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Introduction

The aim of this work is to study the gluing of several metric measure spaces

(Mi, di, µi) for i = 1, . . . , k where on each of them a strongly local, regular Dirichlet

form (Ei, D(Ei)) is defined. Additionally, each space satisfies a doubling property

(or is Ahlfors-regular) and a strong scaling invariant Poincaré inequality for all balls

holds. The glued space is denoted by (M, d, µ) and the new strongly local regular

Dirichlet form by (E , D(E)). We start with k = 2 but all conditions and results are

well suited so that the gluing can be extended to the case of gluing k metric measure

spaces Mi along gluing sets Ai in an iterative procedure. Our main goal is to derive

the doubling property for the measure µ and the metric

ρ(x, y) := sup{u(x)− u(y) : u ∈ Dloc(E) ∩ C(M), dΓ(u) ≤ dµ}

and the scaling invariant Poincaré inequality on the glued space M , i.e. there exists

a constant c > 0 such that for all balls B(x, r) := {y ∈ M : ρ(x, y) < r} and for all

u ∈ D(E)

∫

B(x,r)

|u− uB(x,r)|2dµ ≤ c · r2

∫

B(x,r)

dΓ(u). (1)

holds. Here dΓ denotes the energy measure of the Dirichlet form E . For that

only assumptions on the Dirichlet forms (Ei, D(Ei)) and on the separate pieces Mi,

(i = 1, . . . , k) shall be used.

The crucial motivation for this goal is a series of papers by K.-T. Sturm [St96],

[St95b], M. Biroli, N.A. Tchou [BT97], M. Biroli, U. Mosco [BM95a], [BM95b] and

a paper by Ramirez [Ra01] where many important applications for strongly local

regular Dirichlet forms, the associated processes and the heat kernel are proved,

provided the doubling property and a scale invariant Poincaré inequality hold true.
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4 Introduction

We succeeded to prove (1) provided a lower bound c 1
r2 on the ”heat transmission

coefficient”

νi(Bi, N) := inf

{ ∫
Bi

dΓi(u)∫
Bi
|u|2dµi

: u ∈ D(Ei), ũ|N∩Bi
= 0, u|Bi

6= 0

}
(2)

for certain sets Bi centered at A and certain sets N ⊂ A ∩ Bi holds true. Some

other assumptions have to be made in order to get doubling which in turn we need to

prove (1). Further conditions are discussed briefly below where we give an overview

of the chapters.

In Chapter 1 an intrinsic metric d is constructed on M = M1 ∪A M2 in a canonical

way (cf. [BBI01]) as the length of the shortest continuous path between two points

w.r.t. the local metrics d1 and d2 taking into account that the gluing sets A1 ⊂ M1

and A2 ⊂ M2 are identified via an equivalence relation R. Here the equivalence

relation R comes from a bijective gluing map Φ : A1 7→ A2, i.e.

x ∼R y :⇔ Φ(x) = y,

and the gluing set is denoted by A ⊂ M . In order to avoid collapsing phenomena, for

instance to keep the doubling property or to ensure that the new topology τ induced

by d coincides with the topology τR coming from the topological identification, we

choose Φ to be bilipschitz at least. With this we prove the comparability of the

metrics di and d on the original pieces Mi in Section 1.2. The consistency of the new

topology τ induced by d with the original topologies τi (i.e. ∀ O ∈ τ : O ∩Mi ∈ τi)

is proved in Section 1.4. In Section 1.5 we define the glued measure µ as

µ(B) := µ1(B ∩M1) + µ2(B ∩M2)− µ1(B ∩ A)

provided the measures µ1 and µ2 are consistent on the gluing set A. We prove that

if the original measures are positive Radon measures µ is a positive Radon measure

too. Given the doubling property on Mi we show in Section 1.6 that doubling holds

on M if a ”dimension homogeneity condition” is satisfied. This in particular is true

for Ahlfors regular spaces. The extension to glue k spaces is discussed in more de-

tail in Section 1.7. To illustrate our results we present several examples of gluing

constructions in Section 1.8. Special cases of the gluing map Φ are treated briefly

in Section 1.3.

In Chapter 2 we define the glued Dirichlet form (E , D(E)) given a consistency con-

dition in a canonical way, i.e.

E(u) :=

∫

M1

dΓ1(u, u) +

∫

M2

dΓ2(u, u)−
∫

A

dΓ1(u, u)



Introduction 5

∀ u ∈ CLip
0 (M) while dΓi is the energy measure of the Dirichlet form Ei. We

show in Section 2.1 that starting with two strongly local regular Dirichlet forms

(E1, D(E1)) and (E2, D(E2)) on M1 and M2 we get a strongly local regular Dirichlet

form (E , D(E)) as the closure of CLip
0 (M) w.r.t. E1(·) :=

(E(·) + || · ||L2(M,µ)

)
on

the glued space M . This procedure can then be easily extended to glue k Dirichlet

forms. In Section 2.2 we describe some possible gluing constructions of Dirichlet

forms. In particular we show that glued spaces appear as the limit of converging

spaces, as spiders for example in [Bo04]. Furthermore, the behavior of the associated

diffusion Xt after hitting the gluing set A is discussed. Namely in glued graphs (or

2-dimensional Euclidean complexes) the process (Xt, Px) with x ∈ A will in some

sense leave the set A in each direction with equal probability. Here A will be the set

of vertices (or edges). In weighted graphs the process will leave A in each edge with

the proportional probability of its weight. With Section 2.3 we close the chapter

giving a proof of the comparability of the metrics d and ρ on M provided di and ρi

are comparable on Mi.

The idea to prove the main result of this work in Chapter 3 is to reformulate the

Poincaré inequality (1) as a lower bound for the spectral gap, i.e. to show that there

exists a constant c > 0 such that∫
B(x,r)

dΓ(u)∫
B(x,r)

|u|2dµ
≥ c

r2
(3)

holds for all functions u ∈ D(E) with u 6= 0 and

uB(x,r) =
1

B(x, r)

∫

B(x,r)

u dµ = 0.

This in turn can be reduced to a lower bound of the heat transmission coefficient

(2) on the separated pieces Mi for i = 1, . . . , k. For simplicity we start the technical

proof with k = 2 and extend the result to general k in 3.1.3. In Section 3.2 we

discuss two special cases of gluing which essentially simplifies the proof. Namely if

the gluing set A is locally large enough, i.e. there exist constants ci > 0 such that

∀ x ∈ A, r > 0

µi(Bi(x, r) ∩ A) ≥ ciµi(Bi(x, r))

holds on Mi we can prove the scale invariant Poincaré inequality without using

(2). Further in the case of isometric gluing maps Φ our condition on the heat

transmission coefficient simplifies significantly. Section 3.3 provides examples in the

n-dimensional Euclidean setting, i.e. we check condition (2) for special gluing sets
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A ⊂ Rn. This lower bounds can be achieved by a rescaling argument with the

results of Denzler [De99a], [De99b] who gives lower bounds for the spectral gap on

domains with mixed Neumann-Dirichlet boundary condition.

For applications or consequences of this work we cite and discuss the results in

[St95b], [St96] or [Ra01] in Chapter 4. First, our glued strongly local regular Dirich-

let form E on M determines a diffusion (Xt, Px). As mentioned above with the

doubling property and the Poincaré inequality we get Harnack inequalites and with

this by Moser iteration the Hölder continuity of solutions of (L− ∂
∂t

)u = 0 while L

is the associated operator to E . A direct consequence is that (Xt, Px) can be chosen

to be a Feller process (cf. Section 4.4). Other consequences are upper and lower

Gaussian estimates for the transition probabilities of the associated process which in

turn implies that the diffusion Xt crosses the gluing set A in finite time with positive

probability. This together with the results from [Ra01] is used to demonstrate in

Section 4.5 that the short time asymptotic for the heat kernel, i.e.

lim
t→0

2t log pt(x, y) = −ρ2(x, y)

is true on our glued space provided one additional condition holds, namely that our

Dirichlet form admits a carré du champ operator.

The last chapter treats a slightly different subject. There some generalizations of

results by Amick [Am78] are derived. In [Am78] characterizations of the validity of

the Poincaré inequality and of Rellichs compact embedding theorem on a domain

Ω ⊂ Rn in terms of the quantity

ΓΩ(ε) := sup
u∈W 1

2 (Ω)

∫
Ωε
|u|2

|u|2
W 1

2 (Ω)

with Ωε := {x ∈ Ω : d(x, ∂Ω) < ε} are given. Since ΓΩ(ε) is in (0, 1] for all ε > 0

and monotone in ε we can define

ΓΩ(0) := lim
ε→0

ΓΩ(ε).

Amick proved that ΓΩ(0) = 0 is equivalent with the compactness of the embedding

iΩ : W 1
2 (Ω) ↪→ L2(Ω) and ΓΩ(0) < 1 is equivalent with the Poincaré inequality
∫

Ω

|u− uΩ|2 ≤ const.

∫

Ω

|∇u|2

for all u ∈ W 1
2 (Ω). With help of an idea by Biroli and Tchou [BT97] we prove

characterizations of this kind for strongly local regular Dirichlet forms on metric
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measure spaces which satisfy a scaling invariant Poincaré inequality for balls inside

Ω.

Now we want to mention some similar results in the literature. In [EF01] Eells and

Fuglede derive a scaling invariant Poincaré inequality on Riemannian polyhedra for

the canonical Dirichlet form coming from the canonical Dirichlet form E(u, v) =∫ ∇u∇vdx on the single simplices. For that they make heavily use of the Euclidean

structure. Contrary to [EF01] in this work a priori no Euclidean structure is required.

Heinonen and Koskela [HeK98] prove a Poincaré inequality in the upper gradient

framework (see for instance [He01], [HK00]) for glued spaces provided a Poincaré

inequality holds on the original spaces Mi. They consider an isometric gluing map

which makes the construction of the new metric d easier. We discuss this special

case for our framework in Section 3.2.2. Further, their results require the stronger

Ahlfors regularity of the original spaces, i.e. there exist constants ci > 0 and n ∈ N

such that for all balls Bi(x, r) in Mi it holds that

c−1
i rn ≤ µi(Bi(x, r)) ≤ cir

n

while for our proofs only the doubling property is necessary.

Remark:

Several metrics appear in this work, the basic intrinsic metrics di and d on the

original spaces Mi and the glued space M as well as the intrinsic metrics ρi and ρ

coming from the original Dirichlet forms Ei and the glued Dirichlet form E . The

gluing proceeds by the basic metrics but since we assume comparability of the met-

rics di and ρi and prove the comparability of d and ρ we can often switch between

the two metrics. If not explicitly stated it should be clear from the context which

metric is meant.



Chapter 1

Gluing of Metric Measure Spaces

In this chapter the basic notions are defined and a framework for gluing metric

measure spaces will be developed. In particular the question of consistency for our

gluing procedure will be treated. That means the comparability of the metric on the

glued space with that of the original space. This, in consequence, will ensure that

open, closed or compact sets on the glued space will be open, closed or compact when

projected on the original spaces. This would still be true for the case of collapsing

because only the fact that the new intrinsic metric on the glued space d becomes

smaller compared with the old intrinsic metrics di on Mi is necessary. However we

do not consider collapsing phenomena in this work. Our gluing conditions yield

comparability of the metrics. To treat non-bilipschitz gluing maps, that means

collapsing is allowed, one had to think of a proper definition of the new Dirichlet

form and the measure defined on the glued space. This definition would not be

unique. Further Lipschitz continuous functions on the glued space will be Lipschitz

when considered on the original space with respect to the old metrics. For the gluing

of positive Radon measures, provided they are consistent on the gluing set, we have

mainly to check the inner regularity which is done in Theorem 1.28. At the end of

this chapter we will state conditions to transfer a given doubling property of the

original measures µ1 and µ2 on M1 and M2 to the glued measure µ on M and we

will extend the gluing procedure in order to glue together k metric measure spaces

M1, . . . , Mk. Some examples to illustrate the results will finish this chapter.

1.1 Gluing of Metric Spaces

In order to glue a finite number k of metric spaces together along a subset by certain

equivalence relations one has to specify in which manner the equivalence relations

8



Gluing of Metric Measure Spaces 9

and the new metric shall be defined. Before we come to the gluing procedure we

need the following (cf. [BBI01]) :

Definition 1.1 (Induced Intrinsic Metric, Length Space) Let (M, d) be a met-

ric space and d̂ the new metric, defined in the following way:

d̂(x, y) := inf{L(γ) : γ : [a, b] → M, γ ∈ C([a, b] ,M), γ(a) = x, γ(b) = y}

while L(γ) is the length of the continuous path γ w.r.t. the old metric d i.e.

L(γ) := sup
N∑

i=1

d(γ(yi−1), γ(yi))

while the supremum is taken over all partitions of [a, b], that is a finite collection

of points {y0, . . . , yN} such that a = y0 ≤ y1 ≤ . . . ≤ yN = b. Then d̂ is called

the intrinsic metric or length metric w.r.t. the length structure on M given by the

continuous paths on (M,d) and the new metric space (M, d̂) is called a length space.

If for each x, y ∈ M there exists a shortest path γ connecting x and y the length

space M is called strictly intrinsic.

An intrinsic metric on length spaces is generally defined w.r.t. a length structure,

i.e. a set of admissible paths P in the set M with a given structure like closedness

under restrictions, concatenations, reparametrizations and a map L : P 7→ R+ ∪∞
which gives the length of a path and satisfies certain properties like additivity,

continuity and invariance under reparametrizations. Here the set of admissible paths

will consist of all continuous paths in a given metric space (M, d) and the length

measure L : P 7→ R+ ∪∞ will be defined as above.

One can imagine an animal living on the ground going from A to B and a bird

moving in the air. The animal has another intrinsic metric then the bird since the

bird can fly straight lines while the animal on the ground has to go round obstacles

and therefore has not so many admissible paths. So the distance will be greater

than that of the bird.

Remark 1.2 (Intrinsic Metric) Since the operation d → d̂ is idempotent and the

set of admissible paths is fixed there is only one intrinsic metric d̂ on M w.r.t. d.

In the following we start with k = 2 to simplify the setting and we will extend

it later to a general k ∈ N. So let (M1, d1) and (M2, d2) be two complete locally

compact separable length spaces.
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For gluing two different metric spaces we first need some kind of identification of

the gluing parts. Since we want to prevent collapsing we have to use a bilipschitz

bijection Φ : A1 7→ A2 while Ai ⊂ Mi for i = 1, 2, i.e.

1

Lip Φ
d1(x, y) ≤ d2(Φ(x), Φ(y)) ≤ Lip Φ d1(x, y),

with Lip Φ > 0 the Lipschitz constant. There are several possibilities for such a map

Φ which we will describe at the end of this section. To explain the gluing procedure

we need one more definition:

Definition 1.3 (Quotient Semi-Metric) Let (M, d) be a metric space and R an

equivalence relation on M . Then the quotient semi-metric dR is defined as:

dR(x, y) := inf{
k∑

i=1

d(pi, qi), p1 = x, qk = y, k ∈ N}

while the infimum is taken over all choices {pi}, {qi} such that qi is R-equivalent to

pi+1, for all i = 1, . . . , k − 1.

The gluing procedure (see Fig.1.1) now divides into three steps (cf. [BBI01]):

Definition 1.4 (Gluing)

• The first step is to take the disjoint union M := M1∪̇M2. This is a metric

space and the metric is defined in the following way:

d(x, y) :=





di(x, y) if x, y ∈ Mi,

∞ otherwise.

• The second step is to define a semi metric dR which uses the (bilipschitz)

bijection Φ : A1 7→ A2 on M to define an equivalence relation in the following

way:

x ∼R y :⇔ Φ(x) = y.

• In the end to get a real metric we have to pass from the semi-metric space

(M, dR) to the quotient metric space (M/dR, dR) which is a metric space. One

gets the resulting space by gluing along the relation R.
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M

M 2

1

A

A 2

1

Φ

Figure 1.1: Bilipschitz gluing map Φ : A1 → A2

Remark 1.5

• (M/dR, dR) is a length space (cf. [BBI01]).

• The sets Ai will be closed because in the gluing procedure all points with zero

distance in the new metric will be identified, s.t. there is no difference taking

a set Ai or the closure of this set.

In order to clarify the notations that we will use later on, we briefly give a formal

explanation. For i = 1, 2 consider the canonical projection

π : M1∪̇M2 → M/dR with π(x) = R(x)

while R(x) is the equivalence class of x in M/dR. In the following we often use

A := π(A1) = π(A2) instead of Ai and we use Mi as the subset π(Mi) in M/dR.

What exactly is meant should be obvious from the context. Consequently we denote

our new glued space as M1 ∪A M2 and say ’M1 and M2 are glued along the closed

set A’. Further the new intrinsic metric dR will be denoted by d.

Remark 1.6 Note that di and d coincides locally on Mi \ A, that means for each

x ∈ Mi \ Ai ⊂ M1 ∪A M2 there exists an r > 0, s.t. di|Br(x) = d|Br(x).

The next lemma fixes what was laxly written above:

Lemma 1.7 The gluing set A ⊂ M is closed w.r.t. the topology induced by the new

metric d on M .

Proof: The set Mi \ A = Mi \ Ai is open in the old topology of Mi. Therefore,

for each x ∈ Mi \ Ai there exist balls B(x, ε) ⊂ Mi \ Ai. Since d and di coincide
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M

M1

2

y

x

A

γ
xy
n

Figure 1.2: Possible distance approximating curves γn
xy between x and y

locally on Mi \Ai it holds that Bi(x, ε) = B(x, ε). Hence Mi \Ai is open in M , s.t.

A = ((M1 ∪M2) \ A)c = ((M1 \ A) ∪ (M2 \ A))c is closed.

1.2 Comparability

In the following section we will show that under our gluing condition, that Φ is

bilipschitz, the metrics di and d are comparable on Mi. This is essential for our

main results. In the following we mean by d1 ∼ d2 on B that the distances d1, d2

are comparable on the set B, i.e.

∃ c > 0 : ∀x, y ∈ B :
1

c
d1(x, y) ≤ d2(x, y) ≤ c d1(x, y)

holds. Intuitively this might be clear but by gluing not isometrically it can happen

that the approximating curves in M cross the gluing set A several times or even

infinitely often.

Lemma 1.8 (Comparability) Let M := M1 ∪A M2 be the metric space glued to-

gether by the two metric spaces M1, M2 along the closed subset A. If Φ is the

bilipschitz gluing map between A1 and A2 then:

di ∼ d on Mi.

for i = 1, 2 holds.
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Proof: We have to show the existence of c > 0, s.t. 1
c

di(x, y) ≤ d(x, y) ≤
c di(x, y), ∀ x, y ∈ Mi and for i = 1, 2. The second inequality is obvious, since

by the construction of the new intrinsic metric, d(x, y) ≤ di(x, y) holds on Mi for

i = 1, 2.

For the first inequality we switch shortly to the old notation, s.t. the glued metric

d becomes dR and d is the ’first step’ metric of the gluing procedure. We consider

the definition of the semi-metric

dR(x, y) := inf{
k∑

i=1

d(pi, qi), p1 = x, qk = y, k ∈ N}

while

d(x, y) :=





di(x, y) if x, y ∈ Mi,

∞ otherwise,

and qi is R-equivalent to pi+1 with x ∼R y :⇔ Φ(x) = y. Let {pn
i }i=1,...,kn ,

{qn
i }i=1,...,kn be minimizing sequences for kn ∈ N with pn

1 = x and qn
kn

= y such

that

kn∑
i=1

d(pn
i , qn

i ) → dR(x, y) for n →∞.

To be precise, if x or y are in the set A we take the projection to M1 or M2, s.t. x

and y are in the same Mi. W.l.o.g. let x, y ∈ M1. Let N ∈ N be large enough, s.t.

the sum is finite for all n ≥ N . For all n ≥ N we have to show that ∃c > 0:

kn∑
i=1

d(pn
i , qn

i ) ≥ 1

c
d1(x, y). (1.1)

Then, by taking the limit, the proof is finished.

We consider two cases:

1. All qn
i and pn

i are in M1. Then (1.1) is obvious since by definition d(pn
i , q

n
i ) =

d1(p
n
i , qn

i ) holds and d1 is intrinsic.

