)-space(V, ) plus a homomorphism
i: D°? — End(V, ) overF. Let D = D ® F,. The rank

L.
tk5(V) = ﬁdlm}?(‘/)

is an integer if and only it/ is a freeD-module.
Using Lemma 6.2.1 we get as an immediate consequence of Theorem 6.1.3

Corollary 6.2.3. The abelian category @i, ¢)-spaces is semisimple, any simple
object is isotypic as afF, ¢)-space, and for any simplg, ¢)-space there is a
unique simplé D, p)-space of this type.

Let(V, p,7) be asimplg D, p)-space and letF, IT) be the associated-pair.
ThenA = End(V, ¢, i) is a finite dimensional central division algebra ovEr
with local invariants

inv,(A) = inv, (D ®p E) — deg, (IT) .

The multiplicity of(V, ¢) as an(F, p)-space isn = d d(A)/d(11), which implies
tkp(V) = [E:F]d(A)/d. O

Dieudonné-D_-modules

Forz € |X| the algebrasD, = D @y F, and D, = D, ®F, are Azumaya
algebras of dimensio#® over F, or I, respectively.
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Definition 6.2.4. A Dieudonre-D,-module (ovefF,) is a Dieudong-F,-module
(V. ) plus a homomorphism: D% — End(V, ¢) over F,. Its rank

1

ks (V) = = kg (V)

is an integer if and only it/ is a freeD,-module.

As a consequence of Proposition 6.1.5 and Lemma 6.2.1 the category of Dieudon-
né-D,-modules is semisimple, and the simple objects are classified by the slopes
of the underlying Dieudor#F,-modules. The endomorphism algebra of the sim-
ple Dieudon@-D,-module with slopg: is a central division algebra ovét, with

the invariantnv, (D) — p.

Lemma 6.2.5.Let (V, ¢, i) be a simple DieudorérD,-module and letA be its
algebra of endomorphisms. Thénrks (V) = d(A).

Proof. We denote by(V’, ¢') the simple Dieudor®&F,-module with the same
slope agV, ) and byA’ its endomorphisms. Using equation (6.2.1) and Corol-
lary 6.1.6 we calculaté - tk5 (V') = rkz (V') d(A)/d(A") = d(A). N

Remark 6.2.6 (attices in Dieudoné@ modules)We choose an embeddiagr) C

F, overF, and writeD, = D, ®F,, D; = D, &y F,. Let (V,¢,i) be a
Dleudonre-D module with reduced representatio’, ¢,i), i.e. V = W @
QDW D...O (pdeg - and¢ gpdeg( )

AnyD -lattice M/ C V (thatis aD, stable@x-lattice) admits a decomposition
M = My®...® Maegz)—1 With M; C ¢'WW. There is a natural bijection between
D,-lattices satisfyinglf; = oM;_, fori = 1...deg(z) — 1 andD;-latticesM, C
W. HereM is free overD, if and only if M, is free overD;.

In the caser € | X’| there is an isomorphisr; = M,(O;), which implies
that aD;-lattice inWW is free if and only iflV is free overD; if and only if V' is
free overD,.

In the caser ¢ |X'| the maximality of D, implies thatD; is a hereditary
order ([CR], Theorem 26.12 and Corollary 26.30), but it is not maximaD;A
lattice M, C W is free if and only if the multiplicities of all simple projective
Dz-modules inM, are equal andl is free overD;. If (V, ) is trivial, thene-
stableD,-lattices inV are base extensions ®f,-lattices inV¥=! = W*=! and
these are free as soonlasis free overD;.

Localisation

Let (V,¢,i) be a(D, p)-space with associatefd-pair (£, IT). Its localisation at
x € X is naturally a Dieudor&-D,-module(V,, ¢.,i,). The decomposition of
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(Vz, v) With respect to the placeg| x of E is respected by th®,-action:

(an Pz, Zz) = @ (V;p Py Zy)

ylz

Proposition 6.2.7. Let (V, ¢, ) be the simplg D, p)-space with associatefi-
pair (E,I1) and letA be its algebra of endomorphisms. Then the Dieuéeabp-
module(V,, ,, i,) is isotypic with slope:(y) = deg,(I1)/[E,: F;] and has rank
[E,:F,)d(A)/d overD,.

Proof. This follows from Proposition 6.1.9, using that as (@ ¢)-space(V, ¢)
is isotypic with multiplicityd d(A) /d(11). N

Proposition 6.2.8. Let (V, ¢, i) be an isotypiq D, p)-space with associatefl-
pair (E,1I). Then for anyr € | X| the natural map

End(V, ¢,i) @p F, — Endp(Va, @o,i0) = | [ Endg, (V,, ¢y.1,)

ylz
is an isomorphism.

Proof. The map in question exists becausdies in the centre ofind(V, ¢, ).
We have to show that for a simp{&’, ¢, i) with A = End(V, ¢, i) all maps

A®pE, — EndEy (‘/;J’ Py iy)

are bijective. They are injective because the left hand side is a (central) simple
E,-algebra. Thus it suffices to prove equality of the dimensions éyesf both
sides. Using Proposition 6.2.7 and Lemma 6.2.5 we calculate: left dimension
= d(A)? = (drkp, (V,)/[E,: F,])* = right dimension. O

Definition 6.2.9. A (D, p)-space(V, ¢, 1) is called trivial outsideX” if its local-
isations at allz: € X \ X’ are trivial Dieudoné modules, i.e. if they have pure
slope zero.

Denoting by(E, II) the F-pair associated toV, ), an equivalent condition is
deg, (IT) = 0 for all y |z with » € X \ X'. Thus for any simplé D, ©)-space
which is trivial outsideX’, using the notations of Corollary 6.2.3 we have

d(A) = lem(d(IT), d(D ®F E)) . (6.2.2)

Proposition 6.2.10.For any simple(D, ¢)-space which is trivial outsid&” its
multiplicity as an(F, ¢)-space is a multiple offl and equalsd if and only if
d(1I) [Ey: F,] inv,(D) = 0forall y | x.
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Proof. By Corollary 6.2.3 the multiplicity in question isd(A)/d(II). In view of
(6.2.2) this is a multiple off with equality if and only ifd(D ® E) | d(II). N

Proposition 6.2.11.Any (D, )-space which is trivial outsidé& is free overD,
i.e.its rank is an integer. Th@), p)-spaces which are trivial outsid&’ of rank 1
are precisely the simpléD, p)-spaces whose associatédpair (£, I1) satisfies
the following conditions.

1. deg,(IT) = 0 for all placesy of £ lying overX \ X',

2. ﬁ - liesinDiv’(E) c Div’(F) ® Q,

3. there is an embedding C D overF.
In this case we havé(A) = d(D ® F) = d/[E: F).

Proof. By Corollary 6.2.3 the rank of a simpl@), p)-space i E: F|d(A)/d.

If the space is trivial outsid&X”’ then by (6.2.2) this is an integer multiple of
[E:F)d(D ® E)/dwhich is an integer by Lemma 6.2.12 below. The rank equals
lifandonlyif[E: F|d(D ® E) = dandd(Il) | d(D ® E). Using Lemma 6.2.12
again, the former condition is equivalent to (3). If it holds then the latter condition
is equivalent to (2). O

Lemma 6.2.12.Let k£ be a field, letB be a central division algebra over of
dimensiond? and letK be a finite extension df. Then

d|[K:kld(B®K)
with equality if and only if there is &-embedding< C B.

Proof. The unique simple3 @ K-moduleM has dimensionl [K : k] d(B ® K)
over k. SinceM is a free B-module this impliesi? |d [K : k] d(B @ K), and
equality means that as/a-module M is isomorphic toB. An action of B @ K
on B is the same as a homomorphigtn— B. O

6.3 Transfer of conjugacy classes
Conjugacy classes inD*
We fix a finite subsel” C |X’|, and for anyr € T we choose an integet, > 1.

Definition 6.3.1. An element§ € D* is calledr-admissible if for anyr € T
its imaged, € D} = GL4(F;) is the norm of an element &L, (F, ., ) and if
> werz(detd)/r, = 0. We denote byD; , the set ofr-admissible conjugacy
classes.
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Lemma 6.3.2.For 6 € D* the algebraF’ = F[] is a field. The elemernt is
r-admissible if and only if for all placesg’ of F” with 2’ | x € T the expression

d
[F'.F)

f(@' | z)2'(6) /rs (6.3.1)

is an integer and if the sum of these (finitely many) numbers is zero.

Proof. The first assertion is clear. Forc T the algebrat’. = F,[),] is the prod-
uct of the completiong”, at the places’ |z, s0d, € GL4(F,) is semisimple and
we have a decompositiofi? = @.. . Ve plus elliptic elements,, € GL(Vy).
By Lemma 5.1.2), is a norm if and only if alkz(det 6,/ ) are integer multiples of
r.. SinceF? is free overF” of rankd/[F': F], the quotient:(det 6,/) /., coincides
with (6.3.1). O

Let M be the set of isomorphism classes of finite field extensions pfus a
fixed generator. By the theorem of Skolem-Noether the assigninentF'[4], 6)
defines an injectiod; . — M.

Conjugacy classes of automorphisms dfD, ¢)-spaces
As before we fix a finite séf’ C | X’| and integers, > 1 forall x € T.

Definition 6.3.3. Let (V, ¢, i) be a simplg D, ¢)-space which is concentrated in
T (that means its localisations outsi@eare trivial) and letA = End(V, ¢, 7).
An elementy € A* is calledr-admissible if for anyz € T there is aD,-lattice
M C V, satisfyingd M = o5 “® 7. We denote byA; | the set of--admissible
conjugacy classes. B

Lemma 6.3.4.In the situation of Definition 6.3.3 I€tF, IT) be theF’-pair asso-
ciated to(V, ¢). An element € A* is r-admissible if and only i C F[¢] and
for all placesz’ of F'[6] andy of E with 2’ |y | x € T we have

y(11) (%)
Ty deg(x)e(y o) " e |0 (6.3.2)
Proof. Let F = F[§] and E' = E[d] as subalgebras ak. These are finite
field extensions of” with £’ = E - F’. The decompositions of the localisations
Ve=6D,,,V, arerefined by, =P, |, Vy.

By definition¢ is r-admissible if and only if for any placg of E’ lying over
somez € T thed—!-twist of the Dieudon'a-Fx,rz-module(Vy(,””), w;f“) is trivial.
We know that(V,, ¢,) is isotypic with slopedeg(z)y(II)/e(y|z). Thus using
Lemma6.1.8 and Lemma 6.1.7, admissibilityya$ equivalent to equation (6.3.2)
for all 4/ lying overT (eachy’ determineg, andz’).
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Since (V, ) is trivial outsideT’, these equations determihe € E*® Q
uniquely and impI € F*® Q, soFE C F’ by minimality of E. O

Corollary 6.3.5. The assignmernit— (F[0],0) defines an injective map

|_| Ar, — M

(Vipi)

where (V, ¢, i) runs through a system of representatives of the simiplep)-
spaces which are concentratedin

Proof. The images of differenf\; . are disjoint because the-pair (£, IT) can

be reconstructed using the equatlons (6.3.2). These equations also imply that for
fixed (V, ¢, i) any isomorphism of two pair&'[4], §) with r-admissiblej € A*
induces the identity oy C F'[§]. Thus the theorem of Skolem-Noether can be
applied. O

Transfer of conjugacy classes

The main result of this section is

Proposition 6.3.6.1n M the image ofD;, coincides with the (disjoint) union of
the images of thé\} . for all simple (D ,go) spaces of rank which are concen-
trated in7. In other Words there is a natural bijectioR;, = | | A} .

Proof. For each paifF”, §) € M we definell’ € Div(F’) ® Q by

rydeg(x) 2'(Il") = 2/(§) fora’ |z e T

2(I") =0 otherwise (6.3.3)

In the casedeg(Il') = 0, that isIl € F*® Q, we also set = FI[II'] and
I =1II' € E*® Q. The classification of the simpleD, ¢)-spaces of rank in
Proposition 6.2.11 and Lemma 6.3.4 imply that the union ofAje C M is
characterised by the following conditions @f’, 9).

(1) deg(Il') =0,
(2) there is an embeddingy C D over F,

(3) forally |z € T the number—— deg,(II) is an integer,

d
[E: F]
(4) thereis an embedding’ C A overFE.
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On the other hand we can rewrite the first line of (6.3.3) as

deg,, (1) = f(a' | )2’ () /1,

Thus by Lemma 6.3.2 the subset, C M is given by the following conditions.
(Here (2) and (3 just say that there is an embeddiRgC D overF.)

(1) deg(Il') =0,
(2) there is an embedding C D over F,

d . :
(@) forall2’ |z € T the numbew deg,, (II') is an integer,
(4) there is an embedding’ C Centp(E) overE.

We have the implication (3=-(3) which follows from the equations

> " deg, (I) = [F": E] deg,(IT).

2|y

Thus we may assume that (1) — (3) hold and have to show(43 A 4'). Then
Proposition 6.2.11 implied(A) = d(D ® E), i.e. A and the division algebra
Centp(F), which is equivalentt@® F, have the samg-dimensiond/[E: F]).
By Lemma 6.2.12 there is an embeddifRg C A over E if and only if for all
placest’ of F’ we have

[ F] inva (A ®p F') =0

in Q/Z. The local invariants of this algebra are
invy (D ® F') forz’ overX \ X’
invy (A g F') = v, (D @ F) o \
— deg,., (I1) for 2’ over X'

which implies the equivalence in question. O

In the application of Proposition 6.3.6 it will be necessary to know that two cor-
responding elements € A* andy’ € D* are locally conjugate in the following
sense.

We denote by'” € DI and byd, € D, ., for x € T the images ob’.

SinceV ® AT admits ap-invariant basis there is an isomorphism

DI 2 End(V® AT ¢ ®id,i ®id)

which is well defined up to inner automorphisms. Similarly, forc T there
are isomorphism&nd (V¥ “=8) =~ D, which are well defined up to inner
automorphisms. We denote by € DI and byd, € D, ., the images o#.
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Proposition 6.3.7.Supposé € A*andé’ € D* are r-admissible and correspond
to each other under the bijection in Proposition 6.3.6. Then each of the pairs
(67,87 and(d,, ") for x € T consists of two conjugate elements.

Proof. We fix the isomorphisn¥'[§] = F[§'] given by — ¢'.

It is clear thatD ® F, is a free module oveF[¢'] @ F,. MoreoverV is free
over F[§] ® F, because> permutes transitively the componentsiofrising from
a decomposition of [§] ® T, into a product of fields. Using Lemma 6.3.8 below
this implies thatf andd’ are conjugate iftnd (V) =2 D @ F,. Thens” ands'” are
conjugate inD? & F, and thus inD? as well.

Using Lemma 6.3.8 again, far € T' we have to show thatnd (V¢ “"'=9)
is a free module ovef'[§] ® F, ... An equivalent condition is thdt, is free over
F[0) ® F,. This is the case becauseis free overF'[§] @ F,. O

Lemma 6.3.8.Let K be a field, letA be a central simple<-algebra, and let
B be a finite dimensional semisimpté-algebra. Two morphisms df -algebras
f : B — A are conjugate by an element dfif and only if the structures ofl as
B-modules induced by thgs are isomorphic. H

Proof. Let M, by the B ® A°°-module A on which B acts by left multiplica-
tion via f and A by right multiplication. Twof’s are conjugate if and only if
the associated modulég; are isomorphic. However tw8 @ A°°-modules are
isomorphic as soon as they are isomorphi@asodules. O

7 Computation of Fixed Points

In this section we calculate the cardinalities of the groupoids of fixed points
#Fix7(g,a)(z) in the general case. If # () they are in fact sets, but this will
not be used.