2. If some qn
i , pn

i are elements of M2, we compare these excursions into M2 with the

metric d1. Since we start in M1 let pn
i∗ ∈ M2 be the first element in M2. Now define

S1 := i∗

F1 := min{i ≥ S1 : pn
i+1 ∈ M1}.
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This means that all elements between pn
S1

and qn
F1

are in M2 because otherwise there

would be a jump, s.t. pn
j ∈ M2 and qn

j ∈ M1 and therefore d(pn
j , qn

j ) = ∞ which is a

contradiction. Further define

Si+1 := min{j > Fi : pn
j ∈ M2}

Fi+1 := min{j ≥ Si+1 : pn
j+1 ∈ M1},

until there is only an empty set to take the minimum of. Let Sln , Fln for ln ∈ N be

the last excursion into M2. Since the sum is finite we know that pn
Si

, qn
Fi
∈ A2 and

all elements in between are in M2. Therefore, we get the following estimate

Fj∑
i=Sj

d(pn
i , qn

i ) =

Fj∑
i=Sj

d2(p
n
i , qn

i )

≥ d2(p
n
Sj

, qn
Fj

)

by the definition of d and the triangle inequality for d2. Furthermore we know that

Φ(qn
Sj−1) = pn

Sj
and Φ(pn

Fj+1) = qn
Fj

holds. This enables us to compare d2(p
n
Sj

, qn
Fj

)

with d1(q
n
Si−1, p

n
Fj+1) via the bilipschitz gluing map Φ. This yields

d2(p
n
Sj

, qn
Fj

) ≥ 1

Lip Φ
d1(q

n
Si−1, p

n
Fj+1).

Hence we get

kn∑
i=1

d(pn
i , q

n
i ) ≥ 1

Lip Φ

ln∑
j=1

d1(q
n
Sj−1, p

n
Fj+1)

+
ln∑

j=2

d1(p
n
F(j−1)+1, q

n
Sj−1) + d1(p

n
1 , q

n
S1

) + d1(p
n
Fln

, qn
kn

)

≥ 1

Lip Φ
d1(x, y)

because of the triangle inequality for d1 and 1
Lip Φ

< 1.

As an important consequence of the comparability of the distances the balls in the

new and the old metric are in some sense comparable too. Let

B(x,R) := {y ∈ M : d(x, y) < R}
and

Bi(x,R) := {y ∈ Mi : di(x, y) < R},
for i = 1, 2. Then the next lemma is true:
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Lemma 1.9 Together with the same assumptions as in the previous lemma the

following relation holds ∀ x ∈ M :

(i) Bi(x,R) ⊂ B(x,R) ∀ x ∈ Mi ∀i = 1, 2

and there exists a constant c > 0 s.t.:

(ii) B(x,R) ⊂ Bi(x, cR) ∪Bj(z, 2cR) ∀x ∈ Mi ∀i = 1, 2 while i 6= j

and z ∈ B(x,R) ∩Mj. If B(x,R) ∩Mj = ∅ the last term vanishes.

Proof: (i) The first inclusion is trivial since d(x, y) ≤ di(x, y), ∀x, y ∈ Mi, ∀i = 1, 2

holds.

(ii) For the second one we need the last lemma. W.l.o.g. x ∈ M1\A. If B(x,R) ⊂ M1

then B(x,R) = B1(x,R) and the last term vanishes since the metrics d, d1 coincide

locally on M1. If B(x,R) ∩M2 6= ∅ then:

B(x,R) ∩M1 ⊂ B1(x, cR)

since di(x, y) ≤ c d(x, y) and therefore:

B(x,R) ∩M1 = {y ∈ M1 : d(x, y) < R}
⊂ {y ∈ M1 : d1(x, y) < cR}
= B1(x, cR)

For the set B(x,R) ∩M2 just take a point z ∈ B(x, R) ∩M2, then:

B(x,R) ∩M2 ⊂ B2(z, 2cR)

since d2(x, y) ≤ c d(x, y) and therefore:

B(x,R) ∩M2 = {y ∈ M2 : d(x, y) < R}
⊂ {y ∈ M2 : d2(z, y) < 2cR}
= B2(z, 2cR)

because d(x, y) < R and d(x, z) < R so that d2(z, y) ≤ c d(z, y) ≤ c d(z, x) +

c d(x, y) < 2cR.

The result of the last lemma is fundamental for our setting. Property 1.9 (i) is just

a trivial consequence of the gluing procedure but implies that open, closed sets on

M are open, closed when projected on the original spaces Mi. For property 1.9 (ii)

the bilipschitz gluing map is necessary. It is needed to prove completeness in Section

1.4 or the Poincaré inequality in Chapter 3. If collapsing is allowed property 1.9 (ii)

does not necessarily hold. More on that in Section 1.4.
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Remark 1.10 At the end of this section we want to demonstrate that in some cases

it is also possible to start with a non-intrinsic metric. Let G ⊂ Rn be a Lipschitz

domain cut out of (Rn, deucl) while deucl is the Euclidean metric. Then in order

to stay in our setting one has to ensure that the intrinsic metric dG coming from

the Euclidean metric deucl and all continuous paths lying in G is at least locally

comparable to deucl in G. Since deucl|G ≤ dG holds, one has to take care for the

other direction. But the Lipschitz boundary ∂G locally admits only shortest paths

in G which are not longer than the length of paths in Rn with the same start- and

endpoints times the Lipschitz constant L. Therefore, the other direction holds true

locally.

1.3 Particular Cases of Gluing

We will now briefly discuss two particular cases of gluing maps Φ where it is easy

to verify that Φ is bilipschitz:

First let Φ be an isometry between (A1, d1) and (A2, d2). Then

di(x, y) = d(x, y) (1.2)

holds true for all x, y ∈ Mi and i = 1, 2. The reason is as follows. W.l.o.g. let

x, y ∈ M1. Take a shortest path γ w.r.t. the metric d which connects x and y lying

in M (this shortest path exists as we will see in Section 1.4, since M is complete and

locally compact and therefore strictly intrinsic, cf. [BBI01]). If γ lies completely in

M1 equality (1.2) holds clearly true since di ≥ d and the length of γ w.r.t. di is the

same as the length w.r.t. d. If γ has excursions lying in M \M1, say γ(t) ∈ M \M1,

let

p := sup{s < t : γ(s) ∈ M1}

and

q := inf{s > t : γ(s) ∈ M \M1}.

Then γ(p), γ(q) ∈ A because A is closed and γ(]p, q[) ⊂ M \ M1. Now since γ

restricted to the interval [p, q] is a shortest path connecting γ(p) and γ(q) w.r.t. d2

there exists a shortest path connecting the same points lying completely in M1. In-

terchanging all excursions in this manner we end up with a new path γ∗ lying in M1

with the same length w.r.t. the metric d1 as γ w.r.t. d. This yields d1(x, y) ≤ d(x, y)
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and therefore the equality (1.2).

Another possibility to prove (1.2) is to imitate the proof of Lemma 1.8. In [HeK98],

Heinonen and Koskela consider an isometric gluing map which avoids many of the

difficulties arising in later proof for the Poincaré inequality for instance. We will

discuss this briefly later in this work.

For the second one an additional condition on the geometry of A1 and A2 is needed:

Definition 1.11 (Bounded Geometry Condition) We say a subset A of a met-

ric space (M,d) satisfies the bounded geometry condition (BG) if:

∃ c > 0 : ∀x, y ∈ A : d(x, y) ≥ c inf{L(γ) : γ : [0, 1] → A, γ(0) = x, γ(1) = y}

while L(γ) is the length of the path γ w.r.t. d.

Remark 1.12 The (BG) condition implies that A is pathwise connected.

Now let Φ be an isometry w.r.t. the induced length metrics, i.e. between (A1, d
A1
1 )

and (A2, d
A2
2 ) while dAi

i comes from the operation di → d̂i =: dAi
i described in

Definition 1.1. Then the (BG) condition can be written as:

∃ c > 0 : di(x, y) ≥ c dAi
i (x, y) ∀ x, y ∈ Ai.

It is easy to see that the map Φ : A1 7→ A2 is bilipschitz w.r.t. the original metrics

d1, d2 on M1,M2:

W.l.o.g. let x, y ∈ M1. Then

d1(x, y) ≥ c dA1
1 (x, y)

= c dA2
2 (Φ(x), Φ(y))

≥ c d2(Φ(x), Φ(y))

holds while the last inequality comes from the fact that in our situation the opera-

tion d → d̂ enlarges the metric because there are less admissible paths. With such

kind of gluing maps one can construct quite strange examples of glued spaces for

instance two 2-dimensional spaces glued along curves of the same length but globally

quite differently positioned.
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1.4 Gluing and Topology

Now as we have defined what we mean by gluing we will figure out which properties

of the old spaces will keep on the new one. The gluing procedure described above

gives rise to a topology which in general coincides not necessarily with the topology

coming from a topological identification. That means (back to the old notation

M = M1∪̇M2) the topology of the metric quotient M/dR can be weaker than the

topology of the topological quotient M/R even if they coincide as sets. This is

not always the case as one can see for example if all rational points in the interval

[0, 1] are glued together (all rational points in [0, 1] are R-equivalent). Then the

topological quotient is very wild but the metric quotient is just a point.

But under certain additional conditions the topologies are the same. Suppose M/dR

and M/R coincides as sets and let

τR := {U ⊂ M1 ∪A M2 : π−1(U) ⊂ M1∪̇M2 open}

while π : M1∪̇M2 → M/R is the canonical projection so that τR is the finest

topology for which π is continuous and

τ dR := {U ⊂ M1 ∪A M2 : ∀ x ∈ U ∃ ε > 0 : B(x, ε) ⊂ U}

is the topology induced by the new intrinsic metric dR. Then we have:

Lemma 1.13 If M/dR and M/R coincide as sets, τ dR ⊂ τR holds.

Proof: Let U ∈ τ dR s.t. ∀ x ∈ U ∃ ε > 0 : B(x, ε) ⊂ U . Therefore, ∀ x ∈ π−1(U) :

π−1(B(π(x), ε)) ⊂ π−1(U) and since d < di it follows that Bi(x, ε) ⊂ π−1(B(x, ε))

for i = 1, 2 because Bi(x, ε) ⊂ B(x, ε) holds. This implies that ∀ x ∈ π−1(U) ∃ ε >

0 : Bi(x, ε) ⊂ π−1(U) so π−1(U) is open.

And with some additional conditions we get the same topologies:

Lemma 1.14 If M/dR and M/R coincide as sets and one of the following condition

holds:

(i) M1∪̇M2 is compact.

(ii) The equivalence relation R comes from a bilipschitz bijection Φ : A1 → A2.

Then τ dR = τR holds true.
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Proof:

(i) Since M1∪̇M2 is compact and the identity map id : M/R → M/dR is contin-

uous by the lemma above, one knows that id is a homeomorphism. That is

true because M/R is compact too and M/dR is a Hausdorff space. Therefore,

id is a closed map because a closed set X ⊂ M/R is compact and thus id(X)

is compact and also closed since M/dR is Hausdorff. But if id is a closed map

id−1 is continuous.

(ii) We have to show that τR ⊂ τ dR . Let U ∈ τR then π−1(U) open in M1∪̇M2

and therefore π−1(U) ∩Mi is open in Mi, for i = 1, 2. This means for i 6= j

and ∀ x ∈ M \Mj ∩ U :

∃ ε > 0 : Bi(π
−1(x), ε) ⊂ Mi \ Ai ∩ π−1(U),

s.t. π(Bi(π
−1(x), ε)) = B(x, ε) ⊂ U .

If x ∈ A∩U there exist two balls Bi(π
−1(x), εi) ⊂ Mi∩π−1(U) s.t. if one takes

ε := min{ε1, ε2} and δ := ε
2c

it follows that B(x, δ) ⊂ Bi(x, ε) ∪ Bj(x, ε) ⊂ U

hence U ∈ τ dR holds.

This finishes the proof.

In the next lemmata we collect some results which are important to transfer prop-

erties of continuous or measurable functions from the original spaces to the glued

space. They will be used throughout this work, mostly without explicit statement.

For these results it is not necessary that the gluing map Φ is bilipschitz. They would

also hold for more general gluing maps which allow collapsing. This is because only

part (i) of Lemma 1.9 is needed for which the inequality di(x, y) ≥ d(x, y) is respon-

sible. But this inequality holds for all gluing maps by the definition of the glued

intrinsic metric d. From now on, if not stated otherwise, M denotes again the glued

space M1 ∪A M2.

Lemma 1.15 (Open, Closed Sets)

(i) If B ⊂ M is open then B ∩Mi is open in (Mi, di) for i = 1, 2.

(ii) If B ⊂ M is closed then B ∩Mi is closed in (Mi, di) for i = 1, 2.

Proof: (i) For each x ∈ B ∩ Mi there exists a ball B(x, r) ⊂ B and therefore

Bi(x, r) ⊂ B(x, r) ⊂ B ∩Mi by the Lemma 1.9 (i).
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(ii) Follows from (i) by taking the complement.

Let B(Mi), B(M) be the Borel σ-fields of Mi, M , then we have the following

Corollary 1.16 (Measurable Sets) If B ∈ B(M) then B ∩Mi ∈ B(Mi).

Proof: For τ , τi the topologies on M , Mi induced by the metric d, di and σ(τ) =

B(M), σ(τi) = B(Mi) the induced σ-fields the equality σ(τ)∩Mi = σ(τ ∩Mi) holds.

Therefore, with Lemma 1.15 (i)

B(M) ∩Mi = σ(τ ∩Mi) ⊂ σ(τi) = B(Mi)

is true.

A simple but important consequence of the last corollary is that for a measurable

function f : M 7→ R the restriction f |Mi
is measurable too.

Lemma 1.17 (Separable) If the metric spaces (Mi, di) for i = 1, 2 are separable,

then M = M1 ∪A M2 is separable.

Proof: For i = 1, 2 let Ni be a dense countable set in Mi. Then by Lemma 1.9 (i)

the set π(C1) ∪ π(C2) is countable and dense in M .

Lemma 1.18 (Lipschitzfunctions) Let f : M 7→ R be a Lipschitzfunction w.r.t.

d, then the restricted function f |Mi
is Lipschitz w.r.t. di.

Proof: This is an immediate consequence of the inequality di(x, y) ≥ d(x, y),

∀ x, y ∈ Mi.

Under our gluing condition, namely that Φ is bilipschitz, we have the validity of

di(x, y) ≤ c d(x, y) for a constant c > 0 and ∀ x, y ∈ Mi and therefore 1.9 (ii). This

is needed for all proofs of the rest of this section:

Lemma 1.19 (Compact Sets) If B ⊂ M is compact then B ∩Mi is compact in

(Mi, di) for i = 1, 2.
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Proof: B ∩ Mi is closed and complete because Mi is complete. To show that

B ∩Mi is precompact we take the covering with ε-Balls of B in M1 ∪A M2 and use

Lemma 1.9 (ii).

Lemma 1.20 (Complete Metric Spaces) Let (Mi, di) be complete metric spaces,

then M = M1 ∪A M2 is complete.

Proof: Let {xi} ⊂ M be a Cauchy sequence in M w.r.t. the metric d. Then at

least in one part of M , M1 or M2 there are infinite elements of {xi}. They are a

Cauchy sequence w.r.t. d too but since cidi(x, y) ≤ d(x, y) holds for all x, y ∈ Mi,

i = 1, 2 and Mi is complete, they are Cauchy for di as well and a limit x ∈ Mi exists

which finishes the proof by application of Lemma 1.8.

Lemma 1.21 (Locally compact) If the metric spaces (Mi, di) for i = 1, 2 are

locally compact M = M1 ∪A M2 is locally compact.

Proof: Local compactness is clear by using the comparability of balls (1.9 (ii))

to show that there exists a totally bounded neighbourhood. This is enough for

compactness since M is complete by Lemma 1.20.

As a consequence we state the following remark:

Remark 1.22 (cf. [BBI01] Theorem 2.5.23) If (M, d) is a complete locally com-

pact length space then (M,d) is strictly intrinsic.

At the end of this section we want to demonstrate that in avoiding collapsing phe-

nomena by choosing Φ bilipschitz, all information in the sense of σ-fields are pre-

served by the gluing procedure. This in some sense means that the information

about the Markov process which will be defined later via a Dirichlet form, is pre-

served when gluing Dirichlet spaces. This results are not used in the rest of this

work but might be interesting for itself.

Lemma 1.23 (Open Sets) Let Bi ⊂ Mi be an open set in Mi w.r.t. di. Then

there exists an open set B ⊂ M w.r.t. to d such that

B ∩ A = Bi ∩ A.
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Proof: For all y ∈ Bi ∩ A take a ball Bi(y, εy) ⊂ Bi with εy > 0. Then be-

cause of di ∼ d there exist balls B(y, c εy) for a universal constant c > 0, s.t.

B(y, c εy) ∩ A ⊂ Bi. But then the union B := Bi ∪
⋃

y∈A∩Bi
B(y, cεy) is open in M

w.r.t. d and B ∩ A = Bi ∩ A holds.

Corollary 1.24 The topologies τ1, τ2 of M1, M2 are subsets of the Borel σ-field

B(M) on M .

Proof: By the Lemma 1.23 for each open set Bi ⊂ τi for which Bi ∩ A 6= ∅
holds there exists an open set B in (M,d) s.t. B ∩ A = Bi ∩ A and therefore

Bi = (B ∩ A) ∪ (B \ A) ∈ B(M).

Corollary 1.25 The Borel σ-fields B(M1), B(M2) of M1, M2 are subsets of the

Borel σ-field B(M) on M .

1.5 Gluing of Metric Measure Spaces

Let (Mi, di, µi) for i = 1, 2 be two metric measure spaces and µ1, µ2 positive Radon

measures on (M1, d1), (M2, d2) with supp [µi] = Mi. Further let us assume that

(Mi, di) are complete locally compact length spaces and (M,d) as usual the glued

space via a bilipschitz gluing map Φ along a closed set A. Let B(M), B(Mi) be the

Borel σ-field of M , Mi w.r.t. the topology induced by d, di. Then we glue measures

in the following way:

Theorem 1.26 (Gluing of positive measures) Let µ1(B ∩ A) = µ2(Φ(B ∩ A))

∀B ∈ B(M1). Then the set function µ : B(M) → R defined in the following way is

a measure:

µ(B) := µ1(B ∩M1) + µ2(B ∩M2)− µ1(B ∩ A)

and µ(B) = ∞ if µi(B ∩Mi) = ∞ for i = 1 or i = 2.
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Remark 1.27

• If in the first theorem the measure of the set A is zero in Mi for i = 1 and

i = 2, i.e. µi(A) = 0 then the assumption is trivially satisfied. For example

by gluing two n-dimensional manifolds along an (n − 1)-dimensional subset

equipped with the n-dimensional Hausdorff measure on the manifolds.

• To demonstrate that the assumption in the definition of µ is somehow natural

we consider the case of two Hausdorff measures µ1 and µ2. For Lipschitz maps

f : A1 7→ A2 it holds that:

µ2(f(B)) ≤ Cdµ1(B) ∀ B ∈ B(M1) ∩ A

while d is the dimension of the Hausdorff measure and C is the Lipschitz

constant of f . If Φ is an isometric map we have C = 1 and therefore

µ2(Φ(B ∩ A1)) = µ1(B ∩ A1) ∀ B ∈ B(M1).

Proof: To proof the first theorem we have to check that the definition of µ together

with the assumption satisfies the measure properties. By Lemma 1.16 it holds that

∀B ∈ B(M) : B ∩Mi ∈ B(Mi) for i = 1, 2.

Therefore, µ is well defined and only the σ-additivity is left to prove. But this comes

from the measure properties of µi. Let (An) pairwise disjoint measurable sets in M .

Then the following holds true:

µ

( ∞⋃
n=1

An

)
= µ1

([ ∞⋃
n=1

An

]
∩M1

)
+ µ2

([ ∞⋃
n=1

An

]
∩M2

)

−µ1

([ ∞⋃
n=1

An

]
∩ A

)

= µ1

( ∞⋃
n=1

[An ∩M1]

)
+ µ2

( ∞⋃
n=1

[An ∩M2]

)

−µ1

( ∞⋃
n=1

[An ∩ A]

)

=
∞∑

n=1

µ1(An ∩M1) +
∞∑

n=1

µ2(An ∩M2)−
∞∑

n=1

µ1(An ∩ A)
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=
∞∑

n=1

[µ1(An ∩M1) + µ2(An ∩M2)− µ1(An ∩ A)]

=
∞∑

n=1

µ(An),

because of absolute convergence. In order to have a symmetric and consistent defi-

nition we have to ensure that µ coincides with the measures µ1 and µ2 on M1 and

M2. This is the reason for the assumption, that means w.l.o.g. ∀B ∈ B(M1):

µ(B) = µ1(B ∩M1) + µ2(B ∩M2)− µ1(B ∩ A)

= µ1(B) + µ2(B ∩ A)− µ1(B ∩ A)

= µ1(B)

because of B ∩M2 = B ∩ A and in the same manner one gets

∀ B ∈ B(M2) : µ(B) = µ2(B)

and the proof is finished.

A little more work has to be done in order to check the inner regularity for the glued

measure µ:

Theorem 1.28 (Gluing of positive Radon measures) Let µ1, µ2 be two posi-

tive Radon measures on M1, M2. Then the glued measure µ is a positive Radon

measure.

Proof: A Radon measure is per definition a measure defined on the Borel σ-field

for a Hausdorff space which is locally finite and inner regular, i.e.

∀B ∈ B(M) : µ(B) = sup{µ(K) : K ⊂ B,K compact}.

By Theorem 1.26 we know that µ is a measure and still positive. Now to show

the local finiteness just take x ∈ M . Then choose ε > 0 small enough, s.t.