For the notations we refer to section 3.6. The choice of A1) (F,) is
equivalent to the choice of pairwise different closed paints. . z,. € TN X' plus
embedding#(z;) C F, overF,. Since the groupoids of fixed points do not change
whenT is made smaller, we may assume the minimal ¢ase {z;...z,}, in
particularT” C | X'|. Forz = x; we write \, = ); etc.

7.1 D-shtukas overF,

The generic fibre of @-shtukal® = [& = ... = &, = &, ] overF, is the right
D-moduleV = &, Qo F plus the isomorphismp : "V = VV which is induced by
the given modifications. This isomorphism can be viewed aslanear bijective
mapy : V — V. If we denote byi : D — End(V, ¢) the given action, then the
triple (V, ¢, i) is a(D, p)-space of rank in the sense of Definition 6.2.2.
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Definition 7.1.1. Let Sht7(z) C Sht?(F,) be the inverse image af under the
characteristic morphisisht> — (X’ \ I)” and let

X =Sht*"(z) = lim Shty(z).
INT=0

For a given(D, p)-space(V, ¢, i) of rank1 we denote by, ;) the set of pairs
(&°,7) with £€* € X and an isomorphism between the generic fibre é* and
(V. ,1).
Leta palr(é”,j) € Vi) be given. Forany € X the sequencéo . &, defines
a sequence ob,-lattices in the localisatio, = V ®p F, with the following
properties.

In the caser ¢ T all lattices are equal to one lattice, satisfyingp, M,

M,. In particular(V, p, 1) is trivial outsideT’. Such a latticel/, is the same
as theD,-lattice M#==' in V#==1. A level structure outsid@" for £* is equiva-
lent to an isomorphisr®f = [] ., M¢==", that is an isomorphism” : D} =
(V ® AT)¥=! respecting the given lattices.

In the caser = x; € T the modulest, ... &;,_; determine the same lattice
M. and¢; ... €&, determine the twisted latticg, M. Outsidez, these coincide,
while their relative position at, is inv, (M., 0. M.) = \,. LetW, C V, be
the subspace whertgr) acts via the embedding(z) C F, given byz, and let
U, = cpieg(””). Then aD,-lattice M, in V,, with the given properties is the same as
aD;-lattice M, in W, satisfyinginv(M,, ¥, M,) = A,.

From this construction we see that){y,, ;) is not empty, then theD, ¢)-
space(V, w, ) is trivial outside X’ and thus simple by Proposition 6.2.11. In
particularA = End(V, ¢, i) is a finite dimensional division algebra over The
groupoidX is the disjoint union over the occurriri@, ©)-spaces of the quotients
A*\Vv,,,iy whereA* acts by twisting;.

Definition 7.1.2. For a given(D, p)-space(V, ¢, i) of rank 1 which is concen-
trated inT we denote by)” the set of isomorphismg’ : D] = (V ® AT)#=!
and by M the set of families\M; = (M,).er of D;-lattices inW, such that
inv(M,, . M,) = A,

Lemma 7.1.3.The mapVv,,;) — V' x My defined by’ and M7 constructed
above is bijective.

Proof. We only have to show that for givel andy” the corresponding lattices
M! c V, forx € T'andM, C V, for x ¢ T come from &@D-shtuka with generic
fibre (V, ¢, 1).

Since any locally fre€ -module& with generic fibrel” coincides with these
lattices outside a finite set of points, there are unique locally@rgeemodulest;
with generic fibrel” which give rise to the given lattices at all places.
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Theseg; are in factD-modules andy extends to an isomorphisff, = &,,
so it remains to see that ti& are locally free oveD. By Lemma 1.2.5 this is
equivalent to the corresponding latticedinbeing free for all: € X. In the case
z € X' all lattices inV, are free oveD, because this is a maximal order. In the
caser ¢ T our lattices arep,.-stable and thus free becauBg is a maximal order
forall x € X. Inview of " C | X’| this finishes the proof. O

Using the bijection of Lemma 7.1.3 the relevant actiong)pn,, ;) take the fol-
lowing form.

— § € A* acts from the left by\/, — M, andy” — § o yT
— g € (DI)* acts from the right 0™ by 47— yT o g
— the partial FrobeniuBr®" acts onM by M, — 1, M,,

7.2 Adelic description of the groupoids of fixed points

Now we assumé’ N 7, = () and choose in addition t& andz a finite closed
subschemd C X with I N T = (), an elemeny € (D1)*, and a sequence of
positive integerst = (a; . ..a,) with deg(z;) | a;. Hencer; = a;/ deg(x;) are
positive integers as well. We still assuffie= {z4, ..., z,}.

In order to describ&ix = Fix}(g, a)(z) we define an auxiliary sefix .,
by the following 2-cartesian diagram. Its right half is a repetition of the definition
of Fix.

FiX(vp) > Fix > X /K a”

l O l 0 l(ﬂ%id)

Vi) (K NIK;) — X /(K N9K[)a” HSUN X /Ka® x X | Kad”

ThenFix is the disjoint union over theD, p)-spaces of rank which are concen-
trated inT" of the quotients\*\ Fix v, ;) /a”.

Using Lemma 7.1.3 the definition ®fix = Fix(y,., can be expressed by the
following 2-cartesian diagram.

Fix » A\ (Mr x YT/K7) [a®

l [ l(Fra,id)

(1,9)

VT /(K NIKG) x My =5 [A\(VT/K; x My) [a®]’
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Since K; acts freely o), this implies thatlix is the disjoint union over the
(D, ¢)-spaces of rank concentrated ifi” of the quotients\*\ Z /a” with

Z CYY(KiN9K) x My x A* xZ > (§", Mg, 6,n)

given by the conditiong”’gK; = da"y"K; anddM, = ¢"=M, for z € T. The
induced action ofA* on thej-component ofZ is by conjugation.

Let A7, be a system of representatives of the conjugacy classés ifor
which the second condition can be fulfilled, i.e. thadmissible conjugacy classes
in the sense of Definition 6.3.3. TheXt\ Z/a” is the disjoint union ovef € A}
andn € Z of the groupoids B

A;\ng/az,

with Z5,, C Y7 /(K; N9K;) x Mz given by the two conditions which defir.
We choose an elemey§ € YT (possible becaus@/, o, i) is concentrated in
T) and seb] =y~ 'dayl € (DT)*. Then we have

{v" e V" |y'gK; = da"y" K1} [ (K1 NK;)
={y" e Y |y"oa"y" € KigK;} [ K
= {QTE (DL)* |y y' e KIQKI} /KI-

We denote bWy = {y, : D,,, = W¥"= for z € T} the set of trivialisations
of the twisted Dieudonm modules, |eyT/ erT D* is the set of latticed/r
satisfyingvy’= M, = §M,. We choose an elemem,T € Yr (possible by the
hypothesis or). Sinces and+, commute, both of them fixy¥*"=?, which
allows to defin&, = y 000 € D}, andip, = yoathalo. € Aut™ (D, ).
We can writey) , = v, - 0, With an element,, € Dy, satisfyingV,, (V) = 00 2-
Then we have

{MTGMT|5MI:77/};9”}
:{yTEyT|y;10¢$Oy$E'D*.O/\(wa;O'mO'D* }/H:veT e
= {yT S HmGT ;rrz Yo %co'm@x) € Dyry e (wx Dxrz}/ HmGT Trp

The chosen isomorphismg andy, r define an isomorphism

0 Di@F, 2VRA.
We can summarise the preceding considerations as follows.

Proposition 7.2.1.For given(, I, g, a, z) as above the groupoiﬁiix?(g, a)(z)is
bijective to the disjoint union over thé, p)-spacegV, ¢, i) of rank 1 which are
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concentrated ir’, overd € A;, with the notationA = End(V, ¢, ), and over
n € Z of the groupoids

5\Z5n/KIa X Toer D,
wherezj, C (Df)* x [[,cr D;,. denotes the set of all”, yr) satisfying

(yT)_léoTan?/T € KrgK;

7.2.1
U %00 (ys) € Dy Ao(w,)DL,, forz e T. (7.2.1)

The action ofy € A} on Zj is given byy — yy ' ayo y. O

7.3 Integral representation

Using the following general principle the adelic description of the groupoids of
fixed points in Proposition 7.2.1 can be transformed into an integral representation
of their cardinalities.

Lemma 7.3.1.Let G be a locally profinite topological group, 1€ C G be a

compact open subgroup, and jebe the left invariant measure @# normalised

by u(K) = 1. LetI’ C H C G be closed subgroups such thdtis unimodular

andI is discrete, and letV C G be an open subset which is left-stable unéer
and right-stable undefk’. ThenG = I'\U/K is a groupoid with finite automor-
phism groups having the cardinality

#G = (O\U) = - (P\H) - (H\U)

Herev is an arbitrary biinvariant measure ol and v, is the counting measure
onl. [

In the situation of Proposition 7.2.1 with fix¢®’, ¢, i), J, n we choose
- G= ( ) X Ha:ET T,ry
- K= KT X H:cET T,rg
- H:yo (A®A); -y
- D=y, Aja®
andU C G is defined by the conditions (7.2.1).

Lemma 7.3.2.We havefl = (Dj): 5% [Loer(Dg, )5

Proof. Let (E,II) be the F-pair associated t¢V, p). Sinced is r-admissible,
Lemma 6.3.4 impliedy C F[§]. Thus by Proposition 6.2.8 we hava ® A); =
End(V ® A, ¢ ®id, i ®id)s. OutsideT this is the assertion, while far € 7' we
have to note in addition th&tDz)57), . = (Da.r, )32 N
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Let i, on Dy, forz € T andu” on (Df)* be the invariant measures satisfying
1e(D;,.) = Landu™ (DY) = 1. We choose arbitrary invariant measurgson
(A® F,); = (D)5 andv” on (A @ AT); = (Df{);g and denote by their
product measure of\ ® A);. Proposition 7.2.1 then implies

. 14 « "
#Fixt(g,0)(2) - 1" (K) = Z Y% (Aja"\(A ® A);) - OéTOTan(IKITgK% dv?)

’ H TO"L’v’YT <],D;,r1->‘w(w$)pm*,rz ’ de)
zeT
where the sum is over the, ¢)-spaces of rank which are concentrated i,
overo € Aj,, and ovem € Z, using the notation

oL T g7 — Ty~ t6T g dMT
5gan(f , av ) - f (y 0 a y) d T
() \(PF)" ’/

_ dpty
10,0, (fond) = | £y 00 l) .
(D758 \ Dz Va

ZLk

Now the summation over the, p)-spaces can be replaced as follows.

By Proposition 6.3.6 for any-admissibled € A* there is an embedding
F[6] € D over F, and this determines a bijection between the disjoint union
of the occurringA;, and Dy, (Definition 6.3.1). Proposition 6.3.7 implies that
the isomorphismy, can be chosen such that the imagés= D] andé, € D,
coincide withd! andd .

The algebraic group®; and A} over F'[0] are two inner forms ofsL, with
d = d/[F[é]: F]. As explained in [Lau96] (3.5) therefore the invariant measure
v on (A ® A); can be transferred to a measure (@ ® A);. More precisely,
for x € T the measure,, is transferred from{A ® F,); to (D ® F,); and this
is multiplied by»”. The equality of Tamagawa numbers of inner formsGaf,
then means (cf. [Laf97] IIl.6, Lemma 3)

(A5a"\(A @ A);) = — (Dsa"\(D @ A);) .

v 14
Yo Yo
Forz € T we write for shortl,, = 1p: . (w,)p:, . The conclusion of the above
considerations can be stated as follows.

Theorem 7.3.3.For given(\, I, g, a, z) as in the beginning of section 7.2 we have
#le%(gag)(g) : MT(K?) = Z V_O (Déaz\(DA)(S) ' O?a"(]IK?gKfv dyT)
nez ] T0u. (s, dv,) (7.3.1)

zeT

]
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We recall the notatiothut = C>°(D*\ D} /a?).

Corollary 7.3.4. If for anyz € T either\, € {u*, "} orr, = 1, then

#Fix(g,a)(2) - p"(KT) = Tr (Igrc, - [ ] br (0a,), Aut @ Q(1/9))

zeT

The fundamental lemma f@fL; would imply this equation also without the con-
ditions on)\, or .

Proof. Under the given conditions the fundamental lemma is either trivial or holds
by Theorem 5. 3 2, i.e. the twisted orbital integrals in (7.3.1) can be replaced by
€2(0) Oy, (br, (f22.,dv,). Then the summation ovep;, can be extended to all
conjugacy classes iv*, because if for somé € D* the new orbital integrals

do not vanish for any € T', then¢ is r-admissible by Lemma 5.3.1 combined
with the hypothesi$  deg();) = 0. Since the signs,(d) cancel (Lemma 7.3.5
below), the assertion follows from the Selberg trace formula (4.4). O

Lemma 7.3.5. For anyr-admissiblel € D* we have[ [, ., e.(9) = 1.

Proof. The decompositio’[0] ® F,. = [] F; into a product of fields corresponds
to a decompositioriResy, . r, GLqg)J = [[ G;. By Corollary 5.1.4G; is the
multiplicative group of the central simpl&-algebra of dimensioa’? with local
invariant—zx(det ¢;)/(r,d"). So modul® we have

if d'is odd,

1
kr (G;) = ged(d', x(det &;) /r,) = e o
tkr, (G1) = ged(d, a(det 3i) /) {x(det&i)/m if d is even.

For oddd’ each single differenceky, (GLy) — kg, (G;) is even, thus,(§) =
1. For evend we gete,(6) = (—1)*dtd/= and by Definition 6.3.1 of-
admissibility the sum ovet € T of the exponents is zero. O
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Part Il

Cohomology

8 Galois Representations in Cohomology

Initially, the cohomology OfShtISA/aZ is a representation of the fundamental
group of the produatX’\ 7)". Using an argument of Drinfeld, the partial Frobenii
extend this to an action of the product of the fundamental groups. The permuta-
tion action of the stabilisettab(\) C &, on the base points induces an action on
cohomology, and the Hecke algebra acts via the Hecke correspondences.

As usual, for an irreducible admissible representatioof D} /a” one can
define ther-isotypic component of the cohomology, which is a finite dimensional
virtual [-adic representatiof, (w) of the semidirect produdiG )" x Stab(\).

Its ramification locus is contained in the union of the ramification lodbaindr.

8.1 Frobenius descent

Lemma 8.1.1 (Drinfeld). Let X, be a projective scheme ovEy and letk D FF,
be an algebraically closed fieldf = X, ® k. Then the functorFy — Fy ® k
induces an equivalence of categories

Coherent sheave$ ., | Coherent sheave on X plus
FoonX, an isomorphisna : "F = F

with the notatiomF = (id ® Frob,)*F, preserving the natural tensor structure
on both sides.

Proof. See [Dri87], Proposition 1.1, or [Laf97] I.3, Lemma 3 for a more detailed
proof. O

Lemma 8.1.2.Let X, be a smooth scheme of finite type a¥gand letk O [, be
an algebraically closed field. We wrifé = X, ® k and denote by’ = Frob, ®id
its relative Frobenius. Then the functdy — Y, ® k induces an equivalence of
categories
Yy — Xy finite | _, | Y — X finite, étale plus an
{ andétale } { isomorphisms : Y = F*Y }
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Proof. Cf. the proof of [Laf97] IV.2, Theorem 4. In view of the compatible iso-
morphismgFrob,)*Y = Y for all étaleY” — X, giving (3 is equivalent to giving
an isomorphismx : 7Y = Y. Since the functor in Lemma 8.1.1 is fully faith-
ful for arbitrary X, the same holds for the functor in the present lemma. Thus
we need to show that’, o) descends to &;,. As locally existentYy’s glue by
uniquenessX, may be assumed to be affine.