µi(Bi(x, ε)) < ∞ and µj(Bj(x, ε)) < ∞ for i 6= j as well if x ∈ A. Because of Lemma

1.9 (ii) there exists δ > 0, s.t. B(x, δ) ⊂ Bi(x, ε) ∪Bj(x, ε) hence µ(B(x, δ)) < ∞.

To prove the inner regularity of µ take B ⊂ B(M) and choose K i
n and Kj

n compact

sets in Mi and Mj such that

µi(K
i
n) → µ(B ∩Mi) for n →∞
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and

µj(K
j
n) → µ(B ∩Mj) for n →∞

because of the inner regularity of µi for i = 1, 2. The sets K i
n ∪Kj

n are compact in

M (∀ n ∈ N) because they are closed, M is complete and they are precompact since

K i
n, Kj

n are precompact in Mi, Mj and Lemma 1.8 holds true. We have now:

µ(K i
n ∪Kj

n) ≤ µ(K i
n ∪Kj

n) ≤ µ(B)

while the second inequality comes from the following. Assume that K i
n ∪Kj

n ⊂
B is wrong. Then there exists a sequence {xn}n∈N ⊂ Ki

n ∪ Kj
n ⊂ B with x =

limn →∞ xn /∈ B. But if x ∈ Mi and there are infinitely many xn in Mi too there

is a subsequence xnk
→ x in (Mi, di) and this would mean: x ∈ K i

n ⊂ B. On the

other hand if infinitely many xn are in Mj for i 6= j there would be an y ∈ Kj
n with

d(x, y) = 0 s.t. xnk
→ y in (Mj, dj) which contradicts x /∈ B. Therefore, K i

n ∪Kj
n

is in B and the second inequality holds for all n.

To finish the proof we have to check that:

µ(K i
n ∪Kj

n) → µ(B) for n →∞.

Assume that µ(K i
n ∪Kj

n) → c < µ(B), then µ(K i
n ∩Kj

n) → c′ > µ(B ∩A) because

of

µ(K i
n ∪Kj

n) = µ(K i
n) + µ(Kj

n)− µ(K i
n ∩Kj

n),

µ(B) = µ(B ∩Mi) + µ(B ∩Mj)− µ(B ∩ A)

for i 6= j and

µ(K i
n) → µ(B ∩Mi)

for i = 1, 2. But this is a contradiction because of K i
n ∩Kj

n ⊂ B ∩A for all n ∈ N.

For the rest of this work we often use µ for the glued measure assuming the gluing

condition is satisfied without explicitly stating it.
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1.6 Gluing and Doubling

Now we want to glue metric measure spaces which satisfy the Ahlfors-regularity

condition or at least a doubling condition and give a sufficient additional condition

under which this still holds on the glued space. For Ahlfors-regularity we need no

additional assumptions:

Theorem 1.29 (Ahlfors-regularity on glued spaces) Let (M, d, µ) be a met-

ric measure space, glued together along a set A via a bilipschitz gluing map Φ by

two metric measure spaces (Mi, di, µi), i = 1, 2 which satisfy the Ahlfors-regularity

condition for x ∈ Mi

C−1
i Rn ≤ µi(Bi(x, R)) ≤ CiR

n,

for universal constants Ci > 0. Then (M,d, µ) also satisfies the Ahlfors-regularity

condition with a constant which only depends on C1, C2 and on the Lipschitz constant

Lip Φ of Φ.

Proof: Let C := max{C1, C2}. By Lemma 1.9 (i) we have for x ∈ Mi that:

C−1Rn ≤ µi(Bi(x, R))

= µ(Bi(x,R))

≤ µ(B(x,R)).

holds, since µ|Mi
= µi.

And for the second inequality we have ∀ x ∈ Mi, R > 0, i 6= j that because of

B(x, R) ⊂ Bi(x, cR) ∪Bj(z, 2cR) the following holds ∀z ∈ B(x,R) ∩ A:

µ(B(x,R)) ≤ µ(Bi(x, R)) + µ(Bj(z, 2cR))

= µi(Bi(x,R)) + µj(Bj(z, 2cR))

≤ CRn + C(2cR)n

= (C + Ccn2n)Rn.

For doubling we need an additional condition which in some sense reproduce the

dimension homogeneity of the Ahlfors-regularity:
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Theorem 1.30 (Doubling on glued spaces) Let (M,d, µ) be the metric mea-

sure space, glued together along the set A by two metric measure spaces (Mi, di, µi),

i = 1, 2 which satisfy the doubling condition

µi(Bi(x, 2R)) ≤ Ciµi(Bi(x,R)), ∀ x ∈ Mi, R > 0, i = 1, 2

for constants Ci > 0. Then (M, d, µ) also satisfies the doubling condition in compact

subsets if the following condition is satisfied: ∀z ∈ A, rn > 0 and for all sequences

{xn}n∈N ⊂ M1, {yn}n∈N ⊂ M2, s.t. z = limn→∞ xn = limn→∞ yn and limn→∞ rn = 0

there exist numbers 0 < k(z) < ∞ and N(z) ∈ N such that

∀ n > N(z) : k(z)−1 ≤ µ(Bi(xn, rn))

µ(Bj(yn, rn))
≤ k(z).

Remark 1.31

• In particular this situation is given by the Ahlfors-regularity.

• Another possibility is to have the interior of the gluing set
◦

A nonempty. Then,

by the gluing condition for measures, the dimension homogeneity is fulfilled

too.

Proof: Let C := max{C1, C2}. The proof works by contradiction. Assume in a

compact set that doubling does not hold. Then there exists a convergent subsequence

of rn → r and xn → x and Cn →∞ for which the following inequality holds:

µ(B(xn, 2rn)) > Cnµ(B(xn, rn)).

We consider three cases:

1. The case xn → x ∈ Mi \ A and rn → 0 is clear since there will be a N s.t.

∀ n > N : B(xn, rn) ⊂ Mi \ A and Cn > C so there is a contradiction.

2. The case where xn → x and rn → r > 0 is clear as well, because this would imply

that µ(B(x, r)) = 0.

3. So the last case where xn → x ∈ A and rn → 0 is the one where the dimension

homogeneity is needed. By the same arguments as in the proof for Ahlfors-regularity

the following inequality holds ∀ yn ∈ B(xn, 2rn) ∩ A:

µ(B(xn, 2rn)) ≤ µ(Bi(xn, 2rn)) + µ(Bj(yn, 4crn))

≤ Cµ(Bi(xn, rn)) + C2 log2(c)µ(Bj(yn, rn))

and by the dimension homogeneity condition there exists a number N(x) s.t.

∀ n > N(x) : µ(Bj(yn, rn)) ≤ k(x)µ(Bi(xn, rn))
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and therefore

∀ n > N : µ(B(xn, 2rn)) ≤ (C + k(x)C2 log2(c))µ(Bi(xn, rn))

≤ (C + k(x)C2 log2(c))µ(B(xn, rn))

which is a contradiction because of Cn →∞.

1.7 Gluing of k Spaces

As mentioned in the first chapter it is possible to extend the gluing procedure up

to k metric spaces. Our framework is designed to glue together the glued space

M = M1 ∪A M2 with another space M3 and then with M4 and so on in order to get

a complete locally compact length space

M ′ := (. . . ((M1 ∪A M2) ∪A M3) ∪A . . . ∪A Mk).

This is because all important properties are transported from the original spaces to

the glued spaces, provided that the gluing conditions hold true.

Here we are interested in the special case to glue k spaces {Mi}i=1,...,k along a

’common set’ A. Formally this means that we consider bilipschitz gluing maps

Φi : Ai → Ai+1, for i = 1, . . . , k − 1, with closed sets Ai ⊂ Mi. Now there are at

least two possible gluing procedures:

The first one is to glue M1,M2 along A via Φ1 and then glue M1 ∪A M2 via

Φ̃2 : A → A3 with M3. Clearly Φ̃2 : A → A3 defined as Φ̃2(x) := Φ2 ◦ (π−1(x) ∩ A2)

is bilipschitz, because of Lemma 1.8. By this iterative procedure we get the glued

space (M ′, d′) as mentioned above.

The other way is to glue the k spaces simultaneously: For this purpose we need an

equivalence relation R on the disjoint union
⋃̇k

i=1Mi: ∀ x, y ∈ ⋃̇k

i=1Mi:

x ∼R y :⇔ ∃ Φij := Φi ◦ . . . ◦ Φj : Ai → Aj : Φij(x) = y.

One can easily verify that this relation is an equivalence relation. Then consider the

semi-metric dR as defined in Definition 1.3 on
⋃̇k

i=1Mi w.r.t. the metric

d(x, y) :=





di(x, y) if x, y ∈ Mi,

∞ otherwise
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and proceed to the metric quotient M :=
⋃̇k

i=1Mi/dR. That this gluing procedure

yields the same complete locally compact length space as the first one is shown in

the next proposition.

Proposition 1.32 The length spaces (M ′, d′) and (M, dR) are isometrically equiv-

alent.

Proof: Define a bijective map g : M ′ → M as the identity on the embedded sets

Mi ↪→ M ′ and Mi ↪→ M . To show that g is isometric w.r.t. d′ and dR, first notice

that ∀ x, y ∈ M ′ and g(x), g(y) ∈ M we have

d′(x, y) ≤ dR(g(x), g(y)),

because all sequences {pi}, {qi} in the definition of the semi-metric dR are admissible

sequences for the definition of the semi-metric d′R which leads to d′ and therefore

it holds that d′(pi, qi) ≤ di(pi, qi) by the gluing procedure for d′. The proof for the

other direction works by induction. The case k = 2 is clear. Assume equality holds

for k− 1. Let {pi}, {qi} be a sequence in the definition of the semi-metric d′R which

leads to d′. Then either pi, qi ∈ Mk or pi, qi ∈ (. . . ((M1∪AM2)∪AM3)∪A. . .∪AMk−1).

In the first case the contribution dk(pi, qi) for the approximating sum of d′R and dR is

the same. Now let dk−1 be the glued metric of (. . . ((M1∪AM2)∪AM3)∪A. . .∪AMk−1)

and dk−1
R be the glued metric of

⋃̇k−1

i=1 Mi/dR. Then by the assumption dk−1(pi, qi) =

dk−1
R (pi, qi) holds. Therefore, we can prove equality by using a contradiction ar-

gument because dk−1(pi, qi) can be approximated by a minimizing sequence for

dk−1
R (pi, qi).

The last proposition says that the succession of gluing is not important. Hence from

now on we denote the glued space by M =
⋃k

A Mi, the intrinsic metric by d and the

gluing set as A =
⋂k Mi. The sets Mi will be used in the same sense as for k = 2

as embedded subsets of M .

By Lemma 1.8 the metrics are comparable, i.e. di ∼ d on Mi, for all i = 1, . . . , k.

The results about measures and doubling transfers straightforward to the case of

k-gluing. For examples we refer to the last section of this chapter.
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1.8 Examples

The following examples shall illustrate previous definitions, partly prepare later

examples and motivate our framework.

(i) Bilipschitz gluing along curves

The pictures show the idea of gluing two 2-dimensional Euclidean sets along

bilipschitz curves. One simple example is to construct the boundary of a

cube. Consider the following two copies of a subset of R2 equipped with the

Euclidean metric:

Hi := {x ∈ R2 : 0 ≤ x2 ≤ 1, 0 ≤ x1 ≤ 3},

for i = 1, 2. Further define the boundary part:

AHi := {x ∈ Hi : (x1, x2) ∈ {0, 3} × {0, 1}},

for i = 1, 2. Then glue H1 and H2 along AH1 and AH2 with the following

gluing map Φ : AH1 → AH2 :

H

H

H

H
H

HA 1

1

1

2

2

2

Figure 1.3: The cube

Since the sets AHi have both the same length 6 we can define Φ as an isometry

w.r.t. dAH1 and dAH2 , the restricted Euclidean metrics on AH1 and AH2 . We

just fix the map Φ for two points, namely Φ((0, 0)) = (1, 1) and Φ((0, 1)) =

(2, 1), and then extend Φ uniquely to AH1 . Then Φ is bilipschitz w.r.t. the

Euclidean metrics since the BG condition 1.11 is satisfied. This yields the

boundary of a cube as a complete locally compact length space.
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(ii) Bilipschitz Transformations

Another way to construct more general examples is to consider bilipschitz

gluing maps Φ : M → Φ(M) ⊂ M ′ while M is a complete locally compact

length space, M ′ is any metric space and A is any closed subset in M . Then

Φ|A : A → Φ(A) ⊂ M ′

is bilipschitz and we can glue M with Φ(M) along A and Φ(A) while all our

gluing conditions, even for doubling, are satisfied.

(iii) K-Gluing

Let M1, . . . , Mk be k copies of a complete locally compact length space and

let Ai ⊂ Mi be the same closed subset in all these length spaces. Then there

exist obviously isometric maps Φi : Ai → Ai+1 such that we can glue them all

together along A to get the glued space M = A
⋃k

i=1Mi.

Spiders, Trees, Graphs and Polyhedra

Α

M

M

M

M

M

M

M

k

5

6

4

3

2

1

.
.
.
.

A

M M

M

M

M

M

. .

2

4

1

3

5

k

.
. . .

Figure 1.4: k-spider and k-sheet in dimension 2

Special examples of this k-gluing are spiders, trees, graphs or more general

polyhedra. Since trees and graphs coincides locally with spiders we just give

a brief description of spiders here.

Let M1, . . . ,Mk be k identical copies of R+ and Ai = {0} ⊂ R+. Then we call

M = A
⋃k

i=1Mi = M = {0} ⋃k
i=1R+ a k-spider.
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Another way of constructing a k-spider is to consider M1, . . . , Mk−1 identical

copies of R with Ai = R− = {x ∈ R : x ≤ 0}. By taking the identity on R−
as the gluing map we construct M =

⋃k−1
i=1 R which is obviously a k-spider.

In higher dimensions we get what we call a k-sheet. Take k copies as M1, . . . , Mk

of Rn
+ = {x ∈ Rn : x1 ≥ 0} and Ai = {x ∈ Rn : x1 = 0}.

Analogous to the alternative construction of the k-spider one could take (k−1)

copies of Rn and Ai = {x ∈ Rn : x1 ≤ 0} to get a k-sheet.

Remark 1.33

• More general one can construct nonlinear examples as Riemannian Poly-

hedra by using bilipschitz transformations for instance.

• With the method described above we can construct graphs of finite degree

by gluing further R+ or R along one or more points.

(iv) Selfgluing

M

A

AΦ

1

2

Figure 1.5: Selfgluing

By selfgluing we mean, for A1, A2 ⊂ M closed sets and Φ : A1 → A2 a bilischitz

map, the gluing of M with itself by identifying A1 and A2 via Φ. Here we just

want to remark that we need a constant c ≥ 0 such that d(A1, A2) > c. This is

because then it fits in our setting. Other cases might work as well but one has

to be careful in order to avoid collapsing phenomena. If d(A1, A2) > 0 holds,

consider three copies of M and glue them successively along A1 and A2 so that

we get a chain of glued spaces. Since all of our results are of local nature, this

construction will yield the same properties.
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To summarize the results of this chapter: if we glue k complete, locally compact,

separable intrinsic metric measure spaces (Mi, di, µi) , i = 1, . . . , k along closed

sets Ai via bilipschitz maps Φ : Ai → Ai+1 the resulting space (M, d, µ) has the

same properties and for i = 1, . . . , k the distances di and d are comparable on Mi.

Further, if doubling or Ahlfors regularity holds true on Mi together with dimension

homogeneity, doubling or Ahlfors regularity holds on (M,d, µ).



Chapter 2

Gluing of Dirichlet Spaces

In this chapter the gluing of Dirichlet forms is defined. It is proved that the gluing of

k strong local regular Dirichlet forms Ei on Mi yields a strong local regular Dirichlet

form E on M . Besides the Lipschitz continuity only a consistency condition for the

k Dirichlet forms on the gluing set A is necessary. Further a few examples of glued

Dirichlet forms which are connected to other works (cf. [Bo04], [BK95] and [BK01]),

are given and properties of the associated processes are described. At the end the

intrinsic metric

ρ := sup{u(x)− u(y) : u ∈ Dloc(E) ∩ C(M), dΓ(u) ≤ dµ}

with dΓ the energy measure w.r.t E , is studied. By assuming di ∼ ρi the comparabil-

ity of the intrinsic metric di with the intrinsic metric ρi w.r.t. Ei, the comparability

of the glued metric d with ρ is shown. This is done in order to transfer the doubling

property of (di, µi) from (ρi, µi) to (ρ, µ).

2.1 Gluing Dirichlet Spaces

We prepare the gluing of Dirichlet forms with a short lemma:

Lemma 2.1 Let (M, d, µ) be a metric measure space while M is a locally compact,

separable metric space and µ is a positive Radon measure. Then CLip
0 (M) is dense

in L2(M, µ).

Proof: As a first step we show that each function f ∈ E := {1A : A ∈ B(M)}, while

B(M) is the Borel σ-algebra in M , can be approximated by a Lipschitz function with

compact support in the L2-norm. Let f := 1A. Since a separable metric space is

34
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polish we know by [Ba90] that the measure µ satisfies the outer regularity condition.

Therefore, it exists an open set U s.t. A ⊂ U :

||1U − f ||2 = ||1U\A||2 = (µ(U)− µ(A))
1
2 <

ε

2
⇒ µ(U) < ∞.

Hence by inner regularity there exists a compact set K ⊂ U s.t.:

µ(U \K) =

∫
1U−Kdµ ≤

( ε

2

)2

⇒ ||1U − 1K ||2 <
ε

2
.

Now with h(x) := (1− 1
ε
d(K, x))+ and ε := 1

2
d(K, M \ U) there exists a function

h ∈ CLip
0 : supp(h) ⊂ U : 1K ≤ h ≤ 1U

⇒ 0 ≤ 1U − h ≤ 1U − 1K ⇒ ||1U − h||2 <
ε

2

⇒ ||f − h||2 ≤ ||f − 1U ||2 + ||1U − h||2 < ε.

This shows that E ⊂ CLip
0 (M)

||·||2
. It is clear that CLip

0 ⊂ L2(M). To end the proof

one has to argue that the set E is dense in L2(M) since then the rest follows by

the diagonal sequence argument. But for a function g ∈ L2(M) also g− and g+

lies in L2(M), so it can be assumed that g ≥ 0. But then there exists a monotone

sequence of elementary B(M)-functions (gn) s.t. gn → g and 0 ≤ gn ≤ g. So all

gn lie in L2(M). By the theorem of dominated convergence it follows that gn → g

in the L2-norm. But the elementary functions can also be approximated by simple

indicator functions in the L2-norm which finishes the proof.

Before stating the main result of this section just recall that by Lemma 1.18 and

Lemma 1.19 the restrictions of Lipschitz functions f ∈ CLip
0 (M) with compact sup-

port to one of the original spaces Mi is a Lipschitz function with compact support

in Mi, i.e. f |Mi
∈ CLip

0 (Mi).

Theorem 2.2 Let M := M1 ∪A M2 be the glued metric measure space (M,d, µ) as

above and (Ei, D(Ei)), i = 1, 2 two strongly local, regular Dirichlet forms on Mi,

i = 1, 2. Further assume that CLip
0 (Mi) ⊂ D(Ei) densely and the Dirichlet forms are

consistent on the gluing set, i.e.

∫

A1

dΓ1(u|M1 , u|M1) =

∫

A2

dΓ2(u|M2 , u|M2)
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∀ u ∈ CLip
0 (M) while dΓi for i = 1, 2 is the energy measure of the Dirichlet form Ei.

Then the new Form

E(u) :=

∫

M1

dΓ1(u|M1 , u|M1) +

∫

M2

dΓ2(u|M2 , u|M2)−
∫

A1

dΓ1(u|M1 , u|M1)

is a closable symmetric Markovian form on L2(M, µ) and with

D(E) := CLip
0 (M)

√
E(·)+||·||2

the smallest closed extension of E which will be denoted also by E, is a strongly local,

regular Dirichlet form on M .

Proof: Since CLip
0 (Mi) ⊂ D(Ei) for i = 1, 2, E is well defined on CLip

0 (M).

• E is symmetric:

The properties of a symmetric form transfers directly to E since the energy

measure is a bilinear form by polarization with values in the space of signed

Radon measures.

• E is closable:

The form defined on CLip
0 (M) is closable. For a sequence {un}n ⊂ CLip

0 (M) with

E [un− um] → 0 and ||un||2 → 0 we take un|Mi
∈ CLip

0 (Mi). Then E [un|Mi
] → 0

since (Ei, D[Ei]) is closed. The rest follows by the definition of E .

• E is Markovian:

For u ∈ CLip
0 (M) the function v := (0∨u)∧1 is in CLip

0 (M) too and one verifies

E(v, v) ≤ E(u, u) with the truncation property of Ei on Mi for i = 1, 2.

Since E is a closable Markovian symmetric form by Theorem 3.1.1. in [Fot94] its

smallest closed extension is again a symmetric Markovian form. As mention in the

theorem we will denote this extension by E too. D(E) is dense in L2(M, µ) w.r.t.

||.||2 by Lemma 2.1, because CLip
0 (M) ⊂ D(E). Therefore, we have a Dirichlet form

(E , D(E)) on M . Further it holds that ∀ u ∈ D(E) the restricted function u|Mi
is in

the domain D(Ei) for i = 1, 2 which can be easily checked by the assumptions and

the definition of E .

Now only the strong local property and the regularity of (E , D(E)) is left to prove.
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• E is regular:

To prove regularity of (E , D(E)) it is enough to show that CLip
0 (M)

||.||∞
=

C0(M) since D(E) := CLip
0 (M)

√
E+||·||2

and therefore CLip
0 (M) ⊂ D(E) so

CLip
0 (M) would be a core. Take a function f ∈ C0(M) and let S := supp(f) be

the compact support of f . Let

Bε(S) := {x ∈ M : d(x, S) ≤ ε}

and a compact neighborhood of S. Then by the Stone-Weierstrass theorem

there is a sequence of Lipschitz functions (fn) ⊂ CLip(Bε(S)) s.t.

fn → f

w.r.t. || · ||∞-Norm on Bε(S). To show this one just has to verify that

CLip(Bε(S)) is a subalgebra of C(Bε(S)) and the constant functions are in

CLip(Bε(S)) as well as functions which separate points. The separation of

points is done by the distance function which is clearly Lipschitz as a con-

sequence of the triangle inequality. Since Bε(S) is compact CLip(Bε(S)) is a

subalgebra. The function

g(x) := (1− 1

2ε
ρ(S, x))+

is Lipschitz s.t. fn · g ∈ CLip(Bε(S)) as well. Therefore,

||fng − f ||∞ = max{||fn|S − f |S||∞, ||fng1Bε(S)\S||∞} → 0,

holds which finishes the proof because fng ∈ CLip
0 (M).

• E is strong local:

If u, v ∈ D(E) with supp[u] and supp[v] compact s.t. v is constant on some

open neighborhood U of supp[u]. Then U ∩Mi is open in the old metric of Mi

and an open neighborhood of supp[u|Mi
] so that the problem can be reduced

to the case of Ei.

This finishes the proof.
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Remark 2.3

• This definition of the domain is consistent with the definition of the forms Ei

on Mi: If u ∈ D(E) then u|Mi
∈ D(Ei) and E(u|Mi

) :=
∫

Mi
dΓ(u, u) = Ei(u|Mi

).

• For many of our examples the consistency condition

∫

A1

dΓ1(u|M1 , u|M1) =

∫

A2

dΓ2(u|M2 , u|M2)

∀ u ∈ CLip
0 (M) is trivially satisfied, because the gluing set A has often zero

Lebesgue measure and the energy measure can be represented through the Lebesgue

measure.

Remark 2.4 (k-Gluing) To glue k strongly local, regular Dirichlet forms (Ei, D(Ei))

one can do this successively by Theorem 2.2 to get a glued Dirchlet form (E , D(E))

which is strongly local, regular and ∀ u ∈ D(E) it holds that u|Mi
∈ D(Ei) as well as

E(u|Mi
) :=

∫

Mi

dΓ(u, u) = Ei(u|Mi
)

for i = 1, . . . , k.

To shorten the notation in the following we will often use dΓ(u) instead of dΓ(u, u).

2.2 Examples

We will now give some examples which connect our framework with results in other

works on Dirichlet forms and processes on singular spaces.

2.2.1 Converging Spaces

As a motivation we will show that our glued spaces play a role in other contexts as

limits of converging spaces. In [Bo04] Dirichlet forms E on graphs, in particular the

Dirichlet form coming from the canonical Laplacian on k-spiders, are approximated

by Dirichlet forms En on tubes around the edges coming from the Laplace Beltrami

operators on the tubes. In [Bo04] it is shown that under certain regularity conditions

the sequence {En}n is Γ-convergent to E . According to [KS03], these results imply

the convergence of the associated resolvents, semigroups and spectra.
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We will prove now that the limit spaces of [Bo04] are arising naturally when gluing k

spaces R+ with Dirichlet forms coming from the canonical Laplacian in our setting.

In [Bo04] the limit space is defined in the following way: Let M be the k-spider

defined in Section 1.8. Denoting the edges of the spider by M1, . . . , Mk with Mi =

R+ for i = 1, . . . , k the Dirichlet form on M is given by

E(u) :=
k∑

i=1

∫

Mi

|u′(x)|2dx

defined on the closure of

DC(E) := {u ∈ C(M) : u|Mi
∈ H1,2(Mi), i = 1, . . . , k}

w.r.t. E1(·) = (E(·) + || · ||2) 1
2 . Our glued Dirichlet form E is defined in the same

way but the domain is defined in a different way:

DG := CLip
0 (M)

E1

The next proposition will show that both domains actually coincide so that we can

construct the limit space by gluing in our framework.

Proposition 2.5 With the notations above it holds that: DC(E) = DG(E).

Proof: That DG ⊂ DC is clear by the definitions. For the other direction let

u ∈ C(M) with u|Mi
∈ H1,2(R+) for i = 1, . . . , k. Then for each i ∈ {1, . . . , k} there

exists a sequence {ui
j}j ⊂ CLip

0 (R+) such that

∫

R+

|(u|Mi
− ui

j)
′|2 +

∫

R+

|u|Mi
− ui

j|2 → 0 for j →∞. (2.1)

The aim is now to construct a sequence {uj}j ⊂ CLip
0 (M) which converges to u w.r.t.

E1. For this purpose fix an ε > 0 and consider the following sequence of functions

in each ray Mi:

ũi
j(x) :=





ui
j(x) if x > ε

ε−x
ε

(u(0)− ui
j(0)) + ui

j(x) if x ≤ ε.

On M consider the sequence of functions:

uj(x) := ũi
j(x), if x ∈ Mi.

Then by definition uj ∈ CLip
0 (M) holds. Since ui

j → u|Mi
in L2 for j → ∞ there

exists a subsequence which we will denote by ui
j too, such that ui

j → u|Mi
pointwise
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because ui
j and u are continuous on Mi. Hence we have ui

j(0) → u(0) and therefore

by

k∑
i=1

∫

Mi

|ũi
j − u|Mi

|2 =
k∑

i=1

∫

[0,ε]

|ũi
j − u|Mi

|2 +
k∑

i=1

∫

(ε,∞)

|ũi
j − u|Mi

|2

and

∫

[0,ε]

|ũi
j − u|Mi

|2 =

∫

[0,ε]

∣∣∣∣
ε− x

ε
(u(0)− u′j(0)) + ui

j − u|Mi

∣∣∣∣
2

≤ 2

∫

[0,ε]

∣∣∣∣
ε− x

ε
(u(0)− u′j(0))

∣∣∣∣
2

+ 2

∫

[0,ε]

∣∣ui
j − u|Mi

∣∣2

we have that uj → u in L2 because of ui
j → u|Mi

in L2. Further it holds that

k∑
i=1

∫

Mi

|(ũi
j − u|Mi

)′|2 =
k∑

i=1

∫

[0,ε]

|(ũi
j − u|Mi

)′|2 +
k∑

i=1

∫

(ε,∞)

|(ũi
j − u|Mi

)′|2

and
∫

[0,ε]

|(ũi
j)
′ − (u|Mi

)′|2 ≤ 2

∫

[0,ε]

1

ε2
(u(0)− ui

j(0))2 + 2

∫

[0,ε]

|(ui
j)
′ − (u|Mi

)′|2

which yields uj → u for j → ∞ w.r.t. E1, since
∫

Mi
|(ui

j − u|Mi
)′|2 → 0 and

ui
j(0) → u(0) holds for j →∞.

Remark 2.6 An analogous result holds for graphs because the proof works locally

around the vertices.

2.2.2 Diffusions on Graphs and Euclidean Complexes

Here we want to show that the Markov process Xt associated to the glued Dirichlet

form E behaves in same sense as one expects (for more details see chapter 4). Namely,

we consider the Dirichlet form E on a k-spider M coming from the gluing of k

Dirichlet forms

Ei(u) :=
1

2

∫

R+

|u′(x)|2dx

on the single ray Mi ∼ R+. The first step is to characterize the domain of the

associated self-adjoint operator A on M :
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Proposition 2.7 If E is the glued Dirichlet form on a k-spider M coming from the

canonical Laplacian on R+, then the domain of the associated operator is:

D(A) := {u ∈ D(E) : u′′ ∈ L2(M),
k∑

i=1

(u|Mi
)′(0) = 0}. (2.2)

Proof: By definition it holds that D(A) ⊂ D(E) and E(u, v) = (−Au, v) ∀ u ∈
D(A), ∀ v ∈ D(E). Let A = {u ∈ L2(M) : (u|Mi

)′′ ∈ L2(Mi) for i = 1, . . . , k}.
Then with u ∈ D(A) ⊂ D(E) we have ∀ v ∈ D(E), E(u, v) = (−Au, v) and therefore

Au = 1
2
u′′ in Mi \ {0} since CLip

0 (M) ⊂ D(E). Hence with ui = u|Mi
, vi = v|Mi

:

E(u, v) =
1

2

k∑
i=1

∫

Mi

u′iv
′
idx = −1

2

k∑
i=1

∫

Mi

u′′i vidx +
1

2

k∑
i=1

u′i(0)vi(0)

by partial integration, which means that
∑k

i=1 u′i(0) = 0.

For the other direction let u ∈ A and
∑k

i=1 u′i(0) = 0. Then u ∈ D(E) and inte-

gration by parts yields E(u, v) = −1
2

∫
M

u′′vdµ for all v ∈ D(E), while µ is the glued

measure on M . Hence u ∈ D(A).

Remark 2.8

• For a graph M and the corresponding glued Dirichlet form E coming from the

canonical Laplacian on the edges one can characterize the domain D(A) in

an analogous way. Hence for all u ∈ D(A) and x a vertex in M one has∑k
i=1(u|Mi

)′(x) = 0, while M1, . . . , Mk denote the edges, adjacent to x.

• By the Green formula:

∫

G

(v∆u− u∆v)dx =

∫

∂G

(v
∂u

∂n
− u

∂v

∂n
)dF

instead of partial integration one can establish an analogous result for 2-dimen-

sional Euclidean complexes when the glued Dirichlet form comes from the

canonical Laplacian on the Euclidean simplices. Here n is the inward normal

of G. Then all functions u ∈ D(A) partially characterized by the following

property:

k∑
i=1

∂u(x)

∂ni(x)
= 0, (2.3)
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for all x in the interior of an edge e, while ni is the inward normal for the i-th

adjacent face of e.

• In order to define the operator A pointwise on the edges of the Euclidean

simplex or on the vertices of a graph one has to use a distributional argument

to get

Au(x) =
1

2

(
∂2u(x)

∂T 2
x

+
1

k

k∑
i=1

∂2u(x)

∂n2
i (x)

)

for x inside an edge e, while Tx is the tangential vector along e. Similar for

the generator A on a graph one gets

Au(x) =
1

2k

k∑
i=1

(u|Mi
)′′(x)

for x a vertex of the graph.

These conditions for functions in the domain D(A) coincide with the conditions

given in [BK01], where a so called Brownian motion on 2-dimensional Euclidean

complexes is constructed. This process is defined as a Brownian motion inside the

faces and after it hits an edge it goes into one of the adjacent faces with equal

probability. Now we will verify that these properties are adopted by our associated

process Xt.

By properties 2.2 and 2.3 of functions in the domain D(A) we can now calculate the

probabilities of the associated Markov process Xt starting in a vertex of a graph or

inside an edge of a 2 dimensional Euclidean complex to enter one of the adjacent

faces.

Proposition 2.9 Let z be a vertex of a graph M and Mi for i = 1, . . . , k the adjacent

edges. Further let Xt be the corresponding Markov process to E with X0 = z. Then

for all ε > 0 and T = inf{t ≥ 0 : d(Xt, z) ≥ ε} we have P (XT ∈ Mi) = 1
k
.

Proof: Let hi ∈ D(A) be the following piecewise linear function inside Bε(z):

hi(x) :=





1
k

+ k−1
kε

d(z, x) if x ∈ Mi ∩Bε(x)

1
k
− 1

kε
d(z, x) if x ∈ Bε(x) \Mi.
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h

εε

ε

i 1

_
3
1

Figure 2.1: hi on a 3-spider embedded in R2

Outside Bε(z) hi can be continued in an appropriate way, to ensure that hi ∈ D(A).

By definition hi(z) = 1
k
, hi(x) = 1 for x ∈ Mi, d(x, z) = ε and hi(x) = 0 for x /∈ Mi,

d(x, z) = ε. Since

hi(XT )− hi(X0)−
∫ T

0

(Ahi)(Xs)ds

is a martingale and Ahi = (hi)′′ = 0 inside Bε(z), we have

0 = E
[
hi(XT )− hi(z)

]
= E

[
hi(XT )

]− 1

k
= P (XT ∈ Mi) · 1− 1

k

which finishes the proof.

Remark 2.10 (Weighted Graphs) We call a graph M a weighted graph if the

glued measure µ comes from the gluing of k Lebesgue measures µi times a constant

pi. The associated process on the original spaces will behave like a Brownian motion

but on the glued space the probabilities P (XT ∈ Mi) will not be the same for each i.

To see this one imitates the proof of Proposition 2.7:

E(u, v) =
1

2

k∑
i=1

∫

Mi

u′iv
′
ipidµi

= −1

2

k∑
i=1

pi

∫

Mi

u′′i vidµi +
1

2

k∑
i=1

piu
′
i(0)vi(0),
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which means that for all u ∈ D(A) it holds that

k∑
i=1

piu
′
i(0) = 0. (2.4)

Analogous to the proof of Proposition 2.7 but a little more tedious we have to define

a function hi ∈ D(A) which is harmonic in Bε(0), satisfies 2.4 and has values 1 at

Mi ∩ ∂Bε(0) and 0 at Mj ∩ ∂Bε(0) for i 6= j. By simple calculations we get such a

function:

hi(x) :=





bi + 1−bi

ε
d(0, x) if x ∈ Mi

bi − bi

ε
d(0, x) if x ∈ Bε(0) \Mi

while bi = piPk
j=1 pj

. As in the proof of Proposition 2.9 we get P (XT ∈ Mi) = piPk
j=1 pj

.

Remark 2.11 (Euclidean Complexes) For a 2-dimensional Euclidean complex

M one get similar results by constructing functions hi ∈ D(A) in the following way:

Let z be a point inside an edge e of M with k adjacent faces M1, . . . , Mk. Consider

the set

Ac
ε := {x ∈ M : d(x, e) < ε} ∩ {x ∈ M : d(x, z) < c}

A

e

ε

c

z

c
ε

Figure 2.2: The set Ac
ε
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and define hi in the following way:

hi(x) :=





1
k

+ k−1
kε

d(e, x) if x ∈ Mi ∩Bc(z)

1
k
− 1

kε
d(e, x) if x ∈ Bc(z) \Mi.

Further let h̃i be a function with h̃|Bc(z) = hi|Bc(z), so that h̃i ∈ D(A) and T ε
c :=

inf{t ≥ 0 : Xt /∈ Ac
ε} with Xt the Markov process associated to E with X0 = z. In

the same manner as above we get

E
[
hi(XT ε

c
)
]

=
1

k
.

By splitting

∂Ac
ε = {x ∈ M : d(e, x) = ε and d(z, x) ≥ c}︸ ︷︷ ︸

=:Bε
1

∪̇ {x ∈ M : d(z, x) = c and d(e, x) < ε}︸ ︷︷ ︸
=:Bε

2

one can split up E[hi(XT ε
c
)], so that for c′ ∈ [0, 1]:

1

k
= E[hi(XT ε

c
)] = P (XT ε

c
∈ Bε

1) + P (XT ε
c
∈ Bε

2)c
′

holds. If c > 0 is a constant small enough but fixed we choose εn → 0 for which

P (XT εn
c
∈ Bεn

2 ) → 0, otherwise there would be a contradiction. Hence this yields

limε→0 P (XT ε
c
∈ Bε

1) = 1
k
.

2.3 Intrinsic Metrics

In order to have doubling for the intrinsic metric induced by the Dirichlet form and

to use comparability arguments in later proofs we have to assume

di ∼ ρi on Mi for i = 1, 2

while

ρi(x, y) := sup{u(x)− u(y) : u ∈ Dloc(Ei) ∩ C(Mi), dΓi(u) ≤ dµi}

In the following four lemmata we show that then ρ ∼ d holds on M while

ρ(x, y) := sup{u(x)− u(y) : u ∈ Dloc(E) ∩ C(M), dΓ(u) ≤ dµ}.
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Lemma 2.12 With the assumptions above there exists a constant c > 0 such that

d(x, y) ≥ cρ(x, y)

for all x, y ∈ M .

Proof: First we show this inequality on Mi for i = 1, 2. Let x, y ∈ Mi then

there are constants c′, c′′ > 0 s.t. d(x, y) ≥ c′di(x, y) ≥ c′′ρi(x, y) holds. Since the

restriction of functions u ∈ Dloc(E) ∩ C(M) on Mi are in Dloc(Ei) ∩ C(Mi) and if

dΓ(u) ≤ dµ the same holds for u|Mi
, i.e. dΓi(u) ≤ dµi the metric ρi ist greater than

ρ on Mi. Therefore, d(x, y) ≥ cρ(x, y) on Mi.

Now let x, y ∈ M be not in the same part Mi. Then take the shortest geodesic γx,y

w.r.t. d and any point z ∈ γx,y[0, 1] ∩ A. Then the following holds:

d(x, y) = d(x, z) + d(y, z) ≥ cρ(x, z) + cρ(y, z) ≥ cρ(x, y),

by the triangle inequality and the fact that γx,y is the shortest path w.r.t. d.

Lemma 2.13 For all x, y ∈ Mi for i = 1, 2 there exists a constant c > 0, s.t.

ρ(x, y) ≥ cd(x, y).

Proof: The idea of the proof is to construct an admissible function u ∈ {u ∈
Dloc(E) ∩ C(M) : dΓ(u) ≤ dµ} for each x ∈ Mi s.t. u(x) − u(y) ≥ cρi(x, y). Since

ρi(x, y) ≥ c1di(x, y) ≥ d(x, y) holds for c1 > 0 on Mi this is sufficient.

There exists a function Ψ0 in D(E)∩C0(M) with compact support Y ⊂ M which is

in D(E2)∩C0(M2) too with compact support Y ∩M2. Further Ψ0 satisfies 0 ≤ Ψ0 ≤ 1

on M and Ψ0 = 1 on a relatively compact open set M0 (cf. [F80], Lemma 1.4.2).

By taking the minimum of the function and K · Ψ0 we assume that the functions

have compact support to make the proof not even more technical.

The Construction:

W.l.o.g. let x ∈ M1 and Ψ(y) := ρ1(x, y). Since we have the assumption that ρi ∼ di

on Mi and d1 ∼ d2 on A the following holds: ∃ c, C > 0 : ∀ x, y ∈ A :

cρ1(x, y) ≤ ρ2(x, y) ≤ Cρ1(x, y).
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Therefore, Ψ(·) is Lipschitz continuous on A w.r.t. ρ2 with minimal constant 1
c
:

|Ψ(y)−Ψ(z)| = |ρ1(x, y)− ρ1(x, z)| ≤ ρ1(y, z) ≤ 1

c
ρ2(y, z).

Now for every n ∈ N there exists a countable number of points yk = y
(n)
k ∈ A, k ∈ N,

s.t. {B̃2(
1
n
, yk) : k ∈ N} is a covering of A with B̃2(r, x) := {y ∈ M2 : ρ2(x, y) < r}.

We define a function

φk
n(y) := (Ψ(yk)− 1

c
ρ2(yk, y))+

on M2 for each k. This function has the following properties:

• φk
n is continuous on M2 w.r.t. d

• φk
n ∈ D(E2) ∩ C0(M2)

• dΓ(φk
n) = 1

c2
dΓ(ρ2(yk, ·)) ≤ 1

c2
dµ

• φk
n(y) ≤ Ψ(y) on A

The reason for the last property is:

φk
n(y) = (Ψ(yk)− 1

c
ρ2(yk, y))+

= (Ψ(yk)−Ψ(y) + Ψ(y)− 1

c
ρ2(yk, y))+

≤ (
1

c
ρ2(yk, y) + Ψ(y)− 1

c
ρ2(yk, y))+

= Ψ(y).

Since Ψ(y) ≥ 0 everywhere on A.

Now define

φn(y) := sup
k

φk
n(y)

and

Ψn(y) := sup
l≤n

φl(y).