We choose an open embeddqu C X, with prolectlveXo Let | K be
the quotient rings of” | X and letY” be the normalisation ak = X, ® k in L.
Over X this coincides withY” becauseX, was assumed to be smooth. Since the
underlying schemes do not changey), Y is the normalisation ofX in "L.
Soa extends to an isomorphishY = Y, and Lemma 8.1.1 can be applied to the
coherenO ;-modulep, Oy and its algebra structure (writing: ¥ — X). O]

We denote byr(X) the fundamental groupoid of a schete This is a profinite
groupoid, i.e. all automorphism groups carry the structure of profinite groups such
that conjugation by any isomorphism of two objects is continuous. Its objects are
the geometric points ak” and its morphisms are isomorphisms of the associated
fibre functors on the category @fale coverings ofX. The family of all fibre
functors defines an equivalence between the categdriaté coverings oX and

the category of continuous representations ©f ) in the category of finite sets.

The profinite completion of any topological groupoid has the same objects
and the maximal continuous profinite quotients of the automorphism groups as
automorphisms.

After these remarks the preceding lemma can be restated as follows.

Lemma 8.1.3.In the situation of Lemma 8.1.2Z induces an equivalencg :
m(X) — 7(X), and there is a natural continuous functor

[7(X)/F*] — m(Xo) (8.1.1)
which induces an equivalence of the profinite completions. O

Remark.In general, both the groupoid(X) and its quotient by*Z depend on

k. The above lemma therefore includes the assertion that this difference vanishes
after profinite completion. In the cage= I_Fq the functor (8.1.1) induces injective
maps on the automorphism groups of the objects, but this is not true in general.

Theorem 8.1.4.Let X, ..., X, be smooth schemes of finite type d¥gand let

X; =X, ®F,. WewrlteX X x ... x X, and denote by, : X — X the
product of(Frob ® id) on X; and the identity on the remaining factors. These
maps induce equivalencés: 7(X) — 7(X), and the natural functor

[(7(X)/Ffx ... xFr] — m(Xy) x ... x 7(X,) (8.1.2)
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induces an equivalence of the profinite completions. In other words, a represen-
tation of the product of ther(X;) in the category of finite sets is the same as a
finite étale covering” — X plus compatible isomorphisns : Y = F'Y for

1< <n.

Proof. Cf. [Laf97] IV.2, Theorem 4 for the case of two curves. By Lemma 8.1.3
the right hand side of (8.1.2) is isomorphic to

[7(X1) % ... x7(X,) ) FEx ... x FE]",

The natural functorr(X) — 7(X;) x ... x 7(X,,) induces a bijection of the sets
of connected components and surjectlons of the automorphism groups, which in
general are not isomorphisms. Thus we must show thatala covering” — X
plus compatible isomorphisms : Y = FY for 1 < i < n as a representation
of 7(X) factors overr(X ) x ... x 7(X, )

Inductively this can be reduced to the case 2.

Let thenK be the quotient ring ok and letk; be the quotient ring ok ; for
i = 1,2. These are finite products of fields. In the following commutative dia-
gram of groupoids, aside from the rightmost arrow all functors induce bijections
of the sets of connected components. The square is cocartesian because on the
automorphism groups the horizontal maps are surjective and the vertical maps are
injective with the same cokernélal( K38 | K).

(X1 @ K3'%®) —» 7(X;) x n(Ky®) — 7m(X1)

Lo

m(K) — 7(X1 ® Ky) —» 7(X1) x 7(K2)

We consider the givelr — X as a representation of X, x X,) in the category
of finite sets. By Lemma 8.1.2 its restrlctlomt(()X ® K2') factors overr(X1)
in virtue of the given isomorphisiy = F;Y. So the restriction ot — X to
7(K) factors overt(X,) x 7(K). Similarly it factors overr(K;) x 7(X,) and
therefore overr(X,) x 7(X,) as well. O

Remark 8.1.5. The isomorphism in Theorem 8.1.4 is functorial in the following
sense: for given maps! — X; such thatX; and X satisfy the conditions of the
theorem there is a commutative diagram

[7(X')/FEx...x FE] — @(X]) x ... x w(X])) (8.1.3)

! |

[m(X)/FEx ... x Ff] — 7(Xy) x ... x 7w(X,)
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In the special c_asﬁ’{ = Spec k(z;) for closed points; € X; with deg(z;) =T
the groupoidr(X”) is discrete, and for any choice of geometric poifts X/(FF,)
the upper row of (8.1.3) induces an isomorphism

Zx ... xZ7 ~m(X|,5) % ... xm (X, T).

Here thei-th factor on the left hand side has the canonical genetgtor The

canonical isomorphism, (X/,z;) = Aut(F,|k(z;)) maps the image of}" to
(Frob,)".

8.2 Construction of the representations

Let / € X be a nonempty finite closed subscheme and\let (\;...\,) be
a sequence of dominant coweights of total degree zero. By Theorem 3.1.8 the
morphism

Tra - Shtlgé/aZ — (X'\I)"

is representable quasiprojective. Its restriction to the open Slﬁihséﬁaz is
smooth of relative dimensiodim(\) = 2> (p, \;).

Assumption 8.2.1.The morphismr; , and all7; ., for s € &, are projective.
The holds for example if the division algebfais sufficiently ramified with re-
spect to) in the sense of Definition 3.3.5. (In fact, projectivity of the different
71,5 are equivalent conditions, but we will not prove that here.)

Definition 8.2.2. Let j, : Sht?/a” C Sht;*/a” be the natural embedding. We set

ICy = (jy)uQ; (dim(Y)) ,

H}LA = R (WI,A>*[CA
with the abbreviatiofm) = [m|(m/2) for anym € Z.

Remark.Sincedim()) is always even, the sheaves) and 7, are defined over
Q, but this does not in general hold for the action of the partial Frobenii con-
structed below.

Lemma 8.2.3. The a priori constructibld-adic sheavedi}, on (X' \ I)" are
smooth. -

Proof. In the case that all\; are minimal for the given order aR*, the morphism

71, 1S smooth and projective and the assertion follows. In the general case we
use the semismall resolution of singularities/hich has been defined in Propo-
sition 3.1.9. On the smooth patht;/a” we have the natural homomorphism
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Q — Rq.Q,, which by Gabber's decomposition theorem (cf. [KW], Theorem
10.6) extends to the inclusion of a direct factdry C Rq.Q,. Thus everyHy, is
a direct factor of a smoothadic sheaf. O

Let Stab()\) C &, be the subgroup of elements satisfyings = A. For two finite
closed subschemdsC J of X the algebr&[K;/K ] is naturally embedded into
the Hecke algebr( ;, i.e. anyH ;-module carries a natural action &% / K ;.

Proposition 8.2.4. Using the partial Frobenii and the permutations of the base
points, everyf{7, naturally becomes a finite dimensiorieddic representation of
the quotient groupoid

[m(X'\I)" / Stab(}) ] (8.2.1)

over (; along with isomorphisms(s) : H}, , = Ad(s)*H}, for s € &,. Here
&, acts onz (X’ \ )" from the left by permutation of the factors.

The transposed Hecke correspondences induce a left action of the Hecke al-
gebra’®; on these representations which is compatible with the isomorphisms
p(s).

For I C J the natural mapdi}, — H7, are equivariant with respect to the
inclusion®; C H;, the identity orStab()), and the natural mapr (X’ \ J) —

m(X"\ I), and they commute with the isomorphigis). They identify/7, with
the K; /K ,-invariants inH? . N

Proof/Construction.(1) LetU C (X' \ I)" be the complement of all diagonals.
For any permutation € &, we denote byi(s) : (X' \ I)" — (X’ \ I)" the map
z— x5 = (T4 .. Zs(r)), Which defines a right action @&,. The isomorphisms
j(s) from Lemma 3.4.2 induce isomorphisms of smooth sheaveslover

p(s) : i(s)*HﬁA,s = Hp\
which automatically extend teX’ \ 7)".
(2) LetF; : (X'\I)" — (X'\I)" be the product afrob, in thei-th component

and the identity in the remaining components. In order to define an actigyoof
Hj , we need a cohomological correspondence/ tox over the partial Frobenius

Fr; - Shtfﬂ/az ‘UmF;l(U) - Shtlg/az |Fi(U)ﬂU :
On (X' \ I)" we write
Qi (dim(})) = Q; (2(p, 1)) K. BQ (2(p, Ar))

and define? : F Q, (dim()\)) = Q, (dim())) as the product of the Frobenius
correspondence in thieth component and the identity in the remaining compo-
nents. Using the equatiaiCy = 77 ,@, (dim())) on Sht%/az, we can define the
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desired cohomological correspondence e /a” | vnr-t(v) to be

IR =

bi « FrjICy = 77, F; Q, (dim())) W?}A@l (dim())) = ICy

which admits a unique extensiongat>2 /a” lunr-11r) DECaUs@T; is a universal
homeomorphism. This in turn induces an isomorphism éver F, ' (U):

b;
C; - F;‘*R(WI,A)*[CA = R(W[,A)*FYZ[CA = (RT(I,A)*[CA

Since both sides are smooth sheaves, this again extends uniquely to an isomor-
phismc; : FH}, = H, over(X'\ I)".

(3) Thec; commute pairwise and are permuted under conjugation pyith
which is expressed by the formulae F*(c;) = c;0 F(c;) andp(s)oi(s)*(c;) =
¢s(i) © ;) (p(s)). The product of alk; in any order is the canonical isomorphism
(Frob,)*Hyf'y = HY,.

At first, the smooth-adic sheaves/7, determine finite dimensionatadic
representations of the groupaid( X'\ 7)"). By Theorem 8.1.4 the isomorphisms
B; = ¢t for1 <i < randp(s) for s € &, give rise to an action of the quotient
(8.2.1) along with the asserted equivariant isomorphisms.

(4) Letr : X — Y be a morphism of schemes of finite type offgrand let
j U C X be the open immersion of the smooth locus. Then there is a natural
homomorphism

Corr(X |Y) — End(Rm,.Q,)P,

cf. [Laf97] IV.2, Lemma 3. It maps a finitetale corresponden¢& < 7 L X]
overY to the composition

Rmj1.Q Ad, Rmp.p*5.Q, & Rmaq.q"5.Q, =, Rmj1.Q,

where the middle isomorphism is induced by the equatien- ¢ and by the in-
termediate extension of the natural isomorphigf@, = ¢*Q, fromp='U = ¢~'U

to Z. Let. be the anti-involution of the algebfdorr(X | Y') which exchangeg
andgq. Using the homomorphisn‘h§ defined in section 3.5 we obtain homomor-
phisms

A
HT Bl Corr (Sht;*/a” | (X{7))")” — End(H}, | (x()r) = End(HY,),

For this it is necessary that thi# are integral, meaning that they are defined on the level
of [-adic systems. In [BBD] 3.3 it is said that the formalism of perverse sheaves, especially the
definition of the intermediate extension, also works with integyeadic coefficients.
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compatible with the natural embedding§ C H?' for 7" C T. These define
the desired action df{; on H},. As the homomorphisms? admit extensions
to equivariant correspondences o¥eyand over;(s), this action commutes with
the action ofw (X’ \ 1)"/ Stab())] and with the isomorphisms(s).

(5) Forl C Jlet : Sht3*/a” — Sht:*/a” be the reduction of the level
structure. The compatibility di% andh% expressed by the commutative diagram
(3.5.1) implies that the natural map : H7, — H}, is equivariant with respect
to the inclusion®; C H;. Itis clear that3* is compatible with the remaining
actions as well.

Since is a torsor for the finite grouer(D% — Dj) which acts by twist-
ing the level structuref}, gets identified with the invariants of this group in
HY,. By the construction ‘of the Hecke correspondences the natural isomorphism
Ker(D* — D;) = K;/K identifies this action with the action induced by the
Hecke correspondences. O

We fix an algebraic closurg®s of F' and consider this as a geometric pajnt
X (F?8), There is a natural isomorphism

Gp=Aut(F"® | F) =2 limm (X' \ I, 7).
I

We denote byH = lim H; the Hecke algebra of locally constant rational func-
tions with compact support on the locally profinite graap.

Corollary 8.2.5. The group
[(Gr)" x Stab(A) | x D} /a”

acts on the direct limit{{ = lim H}, such thatH} is an/-adic representation
A —1 A A

of (Gr)" x Stab()) over@Q, and an admissible representation®f /a“. For any
s € 6, there are isomorphisms of these representatikifis = Ad(s)* H}.

Proof. We only have to show that” acts trivially onH3. By the construction of
the Hecke correspondences the actiorbfespects the subspacH$ ,, and on
each of them it is given by the chosen homomorphism— Pic;(X) combined
with the geometric action d?ic,;(X) on Sht?/az. O

For a given irreducible, admissible (lef) ® Q,-moduler the r-isotypic compo-
nent of the semisimplificatio(H})* can be defined as follows. The subspace of
K -invariantst % is either trivial or an irreduciblé{; ® Q;-module which then de-
terminesr uniquely (cf. for example [Laf97] IV.3, Proposition 2). In this case we
choose a maximal filtration of the finite dimensio(@l)" x Stab(\) x H; ® Q-
module(H})%r and set

Hy(m) = (HX)KI (751) = Homy, oa, (mhr, gr((Hg)KI)) : (8.2.2)
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Up to isomorphism this is independent of the filtration and .of
If = is anirreducible admissible right @ Q;-module, we consider” as a left
'H ® Q;-module and define

G
=
I
G
S

) = gr((H3)51) @505, T - (8.2.3)

Corollary 8.2.6. H}(r) is a semisimple, finite dimensionaadic representation
of (Gr)" x Stab()) overQ,. For all s € &, there are isomorphisms

Hy (m) = Ad(s)*HX(w) )

If the K;-invariants ofr are nonzero, the®} (r) is unramified overX’\ I, i.e. it

is a representation of, (X' \ 1,7 )" x Stab(}).

Proof. Since the irreducible representatianis defined over a finite extension
of Q; (cf. [Laf97] IV.3, Proposition 2), the same holds fé} (7). In view of
(H})Kr = HY}, all assertions follow from Proposition 8.2.4. N

Remark.The restriction ofi/{ (7) to (G )" is semisimple as well and could have
been defined starting froi}', considered as a representatiomr X'\ )" x H;®

Q,. This follows from the general observation that for a normal subgidup G

any G-semisimple representation is automaticallysemisimple: the maximal
H-semisimple subspace (s-stable and therefore has a complement, which then
must be zero.

Definition 8.2.7. For any irreducible, admissible left or right ® Q,-moduler

let
Hy(m) = (=1)"Hy(r)

as virtuall-adic representation @¢f> )" x Stab()\) overQ,.

9 Consequences of Counting the Fixed Points

A description ofH,, () as virtual(G r)"-module follows directly from the compu-
tation of the fixed points in section 7 if the fundamental lemmaday; is at our
disposal. Its use may be avoided by first proving that to any irreducible automor-
phic representation there is an associateddimensional Galois representation
o (). The existence of a multiple of(7) was proved by Lafforgue [Laf97]. How-
ever, a finer statement about the loéalunctions of these Galois representations
seems to depend on the fundamental lemma for the special coweight™ + 1.
Unless the contrary is stated explicitly, Assumption 8.2.1 persists.

70



9.1 First description of Hy ()

First, we need some preliminary explanations.

An irreducible, admissiblé{ ® Q,-moduler can be written as a restricted
tensor productr = ®;€X 7, With uniquely determined irreducible, admissible
C(D¥) ® Q;-modulesr,. The moduler is unramified (we use this term syn-
onymously for ‘spherical’) at all but finitely many placese X’, which means
(m.)P= is a nontrivial irreducible representation of the algefyeD: /D) ® Q.
This algebra is isomorphic to the (commutative) alge®ra, 2, . . . 24, 2; ']
via the Satake isomorphistfi — fV, in particular(r,)?* is one-dimensional.
The Satake parametge, (r,)...zq4(7.)} € (Q)?/&, is characterised by the
equations

Te(f,m) = [ (a(m) - za(ma)), f € C°(D;//D;) @ Q, (9.1.1)

and determines, uniquely. The same information is carried by the lotdhctor
Ly(m,T) = Hz(l — 2i(m)T) 1.