Because Ψn(·) is monotone increasing in n and bounded by above, there exists a

limit Ψ := limn→∞ Ψn(y). Even more since Ψn is continuous in d and {Ψn}n∈N is a
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Cauchy sequence w.r.t. || · ||∞, Ψ is continuous in d. That is for n,m ≥ N:

||Ψn −Ψm||∞ = sup
M2

|Ψn(y)−Ψm(y)|
= sup

k
sup

y∈B2( 1
N

,y
(N)
k )

|Ψn(y)−Ψm(y)|

≤ sup
k

sup
y∈B2( 1

N
,y

(N)
k )

|Ψn(y)−Ψn(y
(N)
k )|+ |Ψm(y

(N)
k )−Ψm(y)|

≤ sup
k

(
1

c

1

N
+

1

c

1

N
)

= const. · 1

N
,

since Ψn(y
(N)
k ) = Ψm(y

(N)
k ). On the gluing set A the functions Ψ and Ψ coincide,

since

|Ψ(y)−Ψ(y)| ≤ |Ψ(y)−Ψn(y)|+ |Ψ(y)−Ψn(y)|
≤ 2

c

1

n
+

2

c

1

n

with an analogous argument as above. So we can stick together the two continuous

functions Ψ and Ψ to get one continuous function

u(y) :=





Ψ(y) if y ∈ M1

Ψ(y) if y ∈ M2

w.r.t. d.

In the last part we show that dΓ(u) ≤ max{1, 1
c2
}dµ and u ∈ Dloc(E) ∩ C(M), s.t.

for c < 1 u is an admissible function in {u ∈ Dloc(E) ∩ C(M), dΓ(c · u) ≤ dµ} and

therefore:

cρ1(x, y) = cρ1(x, y)− cρ1(x, x)

= cΨ(y)− cΨ(x)

= cu(y)− cu(x)

≤ sup{v(x)− v(y) : v ∈ Dloc(E) ∩ C(M), dΓ(v) ≤ dµ}
= ρ(x, y),

∀ y ∈ M1 which will finish the proof because the proof for M2 is the same.

At first the functions φn and so the functions Ψn satisfy the property:

dΓ(φn) ≤ 1

c2
dµ
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and

dΓ(Ψn) ≤ 1

c2
dµ

on M2 since φk
n do. By the theorem of Banach-Saks there exists a weak convergent

subsequence of {Ψn}n∈N which we denote by {Ψk}k∈N such that

Ψ∗
n :=

n∑

k=1

Ψk

converges in the Dirichlet norm
√
E1(·) + || · ||2 on M2. The important properties

directly transfer to Ψ∗
n. Further one identifies the limits of Ψ∗

n and Ψn in L2(M2, µ),

since Ψn converges in L2. By the strong convergence of Ψ∗
n we now have ∀ A ⊂ M2

∣∣∣∣
∫

A

dΓ(Ψ)−
∫

A

dΓ(Ψ∗
n)

∣∣∣∣ ≤
∣∣∣∣
∫

A

dΓ(Ψ−Ψ∗
n)

∣∣∣∣

≤
∫

M2

dΓ(Ψ−Ψ∗
n) → 0, for n →∞,

and therefore dΓ(Ψ) ≤ 1
c2

dµ holds for Ψ too. We now know that dΓ(u) ≤ max{1, 1
c2
}dµ

and u ∈ Dloc(E) ∩ C(M) and that finishes the proof.

To see that the metric ρ is intrinsic in the sense of Definition 1.1 (cf. [St95a]) we

prove in the following lemma:

Lemma 2.14 The Dirichlet form (E , D(E)) on (M, d, µ) is strongly regular, i.e. the

topology induced by the intrinsic metric:

ρ(x, y) := sup{u(x)− u(y) : u ∈ Dloc(E)} ∩ C(X), dΓ(u) ≤ dµ}

coincides with the topology induced by the intrinsic metric d which comes from the

gluing procedure. Then (M,ρ) is a length space.

Proof: Let τ be the topology induced by the metric d and τ̃ the topology induced

by ρ.

We first show that τ̃ ⊂ τ : Since ρ(x, y) ≤ cd(x, y) with fixed c > 0 holds for

all x, y ∈ M we have for a ball B̃r(x) := {y ∈ M : ρ(x, y) < r} that for each

z ∈ B̃r(x) there exists a ball B̃ε(z) ⊂ B̃r(x) and the ball B ε
c
(z) ⊂ B̃ε(z) ⊂ B̃r(x),

s.t. B̃r(x) ∈ τ .

For the other direction τ ⊂ τ̃ take a ball Br(x) := {y ∈ M : d(x, y) < r}. Then for

all z ∈ Br(x) ∩ (Mi − A) there exists a ball Bε(z) ⊂ Br(x) since Mi − A is open.
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Because of d(x, y) ≤ c′ρ(x, y) for a fixed constant c′ > 0 and x, y ∈ Mi it holds that

B̃ ε
c′
(z) ⊂ Bε(z) ⊂ Br(x). If z ∈ Br(x) ∩A and Bε(z) ⊂ Br(x) we have to show that

B̃ ε
c′
(z) ⊂ Bε(z) to finish the proof. But since d(z, y) ≤ c′ρ(z, y) ≤ ε for all y ∈ Mi

this is true. By [St95a] then (M, ρ) is a length space.

Lemma 2.15 If there exists a c > 0 s.t. d(x, y) ≤ cρ(x, y) for all x, y ∈ Mi the

same holds true for all x, y ∈ M .

Proof: Since with ρ(x, y) ≤ const.d(x, y) the Dirichlet space (E , D(E)) is strongly

regular and (M,ρ) is a length space. If x, y ∈ M are not in the same part Mi take

the shortest geodesic γx,y w.r.t. ρ and a point z ∈ A∩ γx,y[0, 1]. Then it holds that:

cρ(x, y) = cρ(x, z) + cρ(y, z) ≥ d(x, z) + d(y, z) ≥ d(x, y)

because x, z ∈ Mi and y, z ∈ Mj which finishes the proof.

Corollary 2.16 An analogous result for the comparability of balls w.r.t. di and d

holds for ρi and ρ.

Proof: This is a direct consequence of ρ ∼ d and ρi ∼ di.

Corollary 2.17 Doubling holds for (ρ, µ) if doubling holds for (d, µ).

Remark 2.18 The last corollaries and lemmata and in particular Lemma 2.14 will

be used frequently throughout the next chapters without mentioning it explicitly. One

reason is to use the framework and results of [St95b], [St96] where the strong regu-

larity of the Dirichlet form is one of the three key assumptions beside doubling for

(ρ, µ) and the scaling invariant Poincaré inequality.

Example 2.19 For our examples in Rn or domains Ω ⊂ Rn with the canonical

Dirichlet form E(u, v) =
∫ ∇u · ∇vdx we briefly demonstrate that the Euclidean

metric d coincides with ρ or the restricted intrinsic metric dΩ coming from the
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Euclidean metric on Rn coincides with ρ coming from the Dirchlet form E on H1,2
0 (Ω)

resp. Also for E on H1,2 considered as a Dirichlet form on L2(Ω, dx) this is true:

For the direction d ≤ ρ or dΩ ≤ ρ one just has to recognize that the map u : x 7→
d(x, y) (resp. u : x 7→ dΩ(x, y)) lies in H1,2(Rn) (resp. H1,2

0 (Ω)) and that dΓ(u) =

|∇u|2 ≤ 1 holds true. For the other direction consider admissible functions u with

|∇u|2 ≤ 1 so that clearly |u(x) − u(y)| ≤ d(x, y) (resp. |u(x) − u(y)| ≤ dΩ(x, y))

holds.



Chapter 3

Poincaré Inequality or Spectral

Gap on Glued Spaces

In this chapter the main intention of this work will be discussed. Namely, to give

conditions in the gluing set A so that given that the Poincaré inequality on balls

inside Mi holds, the Poincaré inequality on balls in M holds. The name of this

chapter indicates that we are using spectral gap techniques to prove our theorems.

After gluing two spaces we treat the case of k-gluing which is not successively done

but simultaneously. There are two difficulties which make the conditions and the

proof a little tedious. The first one is that the measure of the gluing set A might be

too small or even zero and the second one that the gluing map Φ is bilipschitz. In the

second section we study the case that µi(Ai∩Bi(x, r)) is large enough for all x ∈ Ai.

Further we discuss the simplifications which occur if Φ is isometric. To finish this

chapter, examples of gluing in the 1-dimensional case and in the n-dimensional case

for n ≥ 2 are given.

3.1 The Poincaré Inequality on Glued Spaces

Now as we have clarified what is understood by gluing of metric measure spaces and

of Dirichlet spaces we will investigate under what conditions one can glue spaces in

order to get Poincaré inequality on the resulting glued spaces. One natural assump-

tion is the Poincaré inequality for balls in the original spaces. Another assumption

has to be made on the boundary. This boundary condition is a scaling invariant

lower bound for the spectral gap with mixed (Neumann-Dirichlet) values on the

gluing set A.

52
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From now let (M, d, µ) be the glued metric measure space, locally compact and sepa-

rable, coming from gluing (Mi, di, µi) along A by bilipschitz maps and (E , D(E)) the

strong local regular Dirichlet form coming from gluing the original Dirichlet forms

(Ei, D(Ei)) on Mi. Further the doubling property for the measure µ w.r.t. ρ holds.

Now we fix some notations which are frequently used in the sequel:

• By

IB(u) :=

∫
B

dΓ(u)∫
B
|u|2dµ

we denote the Rayleigh quotient on the set B ⊂ M w.r.t. the energy measure

dΓ of E .

• D(E , B) denotes the completion of DB := {u|B : u ∈ D(E)} w.r.t.

EB(u) :=

(∫

B

|u|2dµ +

∫

B

dΓ(u)

) 1
2

.

• We will use the notation

uB :=
1

µ(B)

∫

B

u dµ

for the mean value of u w.r.t. a set B ⊂ M and the measure µ.

• For u ∈ D(E) let ũ be the quasicontinuous version of u.

• With Bi(x, r) and B(x, r) we denote open balls w.r.t. ρi and ρ.

In particular D(E , B) is a Hilbert space and E|B is defined on it as a positive definite

symmetric bilinear form.

Further we need some definitions to formulate our theorems. Most of them are

stated in dependence on i ∈ {1, . . . , k}, i.e. are related to the i-th original space Mi:

Definition 3.1 • We say that the (P) condition is satisfied inside Mi \A if the

(strong) Poincaré inequality holds for all balls Br ⊂ Mi \A with radius r > 0.

This means, there exists a constant ci
p > 0 such that for all balls Br ⊂ Mi \A

and for all functions u in the domain D(Ei) of the Dirichlet form
∫

Br

|u− uBr |2dµ ≤ ci
pr

2

∫

Br

dΓ(u)

holds true.
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• In the following we call {Bc
i (r, x) ⊂ Mi : x ∈ A, r > 0} for i = 1, . . . , k a

comparable system of measurable sets in Mi if there exists a constant cc
i > 0,

s.t. ∀x ∈ A and ∀ r > 0

1

cc
i

Bc
i (r, x) ⊂ Bi(x, r) ⊂ cc

iB
c
i (r, x)

holds while Bi(x, r) = {y ∈ Mi : ρi(x, y) < r} and cBc
i (r, x) = Bc

i (cr, x). In

particular the balls Bi(x, r) for x ∈ A w.r.t. ρi provide obviously a comparable

system of sets.

• We say that the Rellich condition is fulfilled if for each set of functions {un}n

which are uniformly bounded in EB there exists a strong convergent subsequence

{unk
}k in L2(B, µ).

• Let

νi(Bi, N) := inf

{ ∫
Bi

dΓi(u)∫
Bi
|u|2dµi

: u ∈ D(Ei), ũ|N∩Bi
= 0, u|Bi

6= 0

}

for i = 1, . . . , k. Then the HT (Heat Transmission) condition is fulfilled if

the (P) condition holds for balls inside Mi \ A and there exists a comparable

system of sets {Bc
i (r, x) ⊂ Mi : x ∈ A, r > 0} for i = 1, . . . , k, s.t. the Rellich

condition holds on Bc
i := Bc

i (r, x). Further the following inequality is satisfied:

ν∗i (B
c
i ) ≥ ci

ht

1

r2
(3.1)

for a constant ci
ht > 0 and all 0 < r ≤ R with a fixed R > 0 while

ν∗i (B
c
i ) := inf

N⊂Bc
i
∩A

m(N)≥α·m(Bc
i
∩A)

νi(B
c
i , N)

is called the heat transmission coefficient with m an arbitrary measure on A

with constants ci > 0, s.t. m(Bi(
r
2
, x) ∩ A) ≥ ci · m(Bi(r, x) ∩ A) for all

r > 0, x ∈ A. Here α > 0 is a universal constant dependent on ci, the

Lipschitz constants Lip Φ1, . . . , Lip Φk−1 and the constant cc
i coming from the

comparable system of sets.

Remark 3.2 • By the comparability of the metrics it is enough to find such a

measure for one Ai. The doubling property will then hold w.r.t. the other

metrics.
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• One example for the measure m is the (n− 1) dimensional Hausdorff measure

in the examples in Section 3.3.2.

• Since α depends on all gluing maps and all constants cc
i one has to be careful

that α changes if the number of glued spaces changes. For our examples in

3.3.2 it is enough to have any but fixed α to get constants ci
ht such that (3.1)

holds. For isometric gluing, i.e. the gluing maps are isometries, the constant

α is equal 1
2

(see Section 3.2.2).

3.1.1 Preparatory Lemmata

The next lemma shows that a minimizing element of IB(·) over all u ∈ D(E) with

uB = 0 exists in D(E , B) if the Rellich condition holds for the sets B ∩Mi on the

original spaces Mi.

Lemma 3.3 Let

ν := inf

{
IB(u) :

∫

B

u dµ = 0, u ∈ D(E)

}

while B := B1∪B2 is the union of B1 ⊂ M1 and B2 ⊂ M2. Assume that the Rellich

condition is satisfied on Bi for i = 1, 2. Then the following holds:

(i) ∃u ∈ D(E , B) : IB(u) = ν and uB = 0,

(ii) ∃{uk}k ⊂ D(E), (uk)B = 0 : EB(uk − u) → 0.

Proof: (i) Take the minimizing sequence {un}n ⊂ D(E) with (un)B = 0, s.t.

IB(un) → ν for n → ∞. Since the sequence is EB-bounded and (D(E , B), EB) is

a Hilbert space we can find a weakly convergent subspace {unk
}k with unk

⇀ u ∈
D(E , B). It is obvious that uB = 0 because of weak convergence it follows that

∫

B

u dµ = lim
n→∞

∫

B

un · 1 dµ = 0.

Now it is enough to show that IB(u) ≤ ν holds since IB(u) < ν would lead to a

contradiction. Therefore, we have to show that IB is lower semicontinuous w.r.t.

weak convergence in D(E , B) because then the following holds:

IB(u) ≤ lim inf
k→∞

IB(unk
) ≤ lim

k→∞
IB(unk

) = ν.
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Since we know that
∫

B
| · |2dµ is continuous w.r.t. weak EB-convergence because of

the Rellich condition it suffices to prove that
∫

B
dΓ(·) is lower semicontinuous w.r.t.

weak EB-convergence:

IB(u) ≤ lim infk→∞
∫

B
dΓ(uk)∫

B
u2dµ

= lim inf
k→∞,j≥k

∫
B

dΓ(uj)

limm→∞ infi≥m

∫
B

u2
i dµ

≤ lim
k→∞

(
inf
j≥k

∫
B

dΓ(uj)∫
B

u2
jdµ

)

= lim inf
k→∞

∫
B

dΓ(uk)∫
B

u2
kdµ

.

Clearly
∫

B
dΓ(·) is lower semicontinuous w.r.t. EB-convergence. Because

∫
B

dΓ(·) is

convex we can use the theorem of Banach-Saks to get lower semicontinuity w.r.t.

weak EB-convergence. Let {un}n ⊂ D(E) be the weakly convergent subsequence in

D(E , B). Then we may assume that

ω := lim
n→∞

∫

B

dΓ(un) = lim inf
n→∞

∫

B

dΓ(un)

exists for a subsequence. If we take a further subsequence which will be denoted

again by {un}n we have 1
k

∑k
n=1 un → u strongly in EB, since EB(un) ≤ c for a

constant c > 0 and ∀n ∈ N by the Banach-Saks theorem.

Now let gN
k := 1

k

∑k
n=1 uN+n, then gN

k → u for k → ∞ and ∀N ∈ N. Then we get

∀N ∈ N:
∫

B

dΓ(gk) ≤ 1

k

k∑
n=1

∫

B

dΓ(uN+n)

by the convexity of
∫

B
dΓ(·). Now choose ε > 0 and N ∈ N large enough, s.t.

∀n ∈ N:
∫

B
dΓ(uN+n) < ω + ε. This gives us lim supk→∞

∫
B

dΓ(gk) ≤ ω and

therefore∫

B

dΓ(u) ≤ lim inf
k→∞

∫

B

dΓ(gk)

≤ lim sup
k→∞

∫

B

dΓ(gk)

≤ ω

= lim inf
n→∞

∫

B

dΓ(un)

holds by the lower semicontinuity of
∫

B
dΓ(·) w.r.t. strong convergence which finishes

the proof.
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(ii) In Hilbert spaces weak convergence together with convergence of the norms

implies strong convergence. Hence with un ⇀ u, in EB,
∫

B

dΓ(un) →
∫

B

dΓ(u)

follows by the proof above and
∫

B

|un|2dµ →
∫

B

|u|2dµ

follows by Rellich so we have un → u strongly in D(E , B).

Remark 3.4 Since D(E) = CLip
0 (M)

√
E(·)+||·||2

there exists a minimizing sequence

{uk}k ⊂ CLip
0 (M) with EB(uk − u) → 0 and (uk)B = 0. Just take uk → u and then

relabel uk := uk − (uk)B. Since we have (uk)B = 1
µ(B)

∫
B

ukdµ → 1
µ(B)

∫
B

udµ = 0

(strong L2-convergence implies weak convergence) it holds that EB(uk − u) → 0 for

k →∞.

For the proof of our main result we need an approximation lemma so that it suffices

to establish estimates only for u ∈ D(E) instead of u ∈ D(E , B).

Lemma 3.5 Let {un}n ⊂ D(E) be a minimizing sequence such that un|B → u

strongly in (D(E , B), EB) as in Lemma 3.3. Let ν := IB(u) and νn := IB(un). Then

there exists an ε > 0 and an N ∈ N such that for all n ≥ N and for all φ ∈ D(E , B)

with EB(φ) < c while c > 0 is a fixed constant
∣∣∣∣
∫

B

dΓ(un, φ)− νn

∫

B

unφdµ

∣∣∣∣ ≤ ε.

and |νn − ν| ≤ ε holds.

Proof: For all v in D(E , B) the following holds:

d

dα

∣∣∣∣
α=0

[IB(u + αv)] =
d

dα

∣∣∣∣
α=0

[ ∫
B

dΓ(u + αv)∫
B
|u + αv|2dµ

]

=
d

dα

∣∣∣∣
α=0

[∫
B

dΓ(u) + α2
∫

B
dΓ(v) + α

∫
B

dΓ(u, v)∫
B
|u|2dµ + α2

∫
B
|v|2dµ +

∫
B

uvdµ

]

=

[∫
B

dΓ(u, v)
∫

B
|u|2dµ− ∫

B
dΓ(u)

∫
B

uvdµ∫
B
|u|2dµ

∫
B
|u|2dµ

]

=

∫
B

dΓ(u, v)∫
B
|u|2dµ

− IB(u)

∫
B

uvdµ∫
B
|u|2dµ

.
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Since D(E , B) is the closure of all functions in D(E) restricted on B w.r.t. EB the

infimum does not change if one takes the infimum over all functions in D(E , B)

instead of D(E). Therefore, with vB = 1
µ(B)

∫
B

v dµ:

0 =
d

dα

∣∣∣∣
α=0

[IB(u− αv + αvB)] =

∫
B

dΓ(u, v)∫
B
|u|2dµ

− IB(u)

∫
B

uvdµ∫
B
|u|2dµ

because of
∫

B
u dµ = 0. By the calculations above, v = φ and because of Rellich

w.l.o.g.
∫

B
|u|2 dµ = 1 it follows that:

∣∣∣∣
∫

B

dΓ(un, φ)− νn

∫

B

unφdµ

∣∣∣∣

=

∣∣∣∣
∫

B

dΓ(un, φ)− νn

∫

B

unφdµ−
∫

B

dΓ(u, φ) + ν

∫

B

uφdµ

∣∣∣∣

=

∣∣∣∣
∫

B

dΓ(un − u, φ) +

∫

B

(µnun − νu)φdµ

∣∣∣∣

≤
∣∣∣∣
∫

B

dΓ(un − u, φ)

∣∣∣∣ +

∣∣∣∣
∫

B

(νnun − νu)φdµ

∣∣∣∣

≤
(∫

B

dΓ(un − u)

∫

B

dΓ(φ)

) 1
2

+

(∫

B

(νnun − νu)2dµ

∫

B

φ2dµ

) 1
2

≤ c
1
2

[(∫

B

dΓ(un − u)

) 1
2

+

(∫

B

(νnun − νnu + νnu− νu)2dµ

) 1
2

]

≤ c
1
2

[(∫

B

dΓ(un − u)

) 1
2

+

(
2

(∫

B

ν2
n(un − u)2dµ +

∫

B

(νn − ν)2u2dµ

)) 1
2

]
.