The space\ut = C>*(D*\Dj; /a*) of locally constant rational functions on
the compact topological spade*\ D} /a” is an admissible and semisimple right
H-module, cf. [Laf97] IV.4, Proposition 1. For any irreducible, admissible repre-
sentationr of D /a” overQ, letm,. be the (finite) multiplicity ofr in Aut ® Q.

7 is called automorphic ifn, > 1. One might expect:, = 1 in that case.

Moreover one expects that for any irreducible automorphic representation
of D; /a” there exists a semisimpiedimensional-adic G --representationr =
o(m) over Q, which is uniquely determined by the following condition: ifis
unramified at some placec X', then so is7, and we have

L.(0,T) = Ly(m,T). (9.1.2)

This means that the set of eigenvalues of the geometric Frobenarso equals
{z1(m;) ... z4(mz)}. In Theorem 9.3.1 we will show the existence of sudhr)
satisfying (9.1.2) outside some finite set of places.

The set of dominant coweights for GL,; can be naturally identified with
the set of dominant weights for the dual groGp.,;(Q,). Letp, : GL4(Q,) —
GL(V,) be the irreducible representation with highest weightAs a complete
description of the virtua{G )" x Stab(\)-moduleH,(7) one might expect

Hy(m) =my - (py,00(m))K...K (pa, oo(m)) (9.1.3)

whereStab()) acts on the right hand side by permutation of the tensor factors.

The remainder of this section is concerned with the proof of the following
partial result, which will later be improved by Theorem 9.3.3 and by Theorem
10.4.3 and its corollary.
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Theorem 9.1.1.Letr be an irreducible, admissible representation?jf /a” over
Q, and letT(r) C | X| be the finite set of places at whighis ramified. Suppose
that all \; € {u*, u~} or that the fundamental lemma fatL; holds. Then there
is a finite setl”(7) C |X]| including7'(7) andT(a) such that for any choice of
closed pointse; ...z, € X'\ T'(w) and for any integers; ... s, we have the
following equation.

Te(rt x ... x 77, Hy(m)) = my - H P(za(me)%, o za(me,)™)  (9.1.4)
i=1

Here f) € Q2 zl‘_l el 24, z;l]Gd denotes the character of the irreducible rep-
resentation ofzL,(Q;) with highest weighA.

The case\ = (u™, =) or (=, u™) is [Laf97] IV.4, Theorem 9.

Proof. First we reduce the assertion to the case that:there pairwise distinct.
Leta, : Gp C GY% be the embedding of theth component. Assuming (9.1.4) for
pairwise distinctr; we get for anyr € X'\ 7"(7) ands € Z

Tr (3, o Hy(7)) = my - [ [ dimg, (Vi) - £ (21(ma)", -, 2za(m2)?)
j#i
by settings; = 0 for j # ¢ and choosing any permitted. Writing M = m, -
[T, dimV}, itfollows thatM" - H) () = o Hy () K. .. X« Hy(7), because
the traces of a dense set @f, on both sides of this equation coincide. Since
M # 0 this allows to compute the left hand side of (9.1.4) in the case that some
x; coincide as well.

Furthermore it is sufficient to consider exponents 1 because both sides of
(9.1.4) are finite sums of terms3;" . .. 35" with n € Z and3; € Q;. Such sums
are uniquely determined by their values for positiye

Let I C X be a finite closed subscheme such thahas nontrivial K ;-
invariants, i.e.H}(r) = Hp,(x") for all n. SinceAut is an admissibléH-
module, there are only finitely many isomorphism classes of irredutible Q,-
modulesr, which occur inAut”™’ ® @, or in one of the finitely many7,. Hence
there is a functiorf € H; ® Q, satisfyingTr(f, 77) = 1 andTr(f, n,) = 0 for
all 7, 2 =%, cf. Bourbaki Algzbre, Ch. 8§12, Proposition 3. This function is
concentrated at finitely many places, which means there is a finitésetC | .X|
such thatf € H¥ ® Q, for any finiteT' C | X| disjoint fromT"(7). We enlarge
T'(m) by I andT'(a). Then Proposition 9.1.2 below for the chosgrand for
pairwise distinct closed points, ...z, € X'\ T'(r) implies

Tr (b % ... x 72, Hy(m)) = my - HTr(bsi(fAi),mi) .
i=1
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Using the characterisation of the Satake parameter (9.1.1) this is equal to the right
hand side of (9.1.4). O

Proposition 9.1.2.Suppose that al\; € {u", ™ } or that the fundamental lemma
for GL, holds. Letz; ...z, € X'\ T'(a) be pairwise distinct closed points and
T ={x...z.},andlet/l C X be afinite closed subscheme with7 = (). Then
for any positive integers; ...s, > 1 and anyf” € H? the following equation
holds.

Tr(72 x ... x 72 x fT Hf,) = Tr (fT T bs (f), Aut @ Q(\/é)) (9.1.5)
=1

Here f\ € Co(D;//D;) ® Q(\/q) denotes the Hecke function with Satake trans-
form f.

Proof. This assertion follows rather formally from the computation of fixed points
(Corollary 7.3.4). We may assunfé = 1x,,x, for someg € (D})*, i.e. fT acts
by then” (KT)-fold of the finiteétale correspondend&™(¢)°. Let

P, q : F?A(g) — ShtISA/aZ

be the given morphism§. We set = s;deg(z;) for: = 1...r and chgose
geometric pointg; € X (F,) overx;, which will also be written ag € X" (F,).
By the functoriality of Theorem 8.1.4 (see Remark 8.1.5) the left hand side of
(9.1.5) equals

LHS(9.1.5)=Tr(c{* x ... x & x f',(H}

T

).) (9.1.6)

Here ¢; has been defined in the proof of Proposition 8.2.4, and the trace more
precisely means the trace of the composition:

A

e xxepmx fT

(7)), = ((F9)"HL ), (H7)):

Let ShtISA/aZ |. — SpecT, be the fibre ofr; , in z and denote byIC,). the
restriction of/C) to this variety. Since factors over\ 7, the Hecke correspond-

encel’;2(g) can be restricted to the fibre in and the partial Frobenfi{ (™

7

induce endomorphisms of this fibre. Via the base change isomorphism

(H},). = H"(Sht7*/d” |, (ICy);)

the actions of* and of /7 coincide with the actions induced by the restrictions
of the given cohomological correspondences.
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As Fr® factors over the absolute Frobenius, the finite geometric correspon-
dence

[(B2).] o [T7(9)2] =

[ St /0], <5 Sh o], < T(g) 2 She? /o |

is contracting in the sense that it satisfies the hypothesis of [Fu] Theorem 5.2.1.
Consequently the local terms in the Lefschetz-Verdier formula coincide with the
naive local terms and we get from (9.1.6):

LHS (9.1.5)=p"(KT) - ) naiveloc, ([Fr®] o [[T2(g)], ICy). (9.1.7)

<A
y€Fix;(g,0)(2)

The naive local term aj is by definition the trace of the endomorphism of the
fibre (1C,), which is induced by the composition of the cohomological corre-
spondences : (Fri")*IC\ = ICy andb : p*IC) = ¢*IC,.

In order to determine this trace we choose for each 1...r an integer
n; > 0 such that in the sequence

A/ - (_nl)\[) ) >\1 + nl)‘o LRI _nr)\[) ) )\7’ + nr)\O)

all A, = \; + n;\o are positive, i.ed), € PT+ anddeg(\};) > 0. Thenr; , can
be written as the composition

ShtISA/oLZ s Hcohg)‘é" — (X'\ 1)

i=1

where« is given by the quotient§; ;(n; - z;)/&;. This is a smooth morphism
by Lemma 3.3.4, Corollary 3.3.6 and using tlnah%”iAO is smooth overX’ (of
negative dimension if; > 0).

Letj! : cohg% - cohfﬁ'% be the natural embeddings andjet []._, ji. We
setF; = (ji). Qi (2(p, \i)) and

F = jnQ {dim())) = £ K. K F,.

Letd, : F;F = F be the product of the Frobenius correspondence in-the

component and the identity in the remaining components. Sinesmooth,

there is a canonical isomorphisid’y, = o*F. Using this, the cohomological
correspondenck coincides with the composition:

EINA
a*b]

Frio*F =2 o' F[F — o*F
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Moreover the given 2-isomorphistwwp = aoq induces an isomorphispia*F =
¢*a*F which coincides with the isomorphispt /Cy = ¢*IC) chosen before.
Denotinga(y) = ' = (v . . . y.) this implies

najve_locy([Frﬁ] o [F?A(g)(’p], ICA) = naive.locy/([Fg],}")

= Hnaive.locyg ([Frobg'], 7). (9.1.8)

=1

Herey] is an object Of;ohg/\éi (F,) overz; plus an isomorphisrfirobl)*y; = y/,
which means thay; is defined ovefF ... The local term ay; depends only on the
type of this coherent sheaf, which up to a shift/hy, coincides with the type of
the modification of thé>-shtukay in z;.

Inserting (9.1.8) into (9.1.7) we get that the left hand side of (9.1.5) equals
the sum over the fixed points of a function which only depends on the type of
the modifications. This function is determined by Lemma 9.1.3 below, and using
Corollary 7.3.4 we get the right hand side of (9.1.5). O

Lemma 9.1.3.Foranym > 0 and\ € Pitletjy : coh% C cohp be the natural
immersion and sef) = (). Q; (2(p, A)). Let

t : cohp(F,)/ — P = GLa(F,(t))// GLa(F,[t])

be the map given by the type of the coherent sheaf. Then the functioh(,) /..
given byy — Tr(7,, Fy) equals(—1)2*Y fy o t where f, is the Hecke function
such that the Satake transforfiy is the character of the irreducible representa-
tion of GL4(@Q,) with highest weighA.

Proof. This follows almost immediately from the corresponding statement about
the affine Grassmannian 6fL,, which in a more sophisticated way can be ex-
pressed as an equivalence of the tensor category of perverse sheaves of weight
zero on the affine Grassmannian and the tensor category of representations of the
dual groupGL4(Q,), see [FGKV], Proposition 5.1.

More precisely, let € X be a closed point and l€tr(x) be the fibred product

Gr(z) —— Speck(x)

| o |

&, can
Modp G Vecty, x X'

with the right vertical map given b € Vect,(F,) and the natural immersion
Speck(z) — X'. AnisomorphismD, = M,(O,) identifies Gr(z) with the
maximal reduced closed subscheme of the affine Grassmannian.
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The inverse image of the stadkod;, C Modp of positive modifications
Gr*(x) C Gr(z) corresponds to the positive Grassmannian. The quafi¢fit
defines a morphism

7 : Grt(xz) — cohp x x: Spec k(x) = cohp(x)

which is smooth (for example by Lemma 3.3.2) and compatible with the stratifi-
cations of both sides indexed by the positives P™*. It remains to show that
T*(Fx | cohp(2)) iS the intermediate extension of the sh@f(2(p, \)) on Grk(:zc),

or equivalently the corresponding assertion 8| con,(z). This follows from

the fact thattohp — X' is étale locally inX’ isomorphic to the projection of a
product onto the second factor (Lemma 10.1.5 below). ]

Corollary 9.1.4. Ifall \; € {u*, u~} orif the fundamental lemma f@kL, holds,
thenH7, vanishes for oda.

Proof. SincelC) is pure of weight zero, the same holds #(r; ,)./C,, i.e. all
eigenvalues of the geometric Frobeniusn the smootti-adic sheaff{}, have
absolute valug™/2.

Letx;...x. € X’ be any pairwise distinct closed points which do not meet
I orT(a), let N be a common multiple of the numbedsg(z;), and lets; =
N/ deg(z;). Choosing forf? the unit element ot{?, Proposition 9.1.2 yields for

Te(7, Hi ) = Te(mt %X < T )

a presentation as a finite sum n;a] with positive integers:;. By purity a non-
trivial H7, for an oddn would be reflected in this sum by a negative coeffi-
cient. O

9.2 Remarks on the non-proper case

For sufficiently large\ with respect toD the morphismr; , will in general not
be proper. Nevertheless in the cdsé¢ () it is representable quasiprojective, and
Definition 8.2.2 may be replaced by

OH?’A = Rn(ﬂ-[,A)[ICA

with IC) as before. Theskadic sheaves are smooth in some neighbourhood of
the generic point/ C (X’ \ I)", but this might be small.

Lemma 9.2.1. The largest open subs&t C (X' \ I)" to which all’H7}, |, can
be extended as smoatadic sheaves has the forti = U; x ... x U, with open
setsU; C X.
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Proof. U’ is the complement of a divisor and is stable under the Frobenii of the
components’; : X" — X" thanks to the partial Frobenii. Hence it suffices to
show that any closed subsétC X" of pure codimension which is stable under

all F; is the union of sets of the form; ! (z) for closed pointst € X, where

p; - X" — X denotes the-th projection.

First we consider the case= 2. To an irreducible divisor inX? which is
mapped surjectively onto both components one can assign a dedfeg such
that transforming the divisor by; multiplies its degree by. Therefore these
divisors have infinite order under the action Bf and cannot be part of &}-
stableY ¢ X? of codimensiori.

In the general case lgt : X" — X"~! by the projection outside and let
Y; C Y be the maximal subset such that (¢;Y;) C Y. ThenY; is closed inY’,
and the case = 2 implies thatY” is covered by; andY;. This remains true when
theY; are replaced by their maximal closed subsets of pure codimehsmoA .
Since thent’; = ¢;Y; ¢ X"~ ! fori = 1,2 satisfy the hypotheses of the Lemma,
we can proceed by induction. O

Similarly U’ is stable under the action 8tab()), i.e. \; = \; impliesU; = U;.
Let H7}, be the smootti-adic sheaf orl/’ which overU coincides with’H7,.
Like in the proper case this becomes a representation of

(7(U1) x ... x w(U,)) x Stab()) x HY.

Again, in the direct limit over for any irreducible admissible representationf
Dy /a” overQ, we getl-adic representation§} () of (G )" x Stab()), but their
ramification locus is not a priori bounded by the ramification locirafnd D as
in the proper case (Corollary 8.2.6).

Theorem 9.2.2.The statement of Theorem 9.1.1 about the traeglok ... x 7.
on H, () holds literally in the non-proper case (with a possibly larger8&tr).)

Proof. Like in the proof of Theorem 9.1.1, the proof can be reduced to the as-
sertion that the calculation of the traces A, stated in Proposition 9.1.2 holds
under the additional conditio®pec k(z1) x ... x Speck(z,) C U and for suffi-
ciently large exponents,, ..., s, > 1. This assertion is proved in precisely the
same way as before except that in the Lefschetz-Verdier formula there might be
contributions from infinity. These vanish for sufficiently large exponents by [Fu]
Corollary 5.4.5 (‘Deligne Conjecture’). O

In the non-proper case we cannot expect the analogue of Corollary 9.1.4 (purity).
Therefore it is not clear whether the virtual representafiQiir) can be written
as a sum of irreducible representations with positive coefficients.

77



9.3 Second description of ()

Theorem 9.3.1.Suppose the morphisﬁint(’“’“_)/aZ — X' x X' is proper, for
example whem is sufficiently ramified with respect 10

Then for any irreducible automorphic representationof D7 /a” over Q,
there exists al-dimensional-adic G p-representatiorc = o () over Q, which
is uniquely determined by the following property: if for some clased X’ the
local component, is unramified, thew is unramified at:, and for all but finitely
many suchr we havelL,(r,T) = L,(o,T).

Proof. By Lafforgue’s case of Theorem 9.1.1 at least a multiple of the desired
representation exists, i.e. we can write as a linear combination of irreducible
representations with positive rational coefficients (positive by Corollary 9.1.4).

Let N (o) be the denominator af, that is the least positive integer such that
N(o)- o is atrue representation. For any integer> 1 we consider the sequence
A(m) of length2m

Theorem 9.2.2 then implies the equatidig,,) = m, - ¥ X V%™ of virtual
representations ofGr)*". Consequently all powerd/ ()™ divide the fixed
numberm,, which impliesN (o) = 1. O

Remark.For given D only finitely many of the stack§ht=™) /aZ are proper
over (X')?™. If Sht*"#7) /a? — X' x X' is not proper, the above proof only
gives the existence af as virtual representation with integer coefficients.

Remark 9.3.2. In [Lau97] it is conjectured that there is an irreducibladic rep-
resentations’ = o'(xw) with dimensiond’ dividing d, which is pure of weight
1 —d/d’ such that

or)=cd®d(-1)®...0d(1—d/d).

In particularo (7) does not contain any irreducible representation with multiplicity
greater than.

Theorem 9.3.3.Suppos&ht* " # ) /aZ is proper overX’ x X’ andSht=/aZ is
proper over(X’)". Then there is an isomorphism of virtu@¥ »)"-modules
Hy(m) = mq - (pr, 00(m)) X ... K (py, oo(m)). (9.3.1)

For oddn we have} () = 0.
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Proof. To prove equation (9.3.1) we have to show that the traces of a dense subset
of (Gr)" coincide on both sides. One class of such subsets is given by the products
Ty X ... X T, Wherex; ...z, are pairwise distinct closed points Y which do
not meet a fixed finite sét’(x). Like in the proof of Theorem 9.1.1 the equality
of traces on these elements can be reduced to thescasé of Proposition 9.1.2,
and (9.3.1) is proved.

This in turn implies the equality of traces (9.1.4) outside a finite set of places.
The vanishing statement for oadhen follows from purity off{7, as in the proof
of Corollary 9.1.4. - O

Theorem 9.3.4.Assume thatht* ) /aZ is proper overX’ x X’ and let/ ¢ X
be fixed. Then the following three conditions are equivalent.

(1) Let)\ be a sequence of dominant coweights for witibh=2 /a” is proper
over (X')". Then for any pairwise distinct closed points. ..z, € X'\
(IUT(a))andT = {x; ...z, },anyf € HF, and any integers; ...s, > 1
equation(9.1.5)holds.

(2) The same condition fox = (p™ + p~) with gt + = = (1,0,...,0,—1).

(3) For any irreducible automorphic representatianof D7 /a” with nontriv-
ial K -invariants and for any closed point € X'\ (/ U T'(a)) we have
L.(m,T) = Ly(o(m),T).

Remark.The hypothesis of the theorem implies tisat=(*" ") /% is proper
over X’ because there is a surjective map

A*Sht=0 1) /g7 Sh=iH07) /g2,
(This is the resolution of singularities of Proposition 3.1.9.)

Corollary 9.3.5. Suppose the fundamental lemma &dt; holds for the charac-
teristic function of the double cosetaf* +# . Then in the situation of Theorem
9.3.1we havd.,(m,T) = L,(o,T) foranyx € X’ such thatr, is unramified.

Proof. In view of Proposition 9.1.2 this is clear if ¢ T'(a). However, for any
irreducible automorphic representatioof D} /a” we can find a new’ € A* of
degreel such thaf'(a") avoids a given finite set of places ands a representation
of D} /a'" as well.

In fact, via class field theory the central characknA*/a”* — Q; of
corresponds to a cyclic extensiéh F' which contains no constant extension. Let
T be the set of places df which decompose completely i, then anya’ with
T'(a') C T acts trivially onw. Thus it suffices to show that for any finite set of
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placesS the greatest common divisor dég(z) for x € T'\ S is 1. Otherwise
there is a nontrivial extensiofi,~ of F, such that any: € 7'\ S decomposes
completely inf @ IF,» as well. This means thdt)\ S is contained in the analogue
setT” for the field &' ®r, F,», which contradicts Dirichlet densities. O

Proof of Theorem 9.3.4For any\ as in (1), Theorem 9.3.3 implies the equation
of virtual HF x #(X’\ I)"-modules

Hp, = @mw KT R (py, oo(n)) K ... K (py, 0 o(7))

with 7 running through the irreducible automorphic representation®pfa”
having nontrivial K ;-invariants.

AssumingL,,(o(r),T) = L,,(w,T) for all ¢ and for all occurringr this im-
plies equation (9.1.5), so we have+43)1)=-(2), and it remains to show (2)(3).

For a fixed closed point € X'\ (IUT'(a)) letm ... w, be a maximal family
of irreducible automorphic representations with nontrivigl-invariants which
differ only in the xz-component. In particular they all have the same associated
Galois representation(r,) = ... = o(m,) = o. There is a functiory € HT
satisfyingTr(f, ,) = 1 for all v andTr(f, 7) = 0 for any otherr.

By Proposition 9.1.2, equation (9.1.5) holds in the case (u*, ). Using
the chosery, for the se{ 2 (o) . .. z4(0) } of the eigenvalues af, on o we get

Zm”v H{a(0)...2 |_| M, - {21(M0a) - 2a(ma) } - (9.3.2)
Similarly condition (2) gives the additional equation

me' {Zl /ZJ 27’5] |_| My, {Zz ﬂ-uz /Z](ﬂ'z/gc)}zyéj (933)

Now (9.3.2) implies that the multiplicity of on the left hand side of (9.3.3) is
< the multiplicity of 1 on the right hand side with equality if and only if the sets
{#(m,.)}: are equal for all. This means (23(3). O

10 Decomposition under the Symmetric Groups

If the sequence consists only of repetitions gf* and .., then the isotypical
components of{}, with respect to the irreducible representations of the finite
group Stab(\) can be recognised as certaﬁi}“x for different \'. This follows
rather formally from the sheaf theoretic version of the Springer correspondence
for gl,,, which we recall first.
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10.1 Generalities onCohp

In the sequelX may be any smooth curve ov&y,. The stackCoh’y classifies
coherentD x-modules of lengthn and is equipped with a natural morphism norm:

N : Cohp — X(™

We denote byV, : coh’y — X its base change by the diagomal: X — X(™),
and for a closed point € X let

coh™(z) — Spec k(z)

be the base change df by the immersiorSpec k(z) — X. This meansoh™ ()
classifies coherer® x-modules with support in. The notation is justified be-
cause this stack only depends on the complete local®ingvhich only depends
onk(z).

Example 10.1.1.In the caseX = A' = SpecF,[t] a coherentOx-module of
lengthm is the same as am-dimensional vector space ovép with a linear
action of the variable, so

Coh}y =gl,,/ GL,, . (10.1.1)

Under this isomorphism the norm can be identified with the gigp/ GL,, —
A™ given by the coefficients of the characteristic polynomial. A€ ¢l,, be the
closed subscheme where all coefficients of the characteristic polynomial vanish.
Then (10.1.1) induces an isomorphisoh™(0) = AN/ GL,,. Using translations
in A! this extends to

cohly =2 coh™(0) x A'.

Lemma 10.1.2.Let f : X — Y be a dominant morphism of smooth curves over
F,. Then the morphisnfi, : Coh’y — Cohy' is representable affine of finite type.

Proof. If f is an open immersion, the same is true for Thus we have to show
that for finite f and for K € Cohy'(S) the fibre of the morphisnf, in K is a
relatively affine scheme ovér of finite type. LetN(K) C Y x S be the norm of
K andletZ = N(K) xy X.

Z 25 N(K) =5 S

Here both morphisms are finite and flat. Sif€as anOy x)-module, the struc-
ture of anOy  s-module forK can be considered as a section of the vector bundle

HOm@S (W*w*OZ Rog W*K, W*K) — 9

satisfying certain closed conditions (compatible with— S). H
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Lemma 10.1.3.Let f : X — Y be anétale morphism of smooth curves over

F,. Then the morphisnf, : Coh’y — Cohy' is étale in precisely those points

K € Coh}!(F,) for which no two points ol (K) have the same image undgr
Moreover the following diagram is 2-cartesian, in particular the upper mor-

phismf, is étale.

cohy L> cohy

| o]

XﬁY

Proof. We need to show thaf, is formally étale and that th&-valued points of
the diagram are 2-cartesian. For both assertions it is sufficient to consider the
category ofS which are finite ovelf,, in which case they follow from the fact
that f induces isomorphisms of the complete local ringé(@qf andYFq.

(If two points of N(K) coincide, then the dimension ofut(f,K) is greater
than the dimension oflut(K'), which means the fibre ¢f. has positive dimension
in K.) O]

Corollary 10.1.4. Locally in X there is an isomorphismoh’y = coh™(0) x X
such that the morphisny, is identified with the second projection. In particular
the stackeoh'y is reduced.

Proof. Locally in X there is arétale morphism té\!, which proves the first asser-
tion. The schemg/ is reduced because it is generically smooth and a complete in-
tersection (it is defined by equations), i.e. it has no embedded componeriis.

Let nowD be an Azumaya algebra of radkon X. As in Definition 1.1.1 we
can define the stadkoh?, of coherentD-modules of lengthn, which is equipped
with a morphism norm:

N : Cohly — X(™

As before, the base change &fby the diagonal is denoted hy, : coh, — X,
and the restriction aiV, to a closed point € X is coh’;(z) — Spec k(x). Since
an isomorphisnD, = M,;(Ox) induces an isomorphiseohf (z) = coh™(x),
this stack is independent &f. Moreover a trivialisation oD overF,. induces an
isomorphismCoh; ® Fy» = Coh'y ® Fy» (cf. section 1.2). So Corollary 10.1.4
implies:

Corollary 10.1.5. Locally in X there is an isomorphism
cohpy ® Fyn = (coh™(0) X X) @ Fyn

such that the morphisny, is identified with the second projection. In particular
the stackcoh? is reduced. ]
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Definition 10.1.6. Let Cohl(S) be the groupoid of¢ € Coh(S) equipped with
a filtration
K=K">..DK'>K'=0

such that all’ /K~ lie in Cohp(S).

In the following commutative diagram the morphisW* is given by the quotients
K'/K'™1, andp is given by forgetting the filtration.

Coh —— xm (10.1.2)

1

Cohlt —X 5 x(m)

We denote byX"’ C X the complement of all diagonals.

Proposition 10.1.7.The morphisnp is representable projective. over? dia-
gram(10.1.2)is 2-cartesian, in particular therg is an&,,,-torsor.

Proof. The fibre ofp in K € Coh}(S) can be viewed as a subsheaf of a flag
variety of (p,). K which is defined by closed conditions (here: X x S — S
denotes the second projection). Thus representable projective.

Over X any filtration of K splits uniquely, and a decomposition(K) =
N; + ...+ N, with effective divisorsh; is equivalent to a decompositidid =
Ki®...®K,, with N(K;) = N;. The groupS,, acts in both cases by permutation
of the constituents. O]

Proposition 10.1.8. The morphismV™ : CohlX — X™ is smooth of relative
dimension—m.

Proof. First assumen = 1. OverF,, using a trivialisation ofD the norm can
be identified with the smooth morphism/G,, — X. The general case follows
inductively using Lemma 3.2.9. ]

Let coh? — X be the base change &f™ by the diagonalX — X™. The
morphism -
q : cohl; — coh

given by forgetting the filtration is the resolution of singularities of Definition
3.2.7 in the special case of the generic stratum. Up to a closed immersion with a
nilpotent ideal it coincides with the base changeofts fibre in the closed point

z € X, which we write ag;(x) : cohly(z) — cohl%(z), can be identified with the
Springer resolutioN'/ GL,, — N/ GL,, overk(z).
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In section 3.2 we defined locally closed substaCké? C Coh% and their
inverse imagesohy C cohyy. By Proposition 3.2.4 the latter are smooth owér
of relative dimension-m — d(m), using the notation

d(m) =2 (i —1)m;. (10.1.3)
Hence the codimension e6hy C coh} is d(m).

Proposition 10.1.9.The morphisnp is small with respect to the given stratifica-
tion. The morphisms and ¢(z) are semismall and all strata are relevant (this
means the dimension of the fibre equals half the dimension of the stratum).

Proof. Each stratunoh?, has constant dimension in all points (Proposition 3.2.1)
and only the generic stratum is mapped surjectively(t&) by the norm. So we
need to show that all fibres pfover Cohp have dimensiod(m)/2.

For K = K; @ K, in Cohl3(F,) such that thek; have disjoint supports, the
numberd(m) is additive. Since the natural map from the maximal filtrations of
K to the pairs of maximal filtrations of th&; is finite and surjective, it suffices
to consider the fibres af. Their dimension has been computed in Proposition
3.2.10. O

10.2 Springer correspondence foCohp

First we recall the classical parametrisation of the irreducible representations of
the symmetric groups and their connection with the irreducible representations of
the general linear groups.

Letm > 0 be an integer and Iét be a finite dimensional vector space over
Q,. OnV®™ there is the diagonal action ¢¥L(V') and the action of5,, by
permutation of the tensor factors. For any finite dimensional represenatbn
&,, overQ, we denote by’ (y) the GL(V)-representatioflomg,, (, V™).

For any partitionm = (m; > ... > m,) of the integerm we write 5,,, =
Gy, X ... %X 6, CG,,andlet],, = Indg;z 1, where1l denotes the trivial one-
dimensional representation. There is a natural bijectior~ ),, between the
partitions ofm of length< dim (V") and the positive dominant weights of degree
m for the groupGL(V), given by)\(mi) =m;.

For any dominant weight we denote by, the irreducible representation of
GL(V) with highest weight\.

Lemma 10.2.1.There is a unique parametrisatian — x,, of the irreducible
representations 06,,, by the partitions ofn such that/,, = x,, modulo all
representations.,y with m’ > m. If the length ofin is at mosidim(V'), we have
V(Xm) = Vi, andV (xm) = 0 otherwise.
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This is completely classical. A refinement of Lemma 10.2.1 is that if the length
of m is at mostdim(V'), then the multiplicity ofy,, in 7, equals the dimension
of the \,,,-eigenspace v, ,. A Reference for these assertions is [FH], Lemma
4.24, Corollary 4.39, Theorem 6.3, Proposition 15.47, and Formula (A.19).

We denote byCohy, . the inverse image of() under the norm and by
j : Cohp . € Cohy the natural embedding. Writing : (/]BTlgrss — Cohp
for the restriction o, Proposition 10.1.9 implies

Rp*@l = j!*Rp;@l .

Therefore the naturab,,-action onRp.Q, (Proposition 10.1.7) extends uniquely
to an action onRp,Q;, which in turn induces an action aRq,Q, by pullback.
SinceCohl} is smooth, the equatiof?p,Q,)®" = Q, gives(Rp,Q,)®" = Q, by
intermediate extension. This implies

(RQ*@Z)Gm = @l .

Lemma 10.2.2.Let f : X — Y be anétale morphism of smooth curves o¥er
and letyy = f, : coh’y — cohy'. Then the natural homomorphism

¢ SOSR(QY)*@Z - R(QX)*@Z
is a &,,-equivariant isomorphism.

Proof. Let U C Coh'y be the open subset whege= f, : Coh’y — Cohy' is
étale. By Lemma 10.1.3 we hat€ = ¢~'(Cohy',,,) € U. OverU’ the natural
map

b : QO*R(pY)*@Z - R(pX)*Ql

IS an equivariant isomorphism, because it comes from a morphigsy,ebrsors.
This property extends G by intermediate extension. Naws the base change of
b by the natural morphismoh’y — Coh'y, which factors ovet/, and the assertion
follows by pullback. ]

For any irreducible representatignof &,, gver@l the y-isotypic component
(Rq.Q;)(x) is defined in such a way thatq.Q, is canonically isomorphic to the
direct sum of all R¢.Q,) (x)®x. Letj,, : cohy C coh be the natural embedding
and let

Fm = (jm)!*Ql (—d(m)) .
The sheaf theoretic version of the Springer correspondengg, fan this context
assumes the following form.