Here every term goes to zero for n →∞ because of the strong convergence in EB.

Remark 3.6 The lemma is just a special case of the fact that the derivative of

IB(·) at u in the direction v can be approximated by the derivatives of IB at un in

the direction v if un converges strongly in EB against u.

One last lemma is necessary before proving our main result:

Lemma 3.7 Let µ be a finite measure on a measurable set B with µ(B) ≤ ∞ and

{un}n ⊂ L2(B, µ) a sequence of functions converging to u in L2, i.e.
∫

B

|un − u|2dµ → 0 for n →∞.

If
∫
{u >

<
0} |u|2dµ = c > 0 then

∫
{un

>
<

0} |un|2dµ → c for n →∞.
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Proof: We only consider the case ’>’ and assume∫

{u>0}
|u|2dµ = c > 0.

Since
∫

B
|un − u|2dµ → 0 for n →∞ we have stochastic µ-convergence, i.e. ∀δ > 0:

µ({|un − u| ≥ δ}) → 0.

This holds because of the Tschebyscheff inequality in the form:

µ({|un − u| ≥ δ} ∩B) ≤ δ−2

∫

B

|un − u|2dµ.

Therefore, with

fr(x) :=





x2 ∧ r if x ≥ 0

0 if x < 0

the following holds:∣∣∣∣
∫

{un>0}
|un|2dµ−

∫

{u>0}
|u|2dµ

∣∣∣∣ =

∣∣∣∣
∫

B

f∞ ◦ undµ−
∫

B

f∞ ◦ udµ

∣∣∣∣

≤
∣∣∣∣
∫

B

f∞ ◦ undµ−
∫

B

fr ◦ undµ

∣∣∣∣

+

∣∣∣∣
∫

B

fr ◦ udµ−
∫

B

fr ◦ udµ

∣∣∣∣

+

∣∣∣∣
∫

B

fr ◦ udµ−
∫

B

f∞ ◦ udµ

∣∣∣∣

≤
∫

{|un|>√r}
|un|2dµ +

∫

{|u|>√r}
|u|2dµ

+

∣∣∣∣
∫

B

fr ◦ undµ−
∫

B

fr ◦ udµ

∣∣∣∣ .

Since for the first two terms one can choose r > 0 large enough, s.t.∫

{|un|>√r}
|un|2dµ +

∫

{|u|>√r}
|u|2dµ <

ε

2

for arbitrary small ε > 0 and independently from n. This is because un → u in

L2 and therefore {u2
n}n∈N is uniformly integrable, s.t. for the finite measure µ the

following holds: Let g ≥ 0 an ε
8
-bound for {u2

n}n∈N then ∀n ∈ N ∃δ > 0:
∫

{|un|2>δ}
|un|2dµ =

∫

{|un|2>δ}∩{|un|2≥g}
|un|2dµ +

∫

{|un|2>δ}∩{|un|2<g}
|un|2dµ

≤
∫

{|un|2≥g}
|un|2dµ +

∫

{g>δ}
gdµ

≤ ε

8
+

∫

{g>δ}
gdµ,
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while
∫
{g>δ} gdµ < ε

8
for δ large enough. If we choose δ even larger we get

∫

{|u|>√r}
|u|2dµ <

ε

4

For the last term we have to choose at first δ small enough, s.t. for An := {|un−u| ≥
δ}, 2rδµ(B) < ε

4
and then n large enough, s.t. 2µ(An)||fr||∞ < ε

4
. Because then we

have: ∣∣∣∣
∫

B

fr ◦ undµ−
∫

B

fr ◦ udµ

∣∣∣∣ ≤
∫

B

|fr ◦ un − fr ◦ u|dµ

=

∫

B

1An |fr ◦ un − fr ◦ u|dµ

+

∫

B

1Ac
n
|fr ◦ un − fr ◦ u|dµ

≤ 2µ(An)||fr||∞ + 2rδµ(Ac
n),

and that finishes the proof because of µ(Ac
n) ≤ µ(B).

3.1.2 Gluing of two Spaces

The idea of the main result is to prove a weak Poincaré inequality. Then one can

use an argument by Jerison [Je86] and Sturm [St96] to derive the strong Poincaré

inequality if doubling still holds on the glued space M . By weak Poincaré inequality

we mean the following: For fixed constants 0 < c < 1, C > 0 and ∀u ∈ D(E), r > 0:
∫

Bcr(x)

|u− uBcr(x)|2dµ ≤ Cr2

∫

Br(x)

dΓ(u)

holds true while Br(x) := {y ∈ M : ρ(x, y) < r} is the ball w.r.t. the intrinsic

metric ρ coming from the Dirichlet form E .

Remark 3.8 In Sturm [St96] the constant c is equal 1
2
. But this can be deduced for

arbitrary c > 0 by a simple covering argument and the doubling property (similar to

the chaining argument in the proof of 5.6).

Theorem 3.9 Let k = 2 and assume the HT condition holds. For x ∈ A let

Qr(x) := Bc
1(x, r) ∪ Bc

2(x, r), with {Bc
i (x, r)} the comparable sytems of sets in Mi,

for i = 1, 2. Then the following inequality holds:

ν ≥ 1

2
min

i∈{1,2}
ν∗i (B

c
i )
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where

ν := inf

{ ∫
Qr(x)

dΓ(u)∫
Qr(x)

|u|2dµ
: u ∈ D(E),

∫

Qr(x)

u dµ = 0, u|Qr(x) 6= 0

}
.

Proof: Denote Bi := Bc
i (x, r) and let Ψ ∈ D(E , Qr(x)) be the minimizer of

IQr(x) over all u|Qr(x), s.t. u ∈ D(E) and
∫

Qr(x)
udµ = 0, i.e. ν = IQr(x)(Ψ). By

Lemma 3.3 there exists a minimizing sequence {Ψn}n ⊂ D(E) with Ψn|Qr(x) → Ψ

in (D(E , Qr(x)), EQr(x)), s.t.
∫

Qr(x)
Ψndµ = 0,

∫
Qr(x)

|Ψ|2dµ = 1 and
∫

Qr(x)
Ψdµ = 0.

By Remark 3.4 one can replace {Ψn}n with a sequence in CLip
0 (M). As a minimizing

sequence and with νn = IQr(x)(Ψ
n) it holds that νn → ν for n →∞. By Lemma 3.5

we have for φ = Ψn
+ that ∆n tends to zero for n →∞ while

∆n :=

∫

Qr(x)

dΓ(Ψn, Ψn
+)− νn

∫

Qr(x)

ΨnΨn
+dµ.

Therefore, we get the following:

νn

2∑
i=1

∫

B+,n
i

|Ψn|2dµ + ∆n ≥ 1

2

2∑
i=1

∫

B+,n
i

dΓ(Ψn) (3.2)

while B+,n
i := {y ∈ Bi : Ψn(y) > 0}.

We want to exclude that∫

Q+,n
r (x)

|Ψn|2dµ → 0

for n → ∞ while Q+,n
r (x) := {y ∈ Qr(x) : Ψn(y) > 0}. Note that

∫
Qr(x)

|Ψ|2 =

1 and
∫

Qr(x)
Ψdµ = 0, hence

∫
Q+

r (x)
|Ψ|2dµ > 0 while Q+

r (x) := {y ∈ Qr(x) :

Ψ(y) > 0}. Since µ|Qr(x) is a finite measure, we can use Lemma 3.7 to show that

limn→∞
∫

Q+,n
r
|Ψn|2dµ > 0 holds.

This means that the first case∫

B+,n
i

|Ψn|2dµ → 0 for n →∞

is possible for only one i ∈ {1, 2}. Therefore, with (3.2) we get for i 6= j:

νn + νn

∫
B+,n

i
|Ψn|2dµ∫

B+,n
j
|Ψn|2dµ

+
∆n∫

B+,n
j
|Ψn|2dµ

≥ 1

2

∑2
i=1

∫
B+,n

i
dΓ(Ψn)∫

B+,n
j
|Ψn|2dµ

≥ 1

2

∫
Bx,n

j
dΓ(Ψn)

∫
B+,n

j
|Ψn|2dµ

=
1

2
IB+,n

j
(Ψn),
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and

δn := νn

∫
B+,n

i
|Ψn|2dµ∫

B+,n
j
|Ψn|2dµ

+
∆n∫

B+,n
j
|Ψn|2dµ

goes to zero for n →∞.

In the second case if

lim
n→∞

∫

B+,n
i

|Ψn|2dµ > 0 for i = 1, 2

there exists an j ∈ {1, 2} such that

νn

∫

B+,n
j

|Ψn|2dµ +
∆n

2
≥ 1

2

∫

B+,n
j

dΓ(Ψn)

and divided by
∫

B+,n
j
|Ψn|2 dµ as above we get:

νn +
∆n

2
∫

B+,n
j
|Ψn|2dµ

≥ 1

2
IB+,n

j
(Ψn)

while

δ′n :=
∆n

2
∫

B+,n
j
|Ψn|2d µ

goes to zero for n →∞.

Since with Ψn ∈ D(E) the positive part Ψn
+ is in D(E) and the quasicontinuous

version Ψ̃n
+|A∩{Ψn≤0} = 0 the following holds for δ′′n = δn or δ′′n = δ′n depending on

which case we are in:

νn + δ′′n ≥ 1

2
IB+,n

j
(Ψn) =

1

2
IBn

j
(Ψn

+)

≥ 1

2
inf

{ ∫
Bj

dΓ(u)∫
Bj
|u|2dµ

: u ∈ D(E) : ũ|A∩{Ψn≤0} = 0

}

≥ 1

2
νj(Bj, A ∩ {Ψn ≤ 0}).

By analogous calculations for the negative part Ψn
− we get for a sequence δn → 0 :

νn + δn ≥ 1

2
min

i
νi(Bi, A ∩ {Ψn ≤ 0}) ∨ 1

2
min νi(Bi, A ∩ {Ψn ≥ 0})

≥ 1

2
min

i
νi(Bi, B1 ∩B2 ∩ {Ψn ≤ 0}) ∨ 1

2
min νi(Bi, B1 ∩B2 ∩ {Ψn ≥ 0})

≥ 1

2
inf

N⊂B1∩B2

{min
i

νi(Bi, N) ∨min νi(Bi, (B1 ∩B2) \N)},
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because of B1 ∩ B2 ⊂ A and one can choose N = B2 ∩ B2 ∩ {Ψn ≤ 0} or N =

B2 ∩ B2 ∩ {Ψn ≥ 0}. Since for N ⊂ B1 ∩ B2 for an arbitrary measure m on A we

have either m(N) ≥ 1
2
m(B1 ∩B2) or m((B1 ∩B2) \N) ≥ 1

2
m(B1 ∩B2) it follows:

νn + δn ≥ 1

2
inf

N⊂B1∩B2,m(N)≥ 1
2
m(B1∩B2)

min
i

νi(Bi, N)

=
1

2
min

i
inf

N⊂B1∩B2,m(N)≥ 1
2
m(B1∩B2)

νi(Bi, N).

Now B1 and B2 are centered in A and ρ1, ρ2 and ρ are comparable, so there exists

a constant c′ > 0 such that w.l.o.g.:

1

cc
1

B1 ∩ A =
1

cc
1

Bc
1 ∩ A ⊂ B1(x, r) ∩ A ⊂ B(x, r) ∩ A ⊂ c′B2(x, r) ∩ A

⊂ cc
2c
′Bc

2(x, r) ∩ A ⊂ cc
2c
′B2 ∩ A.

Therefore, there exists a constant c∗ := 1
cc
1cc

2c′ > 0 s.t. c∗Bi∩A ⊂ B1∩B2 for i = 1, 2

and by the doubling property for m we get for a constant α > 0

1

2
m(B1 ∩B2) ≥ 1

2
m(c∗Bi ∩ A) ≥ αm(Bi ∩ A).

Hence

νn + δn ≥ 1

2
min

i
inf

N⊂B1∩B2,m(N)≥αm(Bi∩A)
νi(Bi, N)

≥ 1

2
min

i
inf

N⊂Bi∩A,m(N)≥αm(Bi∩A)
νi(Bi, N)

while the last inequality holds just because of B1 ∩B2 ⊂ A ∩Bi.

Since νn → ν and δn → 0 for n →∞ we have:

ν ≥ 1

2
min

i
inf

N⊂Bi∩A
m(N)≥αm(Bi∩A)

νi(Bi, N) =
1

2
min

i∈{1,2}
ν∗i (Bi)

while Bi = Bc
i (x, r) which finishes the proof.

The last theorem shows that under the HT condition with ν∗i (B
c
i (r, x)) ≥ ci

ht
1
r2 we

have for all sets Qr(x) := Bc
1(x, r) ∪Bc

2(x, r) that
∫

Qr(x)

|u− uQr(x)|2dµ ≤ 2r2

mini ci
ht

∫

Qr(x)

dΓ(u)

holds ∀ u ∈ D(E) with universal constant 2
mini ci

ht
> 0.

The next theorem states the main result that a strong Poincaré inequality holds on

M given the HT condition holds:
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Theorem 3.10 Suppose the HT condition holds. Then the strong Poincaré inequal-

ity holds on M , i.e.: ∃C > 0

∀ r > 0, x ∈ M :

∫

B(r,x)

|u− uB(r,x)|2dµ ≤ Cr2

∫

B(r,x)

dΓ(u) ∀ u ∈ D(E).

Proof: First we will show that a ’weak Poincaré inequality’ holds on M and then

by the doubling property on M w.r.t. (ρ, µ) we can deduce by the argument of

Jerison ([Je86]) which can be used on metric spaces as well (cf. Sturm [St96]) that

a strong Poincaré inequality will hold on M . Let B(r, x) := {y ∈ M : ρ(x, y) < r}
be an open ball in M w.r.t. to the intrinsic metric ρ. We consider two cases:

1.Case B(r, x) ∩ A = ∅:
Then B(r, x) ⊂ Mi for one i ∈ {1, 2} and there exists a ball Bi(cr, x), s.t. B(r, x) ⊂
Bi(cr, x) ⊂ Mi. Further it exists a ball B(c′r, x), s.t. B(r, x) ⊂ Bi(cr, x) ⊂ B(c′r, x).

Then with the (P) condition the following holds ∀ u ∈ D(E):
∫

B(r,x)

|u− uB(r,x)|2dµ ≤
∫

B(r,x)

|u− uBi(cr,x)|2dµ

≤
∫

Bi(cr,x)

|u− uBi(cr,x)|2dµ

≤ ci
pr

2

∫

Bi(cr,x)

dΓ(u)

≤ ci
pr

2

∫

B(c′r,x)

dΓ(u).

2.Case B(r, x) ∩ A 6= ∅:
Then we can find two comparable sets Bc

1 := Bc
1(cr, z), Bc

2 := Bc
2(cr, z) with a fixed

constant c > 0 in M1, M2 w.r.t. ρ1, ρ2, s.t. z ∈ B(r, x)∩A and B(r, x) ⊂ Bc
1∪Bc

2 :=

Qcr(z) and a ball B(c′r, x) with a fixed constant c′ > 0, s.t. Qcr(z) ⊂ B(c′r, x). By

Theorem 3.9 we get ∀ r > 0, x ∈ M :
∫

B(r,x)

|u− uB(r,x)|2dµ ≤
∫

B(r,x)

|u− uQcr(z)|2dµ

≤
∫

Qcr(z)

|u− uQcr(z)|2dµ

≤ const · r2

∫

Qcr(z)

dΓ(u)

≤ const · r2

∫

B(c′r,x)

dΓ(u)
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which finishes the proof since we have shown that for universal constants c′, c′′ > 0

and ∀ r > 0, x ∈ M :
∫

B(r,x)

|u− uB(r,x)|2dµ ≤ c′′r2

∫

B(c′r,x)

dΓ(u)

holds ∀u ∈ D(E). Now with Remark 3.8 and doubling for (µ, ρ) we get the strong

Poincaré inequality on M by [St96].

3.1.3 Gluing of k Spaces

By iteration of the gluing procedure for metric spaces we get the resulting glued space

M :=
⋃k

i=1 Mi with the common gluing set A :=
⋂k

i=1 Mi. This procedure coincides

with the simultaneous gluing procedure of all Mi, i.e. the two resulting intrinsic

metrics coincides (see Proposition 1.32). By the results of the first chapters together

with the comparability of di and ρi one gets the comparability of the resulting

intrinsic metric d on M and the original metrics di on Mi. If the measures µi are

doubling and compatible on A and the energy measures dΓi are compatible on A

too as above one gets the comparability ρ ∼ d with ρ the intrinsic metric coming

from the new strong local regular Dirichlet form (E , D(E)) on M .

The next theorem shows that if the HT condition is fulfilled the Poincaré inequality

holds on the glued space M :

Theorem 3.11 Let M =
⋃k

i=1 Mi be the glued metric space, µ a doubling measure

and (E , D(E)) the glued Dirichlet form on M . If the HT condition is fulfilled the

strong Poincaré inequality holds on M for balls w.r.t. the metric ρ.

Proof: Let Qr(x) :=
⋃k

i=1 Bc
i (x, r) for x ∈ A. The idea is to prove an analogous

lower bound for

ν := inf

{ ∫
Qr(x)

dΓ(u)∫
Qr(x)

|u|2dµ
: u ∈ D(E),

∫

Qr(x)

u dµ = 0, u|Qr(x) 6= 0

}

as in Theorem 3.9. Namely, we will show that

ν ≥ 1

k2
min

i∈{1,...,k}
ν∗i (B

c
i )

holds. Then with the HT condition we have

ν ≥ 1

k2r2
min

i∈{1,...,k}
ci
ht
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and the rest of the proof is entirely analogous to the proof of Theorem 3.10.

Clearly the preparatory Lemmata 3.3 and 3.5 still hold true under the HT-condition.

In order to prove the lower bound only the part of the proof of Theorem 3.9 which

has to be slightly modified will be discussed here. By Lemma 3.5 we have that if

{Ψn} is the minimizing sequence

∆n :=

∫

Qr(x)

dΓ(Ψn, Ψn
+)− νn

∫

Qr(x)

ΨnΨn
+dµ

goes to zero for n → ∞ while νn → ν. With the same notations B+,n
i and Q+,n

r (x)

as in Theorem 3.9 this yields

νn

k∑
i=1

∫

B+,n
i

|Ψn|2dµ + ∆n ≥ 1

k

k∑
i=1

∫

B+,n
i

dΓ(Ψn). (3.3)

and Lemma 3.7 gives us

lim
n→∞

∫

Q+,n
r (x)

|Ψn|2dµ > 0.

Now two cases are possible. In the first case there are up to (k − 1) components on

which Ψn goes to zero in L2, i.e. ∃ 1 ≤ i1 < i2 < . . . < il ≤ k for l ≤ k − 1, s.t.
∫

B+,n
im

|Ψn|2dµ → 0 for n →∞, m = 1, . . . , l,

and complementary ∃ 1 ≤ j1 < j2 < . . . < jk−l ≤ k, s.t.

lim
n→∞

∫

B+,n
jm

|Ψn|2dµ > 0 for m = 1, . . . , k − l.

Now dividing (3.3) through
∑k−l

m=1

∫
B+,n

jm

|Ψn|2dµ yields

νn + νn

∑l
m=1

∫
B+,n

im

|Ψn|2dµ
∑k−l

m=1

∫
B+,n

jm

|Ψn|2dµ
+

∆n∑k−l
m=1

∫
B+,n

jm

|Ψn|2dµ

≥ 1

k

∑k
i=1

∫
B+,n

i
dΓ(Ψn)

∑k−l
m=1

∫
B+,n

jm

|Ψn|2dµ
.

Here

δn := νn

∑l
m=1

∫
B+,n

im

|Ψn|2dµ
∑k−l

m=1

∫
B+,n

jm

|Ψn|2dµ
+

∆n∑k−l
m=1

∫
B+,n

jm

|Ψn|2dµ
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goes to zero for n →∞. Taking the maximum j∗ ∈ {j1, . . . , jk−l}, s.t.

lim
n→∞

∫

B+,n
j∗
|Ψn|2dµ = max

j∈{j1,...,jk−l}
lim

n→∞

∫

B+,n
j

|Ψn|2dµ

one gets for n large enough

νn + δn ≥ 1

k

∑k
i=1

∫
B+,n

i
dΓ(Ψn)

k
∫

B+,n
jm

|Ψn|2dµ

≥ 1

k2

∫
B+,n

j∗
dΓ(Ψn)

∫
B+,n

j∗
|Ψn|2dµ

=
1

k2
IB+,n

j∗
(Ψn).