Theorem 10.2.3.For anym there is an isomorphism

(R Q) (Xm) = Fn -
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Proof. It has been remarked in [Lau87] that the corresponding statemey{tor
coh™(0) — coh™(0) is precisely the Springer correspondencegby, which is
explained in [KW], Chapter VI.

Using the isomorphismsoh’ = coh™(0) x A! andcoh?s = coh™(0) x Al
we obtain the assertion of the theorem in the cEse: A! with trivial D. Since
any X admits locally arétale map ta\!, Lemma 10.2.2 implies the assertion for
arbitrary X with trivial D (that (R¢.Q,)(x.,) is the intermediate extension of a
smooth sheaf by, is a local statement, and the isomorphism class of this smooth
sheaf can be detected locally as well).

For the proof of the general case &t be geometrically irreducible. Over
[, there exists the desired isomorphism because thezan be trivialised. This
means that

G = (Rq.Q) (Xm) (d(m) | conzz

is a smooth one-dimensionahdic sheaf which is trivial oveF,, and we have
to show tha( is trivial itself. Sincecoh? is geometrically irreducibley can be
considered as a one-dimensiohaldic representation @tal(F, | F,).

The isomorphismsohfZ () = coh™(z) andcohlZ(x) = coh™(x) imply the
assertion of the theorem for the morphisagis). Because eactoh () is geo-
metrically irreducible oveBpec k(x), this means that the restrictions of the repre-
sentationg to Gal(F, | k(x)) are trivial. These subgroups generétel(F, | F,).

O

Remark.The construction of the Springer correspondence as explained in Chap-
ter VI of [KW] only shows that the statement of the theorem holds for some
parametrisation of the irreducible representation&gf by the set of partitions

m.

We sketch a proof that this parametrisation coincides with the one we fixed
before: in view of the characterisation of our parametrisation in Lemma 10.2.1, we
have to show that everyRq.Q,)®= is the direct sum of somg,, with m’ > m.

This is equivalent to the condition

m' Zm = R (Rq Q)% | = 0.

coh™’
To prove this condition, we factay ascoh™ % coh’ 25 coh™ where col
parametrises partial filtrations of type, i.e. with quotients of lengths:; ... m,..
Then there is a natural action &f,, on R¢,Q, with invariantsQ;, which implies

(RQ*@I)Gm = Rq/Q,.

Thus we have to prove that in the casé #* m the dimension of the fibres of
¢’ overcoh™ is strictly less thani(m') /2. An equivalent statement is that over
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coh™ the mapy’ does not have a fibre of dimension zero. The existence of such
a fibre means that a sheaf of typé admits a filtration of typen such that all its
subquotients are cyclic sheaves. This is possible preciseh’for m.

10.3 Decomposition of cohomology

We now change the notation. We fix a sequence of integers (my,...,m,)
with sum zero and call a sequence of dominant coweights(\4, ..., \,) defi-
nite of degreen if \; € P+ for all i. For such\ we consider

as a partition ofm;| of length< d. The sequences” which arise in this way
parametrise a subset of the irreducible representatiofig,of S, X... xSy,
overQ, via

AT = =0 B B

using the notation of Lemma 10.2.1. The permutation actiofiteb()\) makes
X,+ into a representation of the semidirect prodagt x Stab()).
We form the following sequenckof lengthM = " |m|.

~ o~ ~ ~ (ph)ym = (ut,...,pwt)  ifm; >0
(Wseoospm) ifm <0

Then the stabilise$tab(\) C &, is isomorphic to S ,,/,)* and contains the nat-
urally embedded subgrou,,, x Stab(m), which respects the given decomposi-

tion of ) into subsequences (but not necessarily the order of these subsequences).

Assumption 10.3.1.The stackSht?/a” is proper ove(X').

This implies that alBht =2 /a” for definite A of degreen are proper ovefX’)” as
well. The assumption holds for examplelifis sufficiently ramified with respect
to M/2.

The directimageg/;'; introduced in Definition 8.2.2 are smodtadic sheaves
on (X' \ I)™ (Lemma 8.2.3), which via the construction in Proposition 8.2.4 are
made inta-adic representations of

(X' \ I,7)™ % Stab()) x H; .

Herejy € X (F®8) is the natural geometric point.
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Let A be the multi-diagonalz; ...z,) — (/™. 2™, which may be
considered either as a morphigd’ \ )" — (X’ \ I)™ or as a mag:},, — G¥.
The equivariant action ftab()) on H75 restricts to an ordinary action &,, on
A*HTs5, considered either as a sheaf or as a representation. So for any irreducible
representatiory of &,, the y-isotypic componeni\*H75(x) is defined. In the
casey = x,+ thisis a representation af (X' \ 1,7 )" x Stab()) x H;.

Theorem 10.3.2.For any definite\ of degreen there is an isomorphism éfadic
sheaves of X' \ )"
(A"H75)(xp+) = HYy, (10.3.1)

which is compatible with the action af (X' \ 7,7)" x Stab(\) x H; and with
the natural inclusions fod C .J. For any other irreducible representatiop of
&,, the isotypic componeri\*H7'5)(x) vanishes.

Corollary 10.3.3. Let be an irreducible automorphic representation/of /a”
over@Q;. Then for any definita of degreen there are isomorphisms

(ATHF (7)) (xa+) = H3(7)

of semisimple representations(@tr)" x Stab(A), while (A*H{ (7))(x) vanishes
for any other irreducible representatiopnof G,,,. B O

In the remainder of this section we will deduce Theorem 10.3.2 from the Springer
correspondence fdfohp (Theorem 10.2.3), which is a rather formal matter. We
start from the following commutative diagram with 2-cartesian left half.

% Sht}/a? — [[Cohlpl —— (X' \ )M (10.3.2)
p’l OJ lp lr
T Shtlm/aZ — HCOh'én” —_ H(X/\[)(\mil)

Herep is the product of the morphisms : 6&1'7;”1" — Coh'{)”” given by forget-
ting the filtration, whilep’ has been called a collapsing map in section 2.3. Over

(|

TT(X\ 1)ss ) the right square is 2-cartesian as well, and there the morphisms
p, P areS,,-torsors. Let

A (XN — X\ DIl = (X' DM
and

5 ¢ (X D — TT(X7\ D
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be the products of the respective diagonals of lengths. . . |m,.|. Up to a closed
immersion with a nilpotent ideal the base change of (10.3.2)ibythe diagram

7o : A*Sht /a” 20, [Teohll — (X/\ (10.3.3)

| o |

5*Sht}n/a H Hcohlml‘ H X/

Hereq is the product of the morphisngs: cohly” — cohp".
The &y, ;-action onk(g;).Q, induces &,,-action on

Rq;@z = @SRQ*@l = ay (R(Ch)*@z X... K R(qr)*@l)
Using the equatiof, = 7, ¢’ this gives a5,,-action onR(7,).Q, and hence on
A*HP5 = R" (7). Q,(dim(}))
with dim()) = M(d — 1).

Lemma 10.3.4.The such define®,,-action onA*H}'5 coincides with the re-

striction of the equivariant action (Stab@) on H75 which has been constructed
in Proposition 8.2.4.

Proof. The&,,-action onRq.Q; = §* Rp.Q, we used above comes from an action
on Rp.Q,;. Therefore the action on the direct imagesrgitan be obtained in the
following way as well:

p o~ afp=p ~ mp =r7 ~ 50T DA T=T

In the last step we use that the infinitesimal closed immersioduces an iso-
morphism
O'r His = A"Hry .

So we have to show that ti&,,-action onRp.Q, and the equivariar[ﬁm-action
on R"7,Q,(dim(})) give the same action an R"7,Q,;(dim(})). Over the dense
open subset

i MDY < T DD
this is true because both actions arise from @&g-action on the upper row of
(10.3.2). Sincél}; is smooth, the mafind(r.H'5) — End(j*r.H75) is injec-
tive. =
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Proof of Theorem 10.3.2or any definite sequenceof weightm let j,+ be the
product of the natural embeddings

. S .
Jxt + cohp C Cohl{jm‘

fori=1...r letF+ = (j,+),.Q(—d()\")) whered(\]) is the codimension of
J\+ (see (10.1.3)) and let

fA+:f)\i~>&."®F>\j'

The base change 9§+ by a, is the natural embedding : Sht;/a” C 6* Sht/a”.
By smoothness af, we get a canonical isomorphism

af Fyr (dim(A)) = (ja)nQ{dim(A)) = ICy .
Thus Theorem 10.2.3 gives isomorphisms
(R.Qu{dim())) (xa+) = ICy., (10.3.4)

while the isotypic components dtq.Q, for all other irreducible representations
of &,, vanish. In view of Lemma 10.3.4 the application/®f(m). results in the
desired isomorphisms (10.3.1) of sheaveg &h\ I)":

(A REQ (dim(D) () = (B (). R, Qu{dim(D)) (xa) = R (70).1Ca
(10.3.5)
It remains to show that these are compatible with the various actions.

To begin with, the compatibility of’ with the Hecke correspondences, with
the partial Frobenii, and with the permutationsStub(m) allows to construct
cohomological correspondences fB%@,(dirp(A)) coming from the cohomo-
logical correspondences f@; (dim(})) on Sht2/aZ, for which (1) is equivariant.
Here the partial Frobenius; for Sht7*/a” is related to the product

Fi = Finy 4 tmi 1 +1 © - - © Flmg . 4ma)

on Sht%, which is defined on an open subset &f \ 7)™ containing theA-image
of the complement of all diagonals. Something similar holds for the permutations.
On the other hand, on

Rq.Qy(dim(\)) = R(q:).Q(|ma](d — 1)) K ... ¥ R(q,).Q(|m.|(d — 1))

we have the action aof; by the absolute Frobenius of tixh component and the
action ofStab(m) by permutation of the factors. Since the morphisgns invari-
ant under the Hecke correspondences and equivariant with respect to the action of
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the partial Frobenii and dftab(m), we obtain cohomological correspondences
for Rq.Q,(dim()\)) = o Rq.Q,(dim()\)) over the Hecke correspondences, over
the partial Frobenii, and over the permutationsSinab(A) C Stab(m). With
respect to the induced actions on the middle term of (10.3.5) the map (2) is equiv-
ariant.

It is easy to see that the two constructions of cohomological correspondences

for R¢.Q,(dim())) give the same resuilt. O

10.4 Applications

Originally the idea was to use the decomposition of the Galois representations in
Corollary 10.3.3 in order to reduce the computation offal( ) to the case that
all \; arepu™ or u—, because then Drinfeld’s case of the fundamental lemma can
be applied. However, this only gives the description of these restrigiéd) as
Galois representations without the action of the symmetric groups. On the other
hand we have seen that the computation off&|(r) is possible without using
the general case of the fundamental lemma. Therefore the decomposition can be
used in the other direction to obtain information about the action of the symmetric
groups.

The following statement without the action &,, would be a direct conse-
qguence of Theorem 9.3.3. We keep the notations and assumptions of section 10.3.

Proposition 10.4.1.There is an isomorphism ¢ r)" x &,,-modules
A*Hy(m) = my - o(n)*™ K ... Ko (m)*™ (10.4.1)
where&,,,,,| acts ono(7)®™ by permutation of the factors.

Proof. We have to show that for any irreducible representatio® Qfthe isotypic
components of both sides of (10.4.1) are isomorphi®s)"-modules. In view

of Corollary 10.3.3 applied to the left hand side and Lemma 10.2.1 applied to the
right hand side this means

Hy(m) =my - (py,00(m))K...K (pa, oo(m)) (10.4.2)

as(Gr)"-modules for all definite\ of degreem, which is the statement of Theo-
rem 9.3.3. ]

Proposition 10.4.2.In the situation of Proposition 10.4.1 there is an isomorphism
(10.4.1)of (G x S,,) x Stab(m)-modules if and only if there are isomorphisms
(10.4.2)of (GFr)" x Stab(A)-modules for all definite\ of degreem where the
symmetric groups act on the right hand sides by the obvious permutations.
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Proof. The subgrou@tab(A) C Stab(m) coincides with the stabiliser of the iso-
morphism class of the irreducible representatign of &,,. Hence using Corol-
lary 10.3.3 there is an isomorphism @}, x S,,,) x Stab(m)-modules

A*H(r @ Ind{gt) S Sens) Hy (m)

" XStab(A

where\ runs through a set of representatives of $tieb(m)-orbits in the set of
definite \’s of degreem. There is a similar connection between the right hand
sides of (10.4.1) and (10.4.2). O

For any integern > 1 we form the sequence

X = A(m) = ()™ ()™ = (g )
and writeH,,, () = H ) ().

Theorem 10.4.3.Assume that for a given integer > 1 the stackShtﬂ(m)/aZ
is proper over(X')?™. If for some irreducible automorphic representatiorof
D; /a” the associated Galois representatiofir) contains no irreducible rep-
resentation with multiplicity greater thah (cf. Remark 9.3.2), then there is an
isomorphism

Hp (1) = my - o(m)¥" K o () VB (10.4.3)

of (Gr)*™ x (6,,)?>-modules.

Corollary 10.4.4. AssumeSht*"# ") /a% is proper over(X')? and D is suffi-

ciently ramified with respect ta. If for some irreducible automorphic representa-

tionr of D; /a” the associated Galois representatiofr) contains no irreducible

representation with multiplicity greater than then there is an isomorphism
Hy(m) = mz - (pa, 0 o(m)) W K (pa, 0 o(m))

of (Gp)" x Stab(A)-modules.

The hypothesis on in the corollary can be weakened by demanding that a certain
stackSht*/a” is proper over X")"

Proof of Corollary 10.4.4.1f all \; are definite, the claim follows directly from
Theorem 10.4.3 and Proposition 10.4.2. Lemma 3.3.4 allows to reduce the general
case to this. n
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Proof of Theorem 10.4.First we assume that = o () is actually irreducible.
Let V, be theGZ" x &,,-modulec™™ X V¥, By Theorem 9.3.3 there is an
isomorphism of7%"-modules

Hy(m)=Zm, - Vy.

Therefore the isomorphism class/f, (r) as aG#" x G2 -module is determined
by them.,-dimensionalS?2, -module

W= HOH]G2Fm (%7 Hm(ﬂ-))

whereG?, acts on homomorphisms by conjugatidh;, (7) = W @ V5.

Let 1 be the trivial one-dimensional representation@®f,. By Proposition
10.4.1 the isotypic components,,(7)(1) and (1"~ ® V;)(1) are isomorphic as
G%-modules, in particular they have the same dimension. In view of Lemma
10.4.5 below, foin,-dimensional5? -modules?’ the dimension of W’ & 1;) (1)
is strictly maximal in the casB’”’ = 1~. This impliesiW = 1™~ and finishes the
proof if o is irreducible.

Lemma 10.4.5.LetW be_an irreducible representation &,, and letV be the
isotypic componerit’ = (Qf)*™(W). Then we have

dim(V)  [[(d—i+j)

dim(W) m!

with the product over all positiong, j) of the boxes in the Young diagramlof.
In the casél = 1 these are the pairf), j) for 0 < j < d.

Proof. By the Hook Length Formula [FH] 4.12, the dimensiori/Bfis m! divided
by a certain product of hook lengths, while by [FH] Exercise 6.4 the dimension of
Vis[](d — i — j) divided by the same product of hook lengths. O

Continuation of the proof of theorem 10.4.Bor generab we use the same ap-
proach as in the irreducible case. Again both sides of (10.4.3) are isomorphic as
G*m-modules, and the dimensions of thiiisotypic components agree.