In the second case all limits are not equal to zero so there exists j ∈ {1, . . . , k}, s.t.

by (3.3)

νn +
∆n

k
∫

B+,n
j
|Ψn|2dµ

≥ 1

k2
IB+,n

j
(Ψn)

while

δ′n :=
∆n

k
∫

B+,n
j
|Ψn|2dµ

goes to zero for n →∞. As in the proof for k = 2 we get for a new sequence δ∗n → 0

νn + δ∗n ≥ min
i

1

k2
νi(B

c
i , A ∩ {Ψn ≤ 0}) ∨min

i

1

k2
νi(B

c
i , A ∩ {Ψn ≥ 0}).

Because of
⋂k

i=1 Bc
i ⊂ A and since one can choose

N =
k⋂

i=1

Bc
i ∩ {Ψn ≤ 0} or N =

k⋂
i=1

Bc
i ∩ {Ψn ≥ 0}

one gets

νn + δ∗n ≥ min
i

1

k2
νi(B

c
i ,

k⋂
i=1

Bc
i ∩ {Ψn ≤ 0}) ∨min

i

1

k2
νi(B

c
i ,

k⋂
i=1

Bc
i ∩ {Ψn ≥ 0})

≥ inf
N⊂Tk

i=1 Bc
i

{min
i

1

k2
νi(B

c
i , N) ∨min

i

1

k2
νi(B

c
i ,

k⋂
i=1

Bc
i \N)}.
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As N ⊂ ⋂k
i=1 Bc

i we have either m(N) ≥ 1
2
m(

⋂k
i=1 Bc

i ) or m(
⋂k

i=1 Bc
i \ N) ≥

1
2
m(

⋂k
i=1 Bc

i ), s.t.

νn + δ∗n ≥ 1

k2
inf

N⊂Ti Bc
i

m(N)≥ 1
2 m(

T
i Bc

i
)

min
i

νi(B
c
i , N)

=
1

k2
min

i
inf

N⊂Ti Bc
i

m(N)≥ 1
2 m(

T
i Bc

i
)

νi(B
c
i , N)

holds. Since the sets Bc
i are centered in A and the metrics ρi, ρ are comparable

there exists a constant c′ > 0 s.t. c′Bc
j ∩ A ⊂ ⋂k

i=1 Bc
i for all j ∈ {1, . . . , k} and by

the doubling property for m we get for a constant α > 0 analogous to the proof of

Theorem 3.9

νn + δ∗n ≥ 1

k2
min

i
inf

N⊂Ti Bc
i

m(N)≥αm(Bc
i
∩A)

νi(B
c
i , N)

≥ 1

k2
min

i
inf

N⊂Bc
i
∩A

m(N)≥αm(Bc
i
∩A)

νi(B
c
i , N)

=
1

k2
min

i∈{1,...,k}
ν∗i (B

c
i )

≥ 1

k2r2
min

i∈{1,...,k}
ci
ht

while the second inequality holds just because
⋂k

i=1 Bc
i ⊂ A ∩ Bc

i . By taking the

limits this finishes the proof.

3.2 Special Cases

Two special cases are treated here which simplifies the situation significantly but

naturally restricts the class of examples. The first case requires that the gluing set

has not measure zero and therefore intensifies the gluing conditions for the measures

and the Dirichlet forms. In the second case the gluing map Φ is isometric which

simplifies many proofs in this work as well as it simplifies the HT condition.

3.2.1 Conditions on A

We will now give some conditions on the measures µi and the gluing sets Ai in order

to get the strong Poincaré inequality.



Poincaré Inequality or Spectral Gap 69

Lemma 3.12 Let B ∈ B(M) be a set in the Borel σ-field of M and S ⊂ B a subset

of B with S ⊂ B(M) and µ(S) > 0, then ∀u ∈ L2(M, µ) and ∀c ∈ R:∫

B

|u− uS|2dµ ≤ 4
µ(B)

µ(S)

∫

B

|u− c|2dµ

holds true.

Proof: By the triangle inequality and the Hölder inequality with p = q = 2:∫

B

|u− uS|2dµ ≤ 2

∫

B

|u− c|2dµ + 2

∫

B

|c− uS|2dµ

= 2

∫

B

|u− c|2dµ + 2µ(B)

∣∣∣∣c−
1

µ(S)

∫

S

udµ

∣∣∣∣
2

= 2

∫

B

|u− c|2dµ + 2
µ(B)

µ(S)2

∣∣∣∣
∫

S

(c− u)dµ

∣∣∣∣
2

≤ 2

∫

B

|u− c|2dµ + 2
µ(B)

µ(S)

∫

S

|c− u|2dµ

≤ 4
µ(B)

µ(S)

∫

B

|u− c|2dµ

because µ(S) ≤ µ(B) holds.

Theorem 3.13 Let M = M1

⋃
A M2 be the glued metric measure space and (E , D(E)

the regular strong local Dirichlet form as above. Assume that doubling holds for (ρ, µ)

and for the closed gluing sets Ai and the measures µi it holds that ∃ Ri > 0, ci > 0:

∀ x ∈ A, 0 < r ≤ Ri : µi(Bi(x, r) ∩ A) ≥ ciµi(Bi(x, r)). (3.4)

Further assume that the strong scaling invariant Poincaré inequality holds on Mi,

i.e. ∃ ci
p > 0 : ∀ x ∈ Mi, r > 0 :∫

Bi(x,r)

|u− uBi(x,r)|2dµi ≤ ci
pr

2

∫

Bi(x,r)

dΓ(u)

∀ u ∈ D(Ei), then M satisfies a strong scaling invariant Poincaré inequality.

Proof: First we show that property (3.4) transfers directly to M . Let R :=

min(R1, R2) and c := min(c1, c2) then ∀ x ∈ A, 0 < r ≤ R with Bi(x, r) ⊂ B(x, r)

µ(B(x, r) ∩ A) ≥ 1

2
µ1(B1(x, r) ∩ A) +

1

2
µ2(B2(x, r) ∩ A)

≥ c1

2
µ1(B1(x, r)) +

c2

2
µ2(B2(x, r))

≥ c

2
(µ1(B1(x, r)) + µ2(B2(x, r)))

≥ c

2
(µ(B(x, c′r)))
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while the last inequality comes from the comparability of ρi and ρ on Mi and there-

fore ∃ c′ > 0 : B(x, c′r) ⊂ B1(x, r) ∪ B2(x, r). Then the doubling property yields

(3.4) for µ on M .

Now by Lemma 3.12 with c := uBi(x,c′r) and c′ the comparison constant, s.t. 1
c′ρi ≤

ρ ≤ c′ρi we get for all functions u ∈ D(E) and x ∈ A, 0 < r ≤ R:
∫

B(x,r)

|u− uB(x,r)|2dµ ≤
∫

B(x,r)

|u− uB(x,r)∩A|2dµ

≤
∫

B(x,r)∩M1

|u− uB(x,r)∩A|2dµ

+

∫

B(x,r)∩M2

|u− uB(x,r)∩A|2dµ

≤ 4
µ(B(x, r) ∩M1)

µ(B(x, r) ∩ A)

∫

B(x,r)∩M1

|u− uB1(x,c′r)|2dµ

+ 4
µ(B(x, r) ∩M2)

µ(B(x, r) ∩ A)

∫

B(x,r)∩M2

|u− uB2(x,c′r)|2dµ

≤ c′′
∫

B1(x,c′r)
|u− uB1(x,c′r)|2dµ

+ c′′
∫

B2(x,c′r)
|u− uB2(x,c′r)|2dµ

≤ c′′c1
pr

2

∫

B1(x,c′r)
dΓ(u) + c′′c2

pr
2

∫

B2(x,c′r)
dΓ(u)

≤ 2c′′r2 max
i
{ci

p}
∫

B1(x,c′r)∪B2(x,c′r)
dΓ(u)

≤ 2c′′r2 max
i
{ci

p}
∫

B(x,c′2r)

dΓ(u)

with constant c′′ > 0. Hence the weak Poincaré inequality on M holds. This is clear

for B(x, r) ⊂ Mi \ A and for B(x, r) ∩ A 6= 0 we take B(z, 2r) for z ∈ B(x, r) ∩ A,

s.t. B(x, r) ⊂ B(z, 2r):
∫

B(x,r)

|u− uB(x,r)|2dµ ≤
∫

B(x,r)

|u− uB(z,2r)|2dµ

≤
∫

B(x,2r)

|u− uB(z,2r)|2dµ ≤ 8c′′r2 max
i
{ci

p}
∫

B(z,2c′2r)

dΓ(u).

To finish the proof we use a chaining argument by Jerison [Je86] which was extended

to metric spaces by Sturm [St96]. This argument derives the strong Poincaré in-

equality if the weak Poincaré inequality is given and doubling holds for µ w.r.t. the

intrinsic metric ρ.
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Remark 3.14 (k-Gluing) To glue k spaces one can generalize Theorem 3.13 in a

straightforward way.

x
0

γ

A

x

Figure 3.1: Gluing set A with cone condition 3.4

Remark 3.15 (Cone Condition for A) Here a condition on the gluing set A will

be given, s.t. property (3.4) is fulfilled. Assume A satisfies the following property:

There exist a constant 0 < c ≤ 1 and a point x0 ∈
◦

A, s.t. each x ∈ A can be

joined to x0 by a curve γ : [0, l] → A parametrized by arc length with γ(l) = x0 and

B(γ(t), ct) ⊂ A.

Because
◦

A 6= 0 there exists an R > 0, s.t. B(x0, R) ⊂ A. Let x ∈ A and 0 < r ≤ R,

then there exists a ball B(z, cr
2
) ⊂ B(x, r) ∩ A. This is true because either z = x0

is in B(x, r
2
) or if x0 /∈ B(x, r

2
) take z = γ( r

2
). Since by the doubling property and

B(x, r) ⊂ B(z, 2r)

µ(B(x, r)) ≤ µ(B(z, 2r)) ≤ c′µ(B(z,
cr

2
))

holds for a constant c′ > 0. Therefore,

µ(B(x, r)) ≤ c′µ(B(z,
cr

2
)) = c′µ(B(z,

cr

2
) ∩ A) ≤ c′µ(B(x, r) ∩ A)

yields property (3.4).
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Example 3.16 Simple examples for the Theorem 3.13 are k-pods or k-sheets. For

the k-pods one can check the Poincaré inequality quite easily by direct calculations but

also by verifying our gluing conditions (see Section 3.3.1). Let Rn
(i) for i = 1, . . . , k

be k copies of Rn equipped with the usual Euclidean metric, Lebesgue measure λn

and the canonical Dirichlet form E(u) :=
∫ |∇u|2dλn. Now one can glue these spaces

via (k − 1) isometric maps Φi : Rn,+
(i) → Rn,+

(i+1), i = 1, . . . , k − 1 along Rn,+
(i) := {x ∈

Rn
(i) : x1 ≥ 0} as described in Section 1.7. This yields the k-sheet Mk :=

⋃k
Rn,+ Rn

(i).

The Poincaré inequality holds for balls on Rn. Property (3.4) holds clearly for Rn,+

by the Remark (3.15). Therefore, the strong Poincaré inequality holds on k-sheets.

M1 =

M2 =R

R
A2

A1
Φ

A1

A2

Φ

M1
=R2

R2=2M

Figure 3.2: Alternative gluing of k-spiders and k-sheets

3.2.2 Isometric Gluing

We will now use the technique by Jerison [Je86] and Sturm [St96] to show that if two

metrics like ρi and di are comparable it does not matter if one states that the strong

Poincaré inequality holds for one or for the other metric because one implicates the

other and vice versa. The only additional condition on di is to be compatible with

the topology and the existence of geodesics. But these conditions hold for all metrics

in this work.

Proposition 3.17 Let d1, d2 be two comparable metrics in (M, µ) such that µ is a

doubling measure w.r.t. d1 or d2. If the strong Poincaré inequality holds for balls

w.r.t. d1 then the strong Poincaré inequality holds for balls w.r.t. d2 too.
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Proof: By the comparability of d1 and d2 one can easily see that doubling for µ

holds w.r.t. d1 and d2. Further there exists a constant c ≥ 1 s.t. B1(x, r) ⊂ B2(x, cr)

and B2(x, r) ⊂ B1(x, cr) while Bi(x, r) := {y ∈ M : di(y, x) < r}. This together

with the Poincaré inequality for balls w.r.t. d1 yields with C > 0 the Poincaré

constant:∫

B2(x,r)

|u− uB2(x,r)|2dµ ≤
∫

B2(r,x)

|u− uB1(cr,x)|2dµ

≤
∫

B1(cr,x)

|u− uB1(cr,x)|2dµ

≤ Cr2

∫

B1(cr,x)

dΓ(u)

≤ Cr2

∫

B2(c2r,x)

dΓ(u)

while the first inequality comes from mina∈R

∫
B
|u− a|2dµ =

∫
B
|u− uB|2dµ for any

measurable set B ∈ B(M). So the weak Poincaré inequality holds for balls w.r.t.

d2. Together with the doubling property we now use the result of Jerison [Je86] and

Sturm [St96] to get the strong version which finishes the proof.

We now consider an isometric gluing map Φ in which case the proofs become easier.

The distances in Mi will not be changed by the gluing procedure, i.e. di(x, y) =

d(x, y), ∀x, y ∈ Mi and therefore a ball in the new metric B(x, r) := {y ∈ M :

d(x, y) < r} with x ∈ A is the union of balls in Mi, i.e. B(x, r) =
⋃k

i=1 Bi(x, r) with

the same radius r. If we now check the proofs above and take the balls w.r.t. di as

the comparable systems of sets we get the Poincaré inequality for balls w.r.t. the

metric d on M and this yields the Poincaré inequality for balls w.r.t. ρ if doubling

holds and the metrics d, ρ are comparable as we know from Corollary 3.17. Then

the HT condition simplifies, i.e.

inf
N⊂Bi(r,x)∩A

m(N)≥ 1
2 m(Bi∩A)

νi(Bi, N) ≥ cht
1

r2
, (3.5)

(α = 1
2
) and the measure m has not to be a doubling measure on A (see the end of

the proofs of Theorem 3.9 and 3.11).

3.3 Examples

Now we will discuss examples in the one-dimensional and the n-dimensional Eu-

clidean setting with n ≥ 2.
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3.3.1 Spiders and Graphs

For dimension one, i.e. spiders, trees or graphs, there are two alternative construc-

tions as described in Section 1.8. If the gluing set A is R+ one can use Theorem 3.13

as described in Example 3.16. If the gluing set is just one point and the Dirichlet

form comes from the canonical Laplacian we can verify the HT condition in a direct

way:

Let f ∈ C1([0, r]) with f(0) = 0. Then with f(t) =
∫ t

0
f ′(s)ds we can apply the

Cauchy-Schwarz inequality to get

f 2(t) =

(∫ t

0

f ′(s)ds

)2

≤ t

∫ t

0

f ′(s)2ds ≤ t

∫ r

0

f ′(s)2ds

for t ∈ [0, r]. Hence
∫ r

0

f 2(t)dt ≤
∫ r

0

tdt

∫ r

0

f ′(s)2ds ≤ r2

2

∫ r

0

f ′(s)2ds

holds true.

3.3.2 Examples in Rn for n ≥ 2

In the following section two classes of nontrivial examples for applications of the

main theorem are presented. Throughout this section λn denotes the n-dimensional

Lebesgue or Hausdorff measure while by λn−1 the (n − 1)-dimensional Hausdorff

measure is meant. Let Rn
+ := {x ∈ Rn : x1 ≥ 0} and n ≥ 2 for the rest of this

section.

The first class of metric measure spaces which shall be glued together here are open

subsets Ω of the Euclidean space Rn along closed subset A ⊂ Ω with dimension

n− 1 while the Dirichlet space defined on Ω is given by the canonical example

E(u, v) :=
1

2

n∑
i=1

∫
∂u

∂xi

∂v

∂xi

dλn

of a strong local regular Dirichlet form on H1,2
0 (Ω).

The second class consists of closed bounded subsets Ω of the Euclidean space Rn with

Lipschitz boundary ∂Ω along the closed subset A = ∂Ω while the Dirichlet space

defined on Ω is given by the canonical example (E , D(E)) with D(E) = H1,2(Ω) as

the maximum Markovian extension of the form (E , C∞0 (Ω)). This form is then a
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regular strong local Dirichlet form on L2(Ω, λn).

What is left is the description of a possible gluing set A ⊂ Ω in the first class and the

proof for the HT condition on A. For this purpose we recall the following nontrivial

result by Denzler [De99a]:

Theorem 3.18 Let B ⊂ Rn be a bounded convex domain, n ≥ 3. Then for any

D ⊂ ∂B of area λn−1(D) = c1 for c1 > 0 one has the estimate:

νi(B,D) ≥ min



c2(B)

c
(n−2

n−1)
1

λn(B)
,
ν(B)

2





for a constant c2(B) > 0 and ν(B) the first Neumann eigenvalue on B.

Remark 3.19 In this estimate c2(B) depends only on a lower bound for the first

Neumann eigenvalue ν(B) of B and some geometric condition on B. A similar

bound holds true for n = 2 (cf. [De99a]).

This theorem will now serve as a starting point for a class of examples where the

gluing set A lies in a (n− 1)-dimensional hyperplane intersecting Ω:

Theorem 3.20 Let A ⊂ Ω be a closed set lying in a (n−1)-dimensional hyperplane

H ⊂ Rn intersecting Ω, s.t. dist(A, ∂Ω) > R > 0. Further for all balls Br(x) with

x ∈ A and r ≤ R it holds that

λn−1(A ∩Br(x)) ≥ rn−1c0

for a constant c0 > 0. Then a scaling invariant Poincaré inequality for mixed

boundary value functions holds or in other terms the HT condition is satisfied, i.e.

for c1 > 0 there exists a constant c2 > 0 such that for all N ⊂ Br(x) ∩ A and

λn−1(N) ≥ c1λ
n−1(A ∩Br(x)):

ν(Br(x), N) ≥ c2
1

r2

while

ν(Br(x), N) := inf

{∫
Br(x)

|∇u|2dλn

∫
Br(x)

|u|2dλn
, u|N = 0, u ∈ H1,2

0 (Ω)

}

is the lowest Neumann-Dirichlet eigenvalue.
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Proof: By the invariance under translation and rotation one can consider the

problem for the hyperplane

∂Rn
+ := {x ∈ Rn : x1 = 0}

while A ⊂ ∂Rn
+. Denzler’s theorem [De99a] tells us that for the intersection B1(x)∩

Rn
+, x ∈ ∂Rn

+ the following holds:

inf
N ⊂ B1(x) ∩ ∂Rn

+

λn−1(N) ≥ c1c0

ν(B1(x) ∩Rn
+, N) ≥ c(B1(x) ∩Rn

+, c1c0). (3.6)

W.l.o.g. we can choose x = 0. Take a function u ∈ H1,2
0 (Ω) which is zero on a set

N ⊂ Br(x) ∩ A and λn−1(N) ≥ c1λ
n−1(A ∩ Br(x)) holds. The set 1

r
N is defined in

the following way:

1

r
N := {1

r
y : y ∈ N}.

Then

λn−1(
1

r
N) ≥ 1

rn−1
λn−1(N)

≥ 1

rn−1
c1λ

n−1(A ∩Br(x))

≥ 1

rn−1
c1r

n−1c0 = c1c0

holds. The first inequality holds because the map y 7→ 1
r
y is a Lipschitz map with

Lipschitz constant 1
r

and the second inequality holds because λn−1 is the n − 1

dimensional Hausdorff measure. By defining

v(y) := u(ry)

one gets a function v ∈ H1,2
0 (1

r
Ω) extending with zero or not respectively (depending

on r > 1 or r < 1). It holds that v|( 1
r
N) = 0 because u is zero on N . Therefore, one

gets:
∫

Br∩Rn
+

|u(x)|2dλn(x) =

∫

B1∩Rn
+

|u(ry)|2rndλn(y)

= rn

∫

B1∩Rn
+

|v(y)|2dλn(y)

≤ rnc

∫

B1∩Rn
+

|∇v(y)|2dλn(y)

= rnc

∫

B1∩Rn
+

|∇u(ry)|2dλn(y)
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= rn+2c

∫

B1∩Rn
+

|(∇u)(ry)|2dλn(y)

= r2c

∫

Br∩Rn
+

|∇u(x)|2dλn(x).

Here the transformation rule is applied in the first and in the last equality and the

chain rule in the fourth equality while the inequality comes from 3.6. Because of

symmetry the same holds true for Br ∩Rn
− with Rn

− := {x ∈ Rn : x ≤ 0}. Sticking

together both inequalities for u one gets the following:
∫

Br

|u(x)|2dλn(x) ≤ r2c

∫

Br

|∇u(x)|2dλn(x).

Therefore, it holds for all u ∈ H1,2
0 (Ω) with u|N = 0 for a set N ⊂ Br(x) ∩ A and

λn−1(N) ≥ c1λ
n−1(A ∩Br(x)) that with c2 := 1

c
:

ν(Br(x), N) ≥ c2
1

r2

which finishes the proof.

The first theorem gives the answer to the question whether the HT condition holds

for simple examples of linear glued spaces.