Leto = 01 @ ... ® o, be a decomposition into pairwise non-isomorphic
irreducible factors. For any additive decompositi@an= m; + ... + m, with
m; > 0let&,, C &,, be the naturally embedded subgra@ip, x ... x &,,,, and
let

Vp=0MK . Ko

asG7% x 6,,-module. The isomorphism class of th8" x G2 -moduleH,,, ()
Is uniquely determined by the family af,-dimensionals,,, x &,,,.-modules

W, = Homgam (Vi K V.Y, Hy (1)) |
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more precisely

G2m, 6%
H,(7) = P Ind . Gy Wonm ® (Vi B V) (10.4.4)

The existence of an isomorphism (10.4.3) means thatBagh, is the trivialm-
dimensional representation &f,, x &,,,. To prove that this is true, it is sufficient
to see that the dimension of tilldsotypic component of each single summand in
(10.4.4) is strictly maximal in the case of trividl,, ,,,. But this dimension equals

dim H° (S n X S s Won, e @ (Q)22™)

and we can apply Lemma 10.4.5 again. ]
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Appendix

A Properness of D-Shtukas

In section 1.5 we claimed that the natural morphism
7™ = Sht™/a? — X' x X'

is not always proper contrary to the expectation (and the assertion in [Laf97] IV.1,
Theorem 1 in the case = 1).

On the following pages we show that fér= 2 the criterion given in propo-
sition 1.5.2 is optimal. Since in this case the local invariant®adre( or 1/2,
the criterion says that the above morphism is propér i§ ramified at more than
2m places. For the proof of non-properness in the case of less ramification it
would be sufficient to find one degenerating family, but we in fact construct a par-
tial (non-separated) compactification, based on the constructions in [Dri89] and
[Lafog].

For generald there is a precise criterion for properness as well, which we
will prove in a later work: fora € Q/Z let [a] € [0,1) be the unique inverse
image. The morphism™ is proper if and only if for every integdr < k& < d the
following inequality holds.

> [kinvy(D)] > m+1

zeX

For properness dht=2/a” over(X')" a similar criterion can be formulated.

A.1 Remarks on projective modules

Let R — R’ be alocal homomorphism of local noetherian rings,Adbe a (not
necessarily commutativej-algebra, which is free of finite rank as azamodule,
and letAd’ = A®pr R'. We consider a finitely generated rightmodule which
is free as am?-module and writeM/’ = M ® 4 A’. Any projective.A-module is
free as an?-module.
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By [Laf97] 1.2, Lemma 4M is a free.A-module if and only ifM’ is free over
A’. (This does not depend on the noetherian assumption. Neither does the follow-
ing statement, as everything can be defined over a finitely generated subring).

Lemma A.1.1. M is a projectiveA-module if and only ifA!’ is projective over
A

Proof. We have to show that i/’ is projective, then so i8/. If R — R'is flat
(hence faithfully flat), this follows from the equations

Ext' (M, N) @ R = Exty, (M, N @4 A')

for all A-modulesN. In general we may therefore replaB&by its residue field
and R by its completion, which in the noetherian case is flat aver

If M’ is a freeA’-module, then any inverse image of at+basis of M’ is
an A-basis of M by Nakayama’s lemma and flatness /af over R. If M’ is
only projective, there is a finitely generated projectitemodule N’ such that
N' @ M’ is free. SinceR is complete, this module has the fol = N @ 4 A’
with a finitely generated projectivd-module NV (lifting of idempotents). Then
N @ M is free overA, which means\/ is projective. O

Lemma A.1.2. The natural map from the set of isomorphism classes of finitely
generated projectivel-modules to the set of isomorphism classes of finitely gen-
erated projectived’-modules is injective. IR is complete and?’ is a quotient of

R, then this map is bijective.

Proof. We only have to consider the two cases tRats the residue filed oR
or that bothR and R’ are fields. In the second case the isomorphism class of a
finitely generated projectivél-moduleM is determined by thé&-dimensions of
M ® 4 A; with A; running through the simple quotients df These dimensions
can be read off from/’.

In any case for two finitely generated projectidemodulesi/ and N we have

HOHI_A(M,N) ®R R/ = HOHI_A/(M ®AAI,N®A.A/),

because this holds for free modules and this property carries over from a direct
sum to each of the factors.

Thus if R — R’ is surjective, any isomorphist/ @ 4 A’ = N ®4 A’ can
be lifted to homomorphismd&/ — N and N — M, which are surjective by
Nakayama’s lemma. Since any surjective endomorphism of a finitely generated
R-module is bijective, they are even bijective. If in additiins complete, then
the idempotent element corresponding to a direct factod’dfcan be lifted to
M, (A). O
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Now let X andD be as defined on page xi.

Lemma A.1.3. Any rightD X Og-module€ which is locally free of finite rank as
an Ox.s-module is locally projective ovel X Og.

Proof. In view of Lemma A.1.1 it suffices to show that for an algebraically closed
field k and a geometric point = (z, 5) € (X x.S)(k) the geometric fibré€ ® k(7)
is projective ove(D X Og) ® k(7).

In the case € X'(k) this algebra is an Azumaya algebra okend therefore
any module is projective. Otherwiseis concentrated in a closed point €
X \ X'. SinceD, C D, is a maximal order, the ordéD ® k)z C (D ® k)z IS
hereditary, which implie$€ ®o, k) is projective over this algebra. O

A.2 Complete homomorphisms forD (d = 2)

The functorH which to a ringR assigns the set of
(u,v,a) € End(R?) x End(R) x R

is representable by the 6-dimensional affine space bver

Let Q; C H be the locally closed subscheme where are invertible and
A%u = av, let Q be the schematic closure 0f in the open subset dff where
u, v do not vanish at any point, and & C (2 be the fibre inf{0} of the morphism
Q — A' which is given byo.

By [Laf98], Proposition 1.1 the subs@t(R) C End(R?) x End(R) is given
by the conditions that the cokernel ofis locally free of rankl and thatv is in-
vertible. When this holds, the natural isomorphisti? = Ker(u) ® Im(u) and
A?R? = Tm(u) ® Coker(u) allow to considew as an isomorphisny : Ker(u) =
Coker(u).

For a given Azumaya algebréd | R of rank4 let

QQA|R) CAXRXR

be the subset of elements, v, «) which étale locally via a trivialisation of4
become elements ¢i(R). The conditiona = 0 defines a subsét,(A| R) C
Q(A| R) which is naturally bijective to the set of pai(s, w) of the following
kind: the cokernel of left multiplication by € A is locally free overR of rank?2,
andw : Ker(u) = Coker(u) is an isomorphism of rightl-modules.

Definition A.2.1. Let 7(S) be the groupoid of collections?, I, £, &', u, v) with
— % invertible sheaf ort and! € T'(S, %),
— u: & — & homomorphism of locally fre® X Os-modules of rank,
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—v: Z®det(E) = det £ with det(u) =1 - v,
such that(u, v, 1) is locally in X’ x S an element of2(D X Og | Ox/«s) (after
trivialising . andé&, &').

Since the pairg.#, 1) are parametrised bg!/G,, we get a natural morphism
H — A'/G,,. LetH, be the fibre ove®,, /G,, andH, be the fibre ovef0}/G,,..
The two maps,; — Vects, given by€ or by £ are isomorphisms.

For any(.Z,0,&,E&,u,v) € Ho(S) the restriction ofCoker(u) to X’ x S is
locally free of rank2 over Oy s.

Definition A.2.2. We denote by, C #, the open substack whefgoker(u)
is locally free of rank2 over Oxs. In view of Lemma A.1.3, ther€oker(u),
Im(u), andKer(u) are locally projective ovePXOg. LetH C ‘H be the maximal
open substack satisfyirlg N Hy = Ho.

Lemma A.2.3. Letu : £ — & be a homomorphism of locally free X Og-
modules of ranKk such that its cokernel is locally free of ragkover Oy, 5. As
explained abovey defines an isomorphism

Hompro (Ker u, Coker u) = Homo,, ((det £, det &) (A.2.1)

over X’ x S. This extends to an isomorphism ovér S, which in both directions
carries isomorphisms to isomorphisms.

Proof. By Lemma A.1.3 the kernel and the cokernelwére locally inX x S
direct factors of fre@X Og-modules. Thugiompxo (Ker u, Coker u) is locally
a direct factor of a fre® y, s-module, i.e. both sides of (A.2.1) are locally free
Ox«s-modules. Becaus&’ and the finitely manypec O; for z € X \ X’ form
an fpgc-covering ofX, the assertion must be proved only o#&rX Oy for these
Z.

Let 251» D D; for ¢ = 1,2 be the two maximal orders, which are Azumaya
algebras. For anythere is a commutative diagram with exact rows:

00— & — & ®p, Dy — & ®p. Di/Ds — 0
0 > & > EL Qp, D, —> &L Qp, 751/7)5 — 0

Therefore on the open subsgtC S where the map is an isomorphism we have

Homp.xo. (Ker u, Coker u) = Homp.xo (Ker u’, Coker u)
= Homp go. (Keru', Coker u') = Hom(det £, det £')

98



where the last isomorphism is due to the fact tRats an Azumaya algebra.
It remains to show tha$ is covered byS; and.S;. For this we may assume

S = Spec k with an algebraically closed field. Using an isomorphism®; =
(% 9) and trivialisations of and of¢’, u can be represented by a matfix,. )
with a,b,¢,d € O; @ k. The defining conditions for the tws; are thenaz # 0
respectivelyd # 0 modulow,. Now a = 0 andd = 0 would imply bc # 0,
becauseoker(u) has rank in z. Then overD; @ k det(u) would be invertible,
contradicting the hypothesis thais not invertible in any point. ]

Corollary A.2.4. H, is naturally isomorphic to the stack 6, &, &', u, w) with
— Z invertible sheaf orf,
- u: & — & homomorphism of locally freP X Os-modules of rank,
— Coker(u) locally free of rank2 overOx s,
— w: % ® Ker(u) = Coker(u) asD K Og-modules. O

A.3 Smoothness ofH

Lemma A.3.1. Let€ andF be locally projectiveD X Os-modules of rank over
Oxxs. ThenHompro (€, F) is an invertibleOx . s-module, and fos € S we
have
1
0< (degfs —degé’s) — deg Homprog (£, F)s < 3 Z deg(x).

zeX\ X'

N —

Proof. Like in the proof of Lemma A.2.3 th& x, s-moduleHompxo, (€, F) is
locally free. Its rank can be seétale locally overX’ x S, whereD is trivialisable.
To prove the inequality we may assurfie= Spec k with an algebraically closed
field k.

Forz € (X \ X')(k) we haveD; = (.9, 3), from which we see that there
are embeddings of the completiofis C F; C @ '&; such that the second is
not an isomorphism. Ovex’, £ andF are locally isomorphic. Hence there are
embeddings

ECFRLCE() )
zeX\ X'
with some invertibleO . s-module ¥ such that the second embedding is not
bijective at any point over € X \ X’. We concludeHompro,(E,F) ® £ =
gndpg(gs (5) = Oxxs and thus

1
2
This number satisfies the asserted inequalities. H

(deg F — deg &) — deg Homp(E, F) = % (deg(F ® &) — deg€) .
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Definition A.3.2. For any integet let 1§ C H, be the open substack where the
inequality
2 - deg(Cokeru,) < deg& — C (A.3.1)

holds. LetH® C H be the maximal open substack satisfy§ N H, = H§'.

Since Corollary A.2.4 impliedeg (&) = deg(&L), inequality (A.3.1) is equivalent
to deg(Coker us) < deg(Imuy) — C.

Proposition A.3.3. For sufficiently largeC’ the morphism
HS — Vecty, x {0}/G,,
given by and.Z is smooth of relative dimension zero.

Proof. By Corollary A.2.4, the fibre of the morphism in question oM&r= Oy
and a giver€ is the groupoid of quotients : £ — F such thatF is locally
free of rank2 over Ox.s plus an extensiod — F — & — Ker(m) — 0 of
D X Og-modules. Sincer andKer(w) are locally projectiveD X Og-modules,
for any such extensiofi and&’ are locally isomorphic, which mead$is locally
free overD X Og.

The quotient€ — F as above are parametrised by a closed subsclieme
Quotg x5/, Which we claim is smooth oves. Let A be a local Artin ring of
finite type oveil, and letZ C A be an ideal wittZ = F,.. Locally in X, quotients
& — Fin @ can be lifted fromA/Z to A becauseF is locally projective over
D X Oy (lifting of idempotents). The obstruction to a global lifting lies in

H' (X ®F,, Hompgg, (Ker(m) ® F.F®1I)).

As a consequence of Lemma A.3.1, this cohomology vanishéssiKer(7r) —
deg F is sufficiently small. In that case the relative dimensioid)of- S is

n=dim H(X ® Fq,HomD@@q(Ker(ﬂ) @ F, F®1I).

Now we consider the extensions. In any c&s8,g,, . (Ker(w), F) vanishes, and
under the same condition on the degrees as bd{épe,*Hong@S(Ker(w), F)
vanishes as well, with, : X x S — S. In this case our stack of extensions is a
gerbe ovel with structure group, . Hompro, (Ker(r), F), which is a locally
free Og-module of rankn. O

Proposition A.3.4. For sufficiently largeC' the morphism
HY — Vecth, x A'/G,, (A.3.2)

given by€ and (., ) is smooth of relative dimension zero.
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Proof. Over G,,/G,, the morphism is an isomorphism. In view of Proposition
A.3.3 it remains to show that the morphism (A.3.2) is flat. This is equivalent to
H, € HC being dense. In fact, using smoothnesd/efty, this density implies
thatH§ < HC is a smooth divisor with smooth complement. Hence both sides of
(A.3.2) are smooth ovef,, and the dimension of the fibres is constantly zero.

We want to show that any giveR, = (&, &), uo,vo) € Ho(F,) can be ex-
tended to(.¥ = F,[t],l = t E,& u,v) € H(F,[t]), which means that even
H, C 'H is dense. Let4 F,[t ]/t”*1 We will construct extensions

En = (8117 57/17 Un, Un)

overX ® A, satisfyingdet(u,,) = t-v,, along with isomorphismg,, = E,, . 1®A,,.
Then there is alt = (£, &', u,v) over X ® F,[t] with £, = E ® A,. Together
with [ = ¢ this is the desired element 8f(F,[t]), because over the schematically
dense open subsat’ ® F,((t) c X’ @ F,[t] we have locally an element 6f; .
We also see that alt, lie in H(A,,), which might not have been clear a priori.

Locally in X ® F, there are isomorphisn® = F, & F, = &, with projec-
tive D X Os-modules?, and F; of rank2 over Oz such thatu, is the map
Eo—Fy — &;. Using the notation of Lemma A.3.5 below, this can be written as
up = (§9) andvg = 1 € Oy, = End(det&). We can lift 5, and F; to F,
andF;, such that their direct sum is free ovBr® A,,. Then for anyn, u, = (§ 9)
andv,, = 1 define one local liftinge,, of Ej.

Next we show that all local liftings of thig),, _; to A,, are isomorphic. Induc-
tively this implies that all local liftings off, to A,, are isomorphic and that any
such local lifting can be lifted further td,,, ;.

We write ], = u, + t"d andv], = v, + t"c with § € Hom(&, &) and
e € Hom(det &, det &)). Using Lemma A.3.5, the conditiotet v’ = ¢ - v/,
means that the restrictian: Ker(ug) — Coker(ug) vanishes, while no condition
is imposed orz. Since the map

End(&y) ® End(E)) — Ker(Hom(E, &) — Hom(Ker ug, Coker ug))
@ Hom(det &y, det &)

(ar, B) ¥ (uox + Bug, votr(ar) + tr(B)vo) (A.3.3)

is surjective, the local liftings are isomorphic as claimed.

Therefore any global extensidr), , of £, can locally be lifted further tol,,.
The sheaflC of the local automorphisms of these liftings is locally isomorphic
to the kernel of the map (A.3.3). The obstruction to the existence of a global
extension lies inf?(X, K) = 0. O

Lemma A.3.5. Let £ be a locally freeD X Ogs-module of rankl given over an
open subset/ C X x S, and let€ = F & F' be a decomposition such that
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both factors have rank overO;;. By Lemma A.3.%7 = Hompro,(F', F) and
L' = Hompgo,(F,F') are invertibleOy-modules.

Then using the natural isomorphisdsd(F) = Oxys = &nd(F'), the
composition of endomorphisms in both directions defines the same isomorphism
L L > Oxys(— ZX\X, x). In terms of the natural isomorphism

O, % b
Endproy(€) = < ,,Xgﬂs OXXS)’ e (Z d)

we have the formulaéet(u) = ad — be andtr(u) = a + d.

Proof. We may assum# is of finite type oveff,. SinceD can be trivialisectale
locally on X, the assertions must be proved only o&r® O, for z € X \ X’
and for a closed point € S.

There are precisely two isomorphism classes of proje@ienodules of rank
2 over O;. Because the direct sum &f = F/m,F and F' = F'/m,F'is
isomorphic toD;, F and F' are representatives of the two classes. Then by
Lemma A.1.2 the decompositiof = F @ F' is isomorphic toD; ® Og, =
F® 05, @ F' & Og,. Using an isomorphisr®; = (.9, $), for these modules
everything can be written down explicitly sindet andtr are compatible with the
embeddingD; C M5(Oz). O

A.4 Degenerations ofD-shtukas d = 2)

For any integern > 0 we have the stackht™ = Sht7) of D-shtukas with modi-
fications of lengthn and with zero and pole iX’. In the casen = 1 this is the
restriction of Lafforgue’s [Laf97] stack'ht}, to X’ x X' (here the superscrifit
denotes rank).

Definition A.4.1. LetC™(S) be the groupoid of .Z, 1, N v ] with
— % invertible sheaf ort and! € T'(S,.%),
- &,&, & locally freeD X Og-modules of rank,,
— 4, t modifications inlnj;™(S), cf. definition 1.2.3,
— u: €& — £ homomorphism oD X Og-modules,
—v: L7 @ det’€ 2 det £” with det(u) = 1971 - v,
such that(.Z* 1 1971, 7€ " u,v) € H(S). Moreover for any geometric point
5 € S we require that the,-linear endomorphism'tu of the generic fibre of;
iS not nilpotent.

There is a sequence of natural morphisms

C" — H — A'/G,,
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defined by(.£771, 1971 7€ " u,v) and by(.#,1). The inverse image d&,,/G,,
c A'/G,, in C™ is canonically isomorphic t8ht™. LetC;* C C™ be the inverse
image of{0} /G,,. For any intege€’ we denote by¢ C ¢ and byC;"“ C C}'
the inverse images 6{¢ C H.

Theorem A.4.2. For sufficiently largeC' the morphism
C™¢ — Cohft x Coh x A'/G,,
given by(&E'/E",E'/E, £, 1) is smooth of relative dimensiamn (= 2dm).

Proof. Let Hecke)' be the stack of £,1,€ — & «— &£",&" u,v] with (£ —
&'« &") like in Definition A.4.1 and £, 1971, " " u,v) € H™C(S). The
definition ofC"™¢ can be expressed by the 2-cartesian diagram:

cmC > Vect%)

J/ ] l(Frobq ,id)

5///’ g
Hecke)! BGLLINN Vecty, x Vecty,

By Proposition A.3.4 and Lemma 1.3.4 the morphishacke)' — Vects, x
Coh} x Cohfy x A'/G,, given by(E"”,E'/E" E'/E, £, 1) is smooth of relative
dimensiondm. Hence the assertion follows from Lemma 1.3.6 (its hypothesis that
« is representable is not essential for the conclusion of smoothness). [

For a given[ £,0,& — & « £",u,v] € Co(S) we setF” = Im(u) C £” and
F = Ker(u) C "€. These are locally projectiv® X Og-modules of rank over
Oxxs. Using Corollary A.2.4 we may viewas an isomorphisny : F® £t =
gl//f‘//.

Definition A.4.3. Let Sht]" C C7* andSht;"“ C €™ be the open substacks
where the following conditions are fulfilled.

— &'/F"is locally free of rank overOx s,

— the mapf — &'/F" is surjective.
Under these conditions we s&t = F” andF = £ N F'. LetSht™ C C™ and
Sht™¢ C €™ be the maximal open substacks which of@&}/G,,, coincide with
Sht™ or Shtg“, respectively.

Corollary A.4.4. For sufficiently largeC' the morphism
Sht™¢ — Cohm x Coh? x A'/G,,

given by(&'/E",E'/E, £, 1) is smooth of relative dimensiaimn.. O
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In Sht, the situation can be described by the following diagram with short exact
sequences in all columns.

~

F—— F —— 7 == %F

I 1 1 7

£ & ¢ €

l l l 1

E|F = &JF « &"|F" 7 £ F = F g gt

That the semilinear endomorphigim‘tu of the generic fibre of; is not nilpotent
meansF; N "F; = 0 in "E;. Thus there is an exact sequencédK Og-modules

0—FQF —"€6—K-—0 (A.4.1)

with an S-flat K with finite support ovelS. Considerations related to the degrees
imply that(p,). K has rankkm overOg. We obtain two D-shtukas of rank /2’
(F1s Frerg/F i F]
. _ : (A.4.2)
(E/Fel EE&Flol=2Fol"TE/FoL)]

along with isomorphism€oker j = Coker j;, Cokert = Coker t, andCoker t; ®
L1~ K ® L1~ Coker j,. In particulart; andj, are isomorphisms outsideg’.

Remark A.4.5. In t[\g casen = 1 the conditions in Definition A.4.3 are automat-
ically satisfied, i.eSht' = C'.

Proof. We may assumé& = Spec k with an algebraically closed field. Let
F' C & be the maximal submodule which generically coincides #ithc £,
and letF = £ N F'. If at least one of the conditions in Definition A.4.3 fails, we
have eithetF’ / F" = £'/E" or F = F', inany caseleg 7" < deg F. Considering
degrees we see th& @ "F = "€. This means that for the twP-shtukas of rank
1/2 defined analogously to (A.4.2) all cokernels are concentrated’ jrwhich
contradicts Lemma 1.4.4. O

Definition A.4.6. Let Sht!/%1/2:™(5) be the groupoid of diagrams
[A-Ls A TA]
[BoY 2 Be (B2
8 AJA="B/B
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on X x S with
— % invertible Og-module,
- A, A, B, B locally projectiveD X Og-modules of rank overOx s,
— J1, t1, J2, t2 injective D X Og-homomorphisms witly-flat quotient,
— g isomorphism ofD X Og-modules,

such thatj,; andt, are isomorphisms outsid€’ andp, .(.A’/A) has rank over
Ogs. (Then the same holds for the other three quotients.)

Proposition A.4.7. The morphism
Shtz — Sht(/21/2m

given by the constructiofA.4.2) is finite, surjective and radiciaISNhtg is the in-
verse image of the open substackbif(!/%/2™ which is defined by the condition
deg A’ > degB' + C.

Proof. For an object oBAh/tg" the exact sequence (A.4.1) implies another exact

sequence
0—>TE—>TE/TF@TE/]?£>K—>O.

Let an object ofSht!/>!/2™(§) be given. For any inverse image ft;" we
haveK = A'/"A = "B/B’ and

T / T (1,-1)

€= Ker(A' & B ——= K)

F=B C™BCE (A.4.3)

TE—=TA C ./4./ C €

Now we defineF and™F C "€ by (A.4.3) and claim thaf is locally free over
DX Og. Over X’ x S anyD K Og-module which ovelOx s is locally free

of rank4 is locally free. By [Laf97] I.2, Lemma 4 (or Lemma A.1.2 above) the
claim remains to be proved ové, ® k(5) for » € X \ X’ and for a geometric
point3 € S. We may assumeé(s) = F,. Since’¢ is an extension of4’ and
Ker("B — K) = B, itis isomorphic to the direct sum of these projective modules
and the claim follows from Lemma A.4.8 below.

Let Vectg ? be the stack of locally projectiv® X Og-modules of rank over
Oxxs and IetVéEt%D be the stack of locally fre® X Og-modules of rankl
equipped with a quotient iWectgz. The possible choices oF C £ are given
by the fibre of the finite surjective and radicial morphism
1/2

. Tl T 1 1/2
(Frob,,id) : Vecty, — Vectp X Vet x Vet Froby xFrob, Vectp ™ x Vecty
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over (€ — €/)7F, A, B). After this choice the remaining data of an object of
th/tgl can be reconstructed uniquely and without obstructions: we fave(€ ©

A’) /A with the submodule” = A’ and&” = Ker(£' — B/(B' @ £7 1)) with
the submoduler” = F’. Moreover the definitions give natural isomorphisms
C)F=A=F"andl"|F" =B @ L7 = Fo L1 O
Lemma A.4.8. For somer € X \ X' let (V,,¢,,i,) for v = 1,2 be Dieudon-

né-D,-modules of rank over F,, and letM, c V, be twoi_)w-_lattices with
p1 My, C My, and My C ¢, M,, along with an isomorphism of righ?,.-modules

M, /o1 My = oMy /M, . (A.4.4)
Then theD,-moduleM; & M, is free of rankl.

Proof. We begin with a few general remarks. For any geometric poiover x
there are precisely two isomorphism classes of projed@venodulesM of F;-
dimension2. For every integek > 0, any such module has a unique quotient
M —» Mj, of F,-dimensionk. In the case: > 0 the isomorphism class af/;,
determines the class 8f. We haveM = Ker(M — M) if and only if & is even.
The direct sum of two projectiv®z-modules withF;-Dimension2 is free if and
only if the two factors are not isomorphic.

Letr = deg(x). According to the various embeddingér) C F, overF, we

have decompositior€, = V.V @ ... @ V" andM, = MV @ ... @ ML with

gp,(j) VY S v The isomorphism (A.4.4) decomposes into the direct sum of

M Joy MEY 22 oo MY /M) (A.4.5)

fori=1...r.
The quotient (A.4.4) cannot be zero because in that case both Dieedynn
modules would be trivial, i.e. their dimension would be divisibletbgontradict-

ing the assumption. Hence at least one of the quotiﬁﬁ(fé/golMl(i_l) IS non-
zero. Using the initial remarks the corresponding isomorphism (A.4.5) implies
MY 2 M. This impliesg; MY % 0, M, and in view of the next isomor-
phism (A.4.5) we geps{"™ 2 Vi etc. Hence alv”) & ML are free of rank

1 overD;. ]

A.5 Existence of degenerat@®-shtukas d = 2)
Proposition A.5.1. For a fixed integern > 0 the following conditions are equiv-
alent:

(1) The groupoicBAHtgl(IF‘q) IS nonempty.

(2) For all C the groupoidSht;"“ (F,) is nonempty.

(3) The division algebra is ramified in at mos2m places.
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Proof. Because of Proposition A.4.7 we can replace (1) and (2) by the following
conditions.

(1) The groupoidSht!/%/2™(F ) is nonempty.

(2) ForallC there are objects igiht"/*!/?"(F,) with deg A’ > deg B'+C.
Since for anyr € X \ X’ the F,-rank of any trivial Dieudone-D,-module is
a multiple of4, for any diagram A — A" «— "A] on X ® F, satisfying the
conditions in Definition A.4.6 the support of /"4 must cover all points oX \
X'. This means (3=-(3), and it remains to show (3)(2).

We will first construct the generic fibres of the desifeshtukas with rank
1/2 and then show that there are appropriate lattices in their localisations.

We choosdl € F* ® Q = Div’(F) ® Q such that

deg, (IT) = 1/2 forx e X\ X/,
deg,(IT) € Z< forxz e X'.

Let (V,p,i) be the simple(D, p)-space with associateH-pair (F,1I) and let
(V',¢',i") be the simplé D, p)-space with associatdd-pair (F,I1-!). By Corol-
lary 6.2.3 both of them have rarkover F. We want to find two adelic families
of D,-latticesM, C V, andM’ C V! with the following properties.

In the caseleg, (IT) = 0 (which impliesz € X’) we demandV/,, = ¢, M,
and M. = ¢/ M.. Such lattices exist becaus¥,, ¢.) and (V/, ¢’ ) are trivial
Dieudonré modules by Proposition 6.2.7.

Forz € X’ with deg, (II) < 0 we demandV/,, C ¢, M, and M, D ¢/ M.
This is possible, becaus®’,, ¢.,i.) (respectively(V., ¢ ,i.)) is Morita equiv-
alent to a DieudongF,-module of rankl with negative (respectively positive)
slope.

Forz € X \ X', thusdeg, (II) = 1/2, we consider only lattices such that,
andp, M, (respectivelyM andy!, M) differ only in one fixed geometric point
overz. For any two such lattices Wi, (or in V) always one of them contains the
other. SinceV,, ¢.) (respectively(V/, ©.)) is the simple Dieudor&F,.-module
with slopel /2 (respectively-1/2), it follows M, D ¢, M, andM, C ! M with
quotients of dimension overF,. Changing)/, we can obtain fod\Z, /¢, M, any
of the two isomorphism classes f;-modules with dimensiort over F,. In
particular, M, /p. M, = ¢! M! /M. is possible.

Let A and B be the locally projectivéd ® F,-modules which are defined by
the latticesM, C V, andM, C V,. We fix a pointr € X’. Outsider we define
A = A+7AandB’ = BN B, and we choose

A, D7A (D A), B, CTB.(CB,)
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with A’ /"A, = B, /B, such thatd’/ A has dimensiom overF,. This is pos-
sible because of condition (3). Twisting with a line bundle makegsA’ arbitrary
large. m

Theorem A.5.2. In the casel = 2 the natural morphism
Sht"™ /a” — X'™) x X'(m)
is proper if and only ifD is ramified in more tha?m places.

Proof. It has been proved in Proposition 1.5.2 that ramification in more 2han
places implies properness. Our morphism factors as

T Sh’cm/aZ é SAHtm’C/aZ T, Xm) ¢ xr(m)

wherei is an open immersion which is dense for sufficiently latgéy Corol-
lary A.4.4. By Proposition A.5.15 is not an isomorphism iD is ramified in at
most2m places. However, this does not yet complete the proof becauskin
general not be separated.

We want to show that the valuative criterion for properness is not satisfied
for the morphismr and freely use the notation of the proof of Proposition 1.5.2.
In particular, A is a complete discrete valuation ring with quotient fiédddand
residue fieldk. The properties ot imply that for a suitable suchl there is a
D-shtuka overK with a degenerate extension th This corresponds to @-
stable latticel/; in the generic fibré” of the givenD-shtuka such that the map
@ : ™My ® k — M; ® k is neither nilpotent nor an isomorphism.

Suppose the valuative criterion for properness holdsrfoil his means that
after a finite extension ofl there is a non-degenerafeshtukal & — &' « €]
on X ® A extending the one given ovéf. This corresponds to @-stable lattice
My C V such thatp : "My ® k — My ® k is an isomorphism. The image of the
natural mapM; — M, ® k is a¢-stable subspac& with 0 # N # M, ® k,
which determines a diagram of maxinfal® k-submodules

(F—>F «"F] C [EQk—E@k—TEQK]

The quotientsF’/F C (£'/€) ® kandF'/7F C (£'/°€) @ k are then supported
in X’ ® k, which is impossible in view of Lemma 1.4.4. O

Remark A.5.3. Similarly one can prove that the natural morphism
Shtm/az N HX’(lmil)

is proper if and only ifD is ramified in more thald |m;| places and thatht=* /a”
is proper overX if and only if D is ramified in more tha - > (\;, p) places
(we are still in the casé = 2).
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