In order to extend the results above to the case of nonlinear gluing sets a bilipschitz

transformation can be used. Let η : Rn → Rn be a bilipschitz map with constant

L, i.e.:

1

L
|x− y| ≤ |η(x)− η(y)| ≤ L|x− y|.

If A and Ω have the same properties as in Theorem 3.20 one can prove the HT

condition for η(A) and η(Ω).

Theorem 3.21 The HT condition is fulfilled for η(A) and η(Ω), i.e. for x ∈ η(A)

and for all N ⊂ η(A) ∩Qr(x) with λn−1(N) ≥ c1λ
n−1(η(A) ∩Qr(x)):

ν(Qr(x), N) ≥ c2

L2+n

1

r2

while Qr(x) = η(Br(η
−1(x))).

Proof: Let u ∈ H1,2
0 (η(Ω)) ∩ C1(η(Ω)) be a function which is zero on the set

N ⊂ Qr(x) ∩ η(A) with λn−1(N) ≥ c1λ
n−1(η(A) ∩ Qr(x)). Then the function v
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defined as v(y) := u(η(y)) is absolutely continuous on lines and therefore v ∈ H1,2
0 (Ω)

if |v|H1,2
0 (Ω) < ∞ is shown.

The Jacobian of η at x is bounded from below through L−n :

| det Dη(x)| ≥ L−n.

Hence one obtains:
∫

Br(η−1(x))

|v(y)|2dλn(y) ≤ Ln

∫

Br(η−1(x))

|u(η(y))|2| det Dη(y)|dλn(y)

= Ln

∫

Qr(x)

|u(z)2dλn(z).

To keep the derivative part bounded one computes:
∫

Br(η−1(x))

|∇v(y)|2dλn(y) ≤
∫

Br(η−1(x))

|(Dη)∗∇u(η(y))|2dλn(y)

≤ L2

∫

Br(η−1(x))

|∇u(η(y))|2dλn(y)

≤ L2+n

∫

Br(η−1(x))

|∇u(η(y))|2| det Dη(y)|dλn(y)

= L2+n

∫

Qr(x)

|∇u(z)|2dλn(z)

while besides the chain rule and the transformation rule (see [EG92] or [Fed69]) for

integrals the estimates |(Dη)∗(y)|2 < L2 and | det Dη(x)| > L−n were used.

Since u is zero on N the function v is zero on η−1(N) and for η−1(N) the following

holds:

λn−1(η−1(N)) ≥ 1

Ln−1
λn−1(N)

≥ 1

Ln−1
c1λ

n−1(η(A) ∩Qr(x))

≥ 1

Ln−1
c1L

n−1λn−1(A ∩Br(η
−1(x)))

= c1λ
n−1(A ∩Br(η

−1(x))).

So one has to apply the Theorem 3.20 with constant c1. That Qr(x) satisfies the

HT condition comes from the fact that η is bilipschitz. Hence it follows for Qr(x)

with x ∈ A and r ≤ R
2
:

∫

Qr(x)

|u(y)|2dλn(y) =

∫

Qr(x)

|v(η−1(y))|2dλn(y)
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≤ Ln

∫

Qr(x)

|v(η−1(y))|2| det Dη−1(y)|dλn(y)

= Ln

∫

Br(η−1(x))

|v(z)|2dλn(z)

≤ r2

c2

Ln

∫

Br(η−1(x))

|∇v(z)|2dλn(z)

=
r2

c2

Ln

∫

Br(η−1(x))

|∇(u ◦ η)(z)|2dλn(z)

=
r2

c2

Ln

∫

Br(η−1(x))

|(Dη)∗(z)∇u(η(z))|2dλn(z)

≤ r2

c2

L2L2n

∫

Br(η−1(x))

|∇u(η(z))|2| det Dη(z)|dλn(z)

=
r2

c2

L2+2n

∫

Qr(x)

|∇u(y)|2dλn(z)

while we have used that | det Dη−1(x)| > L−n a.e. because η is bilipschitz and the

same tools as in the calculation above. Now by division and the fact that this holds

for all functions u with u|N = 0 and the properties for N one gets the same lower

bound. This finishes the proof for c2
L2+2n instead of c2.

Now to check the HT condition for the second class of examples one has to model

the boundary. A part of this has already been proved in Theorem 3.20.

Since ∂Ω is Lipschitz continuous there exists a finite cover of open sets U1, . . . , Um

of ∂Ω and ∂Ω ∩ Ui is the graph of a Lipschitz function f : Rn−1 7→ R such that Ω

is locally the set above the graph, i.e.

{(x1, . . . , xn) : x1 > f(x2, . . . , xn)} ∩ Ui = Ω ∩ Ui.

Therefore, there exist constants R, L > 0 such that for all x ∈ ∂Ω there exist a bilip-

schitz map ηx
i : Rn 7→ Rn with Lipschitz constant L and ηx

i (B(r, 0)) ⊂ Ui, ηx
i (0) = x

for all r < R. Further ηx
i (B(r, 0) ∩ {x ∈ Rn : x1 = 0}) = ηx

i (B(r, 0)) ∩ ∂Ω while

B(r, 0) is a ball w.r.t. the Euclidean metric. For instance define ηx
i (x1, . . . , xn) =

(−f(x2, . . . , xn), x2, . . . , xn). Hence by the images of the sets B(r, 0)∩Rn
+ w.r.t. the

maps ηx
i for all x ∈ ∂Ω, r < R and i ∈ {1, . . . , m} we get the comparable systems of

sets. This a direct consequence of Theorem 3.20 and Theorem 3.21 if one replaces

Br by Br ∩Rn
+ and Qr(x) = η(Br(η

−1(x))) by Qr(x) = ηx
i (B(r, 0) ∩ Rn

+). That the

Poincaré inequality holds for balls in the interior of Ω is clear. Further the intrinsic

metric dΩ on Ω coincides with the intrinsic metric ρ coming from the Dirichlet form

(see Example 2.19).
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Remark 3.22 The example of the cube (cf. Section 1.8) fits into our second class

so that Poincaré holds for the cube. More generally one can construct Euclidean

complexes by iteration of the gluing procedure.



Chapter 4

Applications for Markov Processes

In this chapter we summarize some applications of our results. Mainly we consider

the diffusion process (Xt, Px) which is properly associated with the strongly local

Dirichlet form (E , D(E)). Provided all our gluing conditions hold we have the ex-

istence of the heat kernel pt(x, y) as well as lower and upper Gaussian bounds for

pt(x, y) by the results in [St95b] and [St96]. Furthermore Hölder continuity holds

for harmonic functions on M and for local solutions of (L− ∂
∂t

)u = 0 while L is the

associated operator to (E , D(E)). They come from the Harnack inequality described

in [St96] which also implicates that the process (Xt, Px) can be chosen to be strong

Feller. Finally we demonstrate that with an additional assumption on (E , D(E)) a

short-time asymptotic result for the heat kernel pt(x, y) can be proved for our glued

space. Further applications by the results of M. Biroli, N.A. Tchou [BT97] and

M. Biroli, U. Mosco [BM95a], [BM95b] on homogenous spaces w.r.t. the intrinsic

metric ρ shall only be mentioned here and not be discussed in the sequel.

4.1 Markov Processes

Since (E , D(E)) is a strongly local regular Dirichlet form on L2(M, µ) one can con-

struct a µ-symmetric Markov process (Xt, Px) whose transition semigroup (Pt)t>0

is properly associated with the contraction semigroup (Tt)t>0 of (E , D(E)) in the

following sense

Ptu is a quasicontinuous version of Ttu

for all u ∈ L2(M, µ) and t > 0 (cf. [Fot94], Theorem 7.2.1). Moreover, since

(E , D(E)) is strongly local the process (Xt, Px) can be chosen to be a diffusion pro-

cess, i.e. Xt has continuous paths Px-a.e. (cf. [Fot94], Theorem 7.2.2).

81
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The uniqueness of the attachment of a diffusion process (Xt, Px) to the regular

Dirichlet form (E , D(E)) is given in the following sense (cf. [Fot94], Theorem 4.2.7):

Let (X1
t , P 1

x ), (X2
t , P 2

x ) be two m-symmetric diffusion processes. If their transition

semigroups (P 1
t )t>0, (P 2

t )t>0 are properly associated with (E , D(E)) there exists a

set N ⊂ M of capacity zero such that

P 1
t (x,B) = P 2

t (x,B)

∀ x ∈ M \N and ∀ B ∈ B(M) with B ⊂ M \N . Therefore, statements about the

process associated with (E , D(E)) holds usually Px-a.s. for q.e. x ∈ M .

We presented some examples of diffusion processes in Section 2.2.2 in particular

to discuss the behavior of the process when hitting the gluing set A. But it is a

priori not clear wether the process ever hits the gluing set. The set A could be

of capacity zero. For instance if one glues higher dimensional spaces along a finite

number of points. In this case there is no connection of the original spaces from

the diffusions perspective. We discuss this topic in Section 4.3. Of course there are

more examples of strong local regular Dirichlet forms which can be glued together

and give rise to other diffusion processes than the so called Brownian motion treated

in Section 2.2.2.

4.2 The Heat Kernel

Up to now we have ignored the results about the Poincaré inequality on glued

spaces. In [St95b] and [St96] a series of results based on the validity of the scale

invariant Poincaré inequality are presented. The framework is quite general namely

the basic space X is assumed locally compact, separable, Hausdorff and the Dirichlet

form E on L2(X,m) is strongly local and regular while m is a Radon measure with

support X. Therefore, our setting fits perfectly into this framework with M = X

and µ = m. In [St95b] and [St96] time-dependent Dirichlet forms Et for t ∈ R

one a common domain F ⊂ L2(X, m) are considered in order to study solutions of

parabolic equations Ltu = ∂
∂t

u while Lt are the operators on L2(X, m) associated

with Et. In our setting Et = E is time-independent so that some assumptions in

[St95b] and [St96] become trivial and we end up with four additional assumptions

we have to check before adopting the results:

(i) Strong regularity: The topology induced by ρ is the same as the original one.
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(ii) Doubling property: There exists a constant c > 0 such that

µ(B2r(x)) ≤ cµ(Br(x))

for all r > 0, x ∈ M and B2r(x) ⊂ M .

(iii) Poincaré inequality: There exists a constant cp such that for all balls Br(x) ⊂
M we have

∫

Br(x)

|u− uBr(x)|2dµ ≤ cpr
2

∫

Br(x)

dΓ(u)

for all u ∈ D(E).

(iv) Balls are relative compact in M .

By our gluing conditions we have the comparability of ρ and d and therefore (i) is

fulfilled. Condition (iv) holds because we start with complete spaces and therefore

our glued space is complete w.r.t. ρ which is equivalent to (iv) (cf. [St96], Lemma

1.1). The conditions (ii) and (iii) hold true if the corresponding gluing conditions

are satisfied which is in particular true for our examples in Section 3.3.1 and 3.3.2.

If (i)-(iv) are valid the fundamental solution (or heat kernel) of the parabolic operator

L− ∂
∂t

(L the associated operator to (E , D(E))) exits, (cf. [St95b], Prop. 2.3), with

Ttu(y) =

∫

M

p(t, x, y)u(x)µ(dx)

for all u ∈ L1(M, µ)∪L∞(M, µ) while (Tt)t>0 is the associated contraction semigroup

to E .

4.3 Estimates for the Transition Probabilities

From now on we assume that (i)-(iv) hold true for our glued space (M, d, µ) with

the strong local regular Dirichlet form (E , D(E)) with intrinsic metric ρ. Then a

series of upper and lower bounds for the heat kernel (or transition probabilities for

(Xt, Px)) are given which we summarize in the following:
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Upper bounds:

Theorem 4.1 (cf. [St95b], Corollary 2.7, [St96], Corollary 4.2) For all x, y ∈
M and t > 0:

p(t, x, y) ≤ Cµ−
1
2 (B√

t(x))µ−
1
2 (B√

t(y)) exp

(
−ρ2(x, y)

4t

)(
1 +

ρ2(x, y)

t

)N
2

with a constant C only depending on N , the doubling constant in the sense µ(B2r(x)) ≤
2Nµ(Br(x)).

More sophisticated estimates with bounds depending on the spectral gap or esti-

mates for the derivatives ∂
∂t

j
p(t, x, y) for j ∈ N (cf. [St95b], Theorem 2.6, Corollary

2.7) are possible.

Lower bounds:

Theorem 4.2 (cf. [St96]) For all x, y ∈ M and t > 0:

p(t, x, y) ≥ 1

C
µ−1(B√

t(x)) exp

(
−C

ρ2(x, y)

t

)

holds while the constant C only depends on the doubling constant and the Poincaré

constant cp.

Remark 4.3 • The lower bound gives an answer to the question if the process

hits or transverse the gluing set A, whenever condition (i)-(iv) hold true for

the glued space for instance for our examples in Section 3.3.1 and 3.3.2.

• In Section 4.5 another lower bound will be discussed in order to study the

short-time asymptotic of the heat kernel.

4.4 Hölder Continuity and Strong Feller Processes

In [St96] the equivalence of (ii), (iii), (iv) under (i) with a Sobolev inequality on balls

and with this the equivalence of (ii), (iii) under (i) and (iv) with a parabolic Harnack

inequality for the operator L − ∂
∂t

is proved ([St96], Theorem 2.6. and Theorem

3.5.). As a consequence it is deduced that (i)-(iv) implies Hölder continuity of local

solutions of the parabolic equation (L− ∂
∂t

)u = 0 and of the elliptic equation Lu = 0

by the iteration technique of J.Moser. Therefore, we have for our glued space M :
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Proposition 4.4 (cf. [St96], Cor.3.3.) Let u be a harmonic function on M , i.e.

Lu = 0 on M . Then u is Hölder continuous, i.e. there exist constants α ∈]0, 1[ and

C such that for all balls B2r(x) and y, z ∈ Br(x)

|u(y)− u(z)| ≤ C sup
B2r(x)

|u|
( |y − z|

r

)α

(4.1)

holds.

For the validity of (4.1) it is enough that Lu = 0 holds on B2r(x). As another

corollary of the Harnack inequality one gets the strong Liouville property:

Corollary 4.5 (cf. [St96], Cor.3.4.) All nonnegative local solutions of Lu = 0

on M are constant on X.

Another consequence of (i)-(iv) is the following:

Proposition 4.6 The diffusion process (Xt, Px) properly associated with (E , D(E))

can be chosen to be a strong Feller process.

Proof: This is a consequence of the Harnack inequality since

Ttu(x) =

∫

M

pt(x, y)u(y)dµ(y)

is a local solution of (L− ∂
∂t

)u = 0 and therefore it is Hölder continuous.

4.5 Short-Time Asymptotic of the Heat Kernel

The short-time asymptotic of the heat kernel has been proved by Varadhan [Va67]

for Riemannian manifolds and has been generalized by Norris [No97] to Lipschitz

manifolds. In [Ra01] with (i)-(iv) and some additional assumptions a further general-

ization to Dirichlet forms on locally compact spaces has been proved. The additional

assumption for our setting is:

(v) Carré du champ: The Dirichlet form (E , D(E)) admits a carré du champ operator,

i.e. a nonnegative definite, symmetric continuous bilinear form

Γ : D(E)×D(E) → L1(M,µ)

such that E(u, v) = 1
2

∫
M

Γ(u, v)dµ.
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Remark 4.7 If one assumes (v) for the original spaces one gets (v) for the glued

space by the definition of the glued form E, i.e.

Γ(u, v)(x) = Γi(u|Mi
, v|Mi

) for x ∈ Mi.

For our examples in in Section 3.3.1 and 3.3.2 Γ(u, v)(x) = ∇u(x)∇v(x) holds.

In [Ra01] with (i)-(v) it is shown that

lim inf
t→0

2t log Pt(x, y) ≥ −ρ2(x, y)

holds. The upper bound described in Theorem 4.1 can be rewritten so that for every

ε > 0 with a constant C = C(ε, N) it holds that

p(t, x, y) ≤ Cµ−
1
2 (B√

t(x))µ−
1
2 (B√

t(y)) exp

(
−ρ2(x, y)

(4 + ε)t

)

(cf. [St95b]) by absorbing the polynomial term into the exponential term. Then by

the doubling property this yields for every ε > 0

lim sup
t→0

2t log pt(x, y) ≤ − 1

2 + ε
ρ2(x, y).

Here ρ is the intrinsic metric w.r.t. the energy measure dΓ. By defining E(u, v) :=
1
2

∫
M

dΓ(u, v) and letting ε → 0 we get

lim sup
t→0

2t log pt(x, y) ≤ −ρ2(x, y).

Hence we have the following classical short-time asymptotic result for heat kernels

on our glued spaces:

Theorem 4.8 Assume that we glue spaces as described above. If the gluing condi-

tions are satisfied so that (i)-(v) is satisfied on the glued space, then

lim
t→0

2t log pt(x, y) = −ρ2(x, y).

holds true for the heat kernel pt(x, y) on the glued space M .



Chapter 5

Some Remarks on Rellich’s

Compact Embedding and the

Poincaré Inequality

The intention of this chapter is to give a generalization for a result by Amick [Am78]

to metric measure spaces instead of the Euclidean space Rn and more general Dirich-

let forms instead of the canonical form E(u, u) :=
∫

Ω
|∇u|2. In [Am78] the author

gives a characterization for the validity of Rellichs compact embedding and for the

Poincaré inequality on a bounded domain Ω in Rn in terms of conditions on the

boundary. Namely he defines a quantity

ΓΩ(ε) := sup
u∈W 1

2 (Ω)

∫
Ωε
|u|2

|u|2
W 1

2 (Ω)

while Ωε := {x ∈ Ω : d(x, ∂Ω) < ε} with d the Euclidean metric on Rn. Since

ΓΩ(ε) ∈ (0, 1], ∀ε > 0 and ΓΩ(ε) is monotone in ε one can define

ΓΩ(0) := lim
ε→0

ΓΩ(ε).

Then the embedding iΩ : W 1
2 (Ω) ↪→ L2(Ω) is compact if and only if ΓΩ(0) = 0.

Further the Poincaré inequality on Ω holds, i.e. ∃ c > 0 : ∀ u ∈ W 1
2 (Ω) :

∫

Ω

|u− uΩ|2 ≤ c

∫

Ω

|∇u|2 (5.1)

if and only if ΓΩ(0) < 1. In [Am78] the inequality 5.1 is written in the form

∫

Ω

|u|2 ≤ const.

{∣∣∣∣
∫

Ω

u

∣∣∣∣
2

+

∫

Ω

|∇u|2
}

87
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∀ u ∈ W 1
2 (Ω) which for fixed Ω is the same as 5.1 as one can easily deduce. These

characterizations represent the fact that with the usual contradiction argument one

can get the Poincaré inequality out of Rellichs compact embedding but not vice

versa. Amick gives examples of domains that satisfy a Poincaré inequality but fail

to have a compact embedding. Therefore, he uses the well known technique of rooms

and passages to construct domains Ω with ΓΩ(0) = 1 or 0 < ΓΩ(0) < 1. Domains Ω

with ΓΩ(0) = 0 are easy to find, just take ∂Ω to be differentiable.

The idea in [Am78] was to use the following lemma:

Lemma: Let Ω ⊂ Rn be a bounded domain. If U is an open set with U ⊂ Ω then

there exists a domain V such that U ⊂ V ⊂ V ⊂ Ω and ∂V is analytic.

From the lemma only ∂V to be differentiable was required because with this the

author could use a kind of weak Rellich embedding and a weak Poincaré inequality

to shift the problem to the boundary, i.e. to prove the equivalences for Rellich he

needs for Ω \ Ωε ⊂ U ⊂ U ⊂ Ω that W 1
2 (Ω) ↪→ W 1

2 (U) ↪→ L2(U) is compact and to

prove the equivalence for the Poincaré inequality he needs that∫

U

|u− uU |2 ≤ const.

∫

Ω

|∇u|2

holds for all u ∈ W 1
2 (Ω). To circumvent these problems in metric spaces we use an

idea of Biroli and Tchou [BT97] who prove a compact embedding theorem for func-

tions with Dirichlet boundary condition in Ω and for the ’weak Poincaré’ inequality

we use a chaining argument similar to the technique in Jerison [Je86] but without

the difficult counting of the Whitney balls.

Throughout this chapter let (M, d, µ) be a metric measure space on which the dou-

bling property for µ holds and the metric d is intrinsic. Let (E , D(E)) be a strongly

local regular Dirichlet form on M and Ω ⊂ M a bounded open subset(in Section 5.2

it is also connected). Further let H ⊂ L2(Ω, µ) be a subspace of functions such that

the scaling invariant Poincaré inequality holds for all balls B(x, r) ⊂ Ω, i.e. ∃ c > 0:

∀ B(x, r) ⊂ Ω:∫

B(x,r)

|u− uB(x,r)|2dµ ≤ cr2

∫

B(x,r)

dΓ(u)

holds. For instance H = HΩ
E1|Ω

with HΩ = {u|Ω : u ∈ D(E)} and E1|Ω(·) :=(∫
Ω
| · |2dµ +

∫
Ω

dΓ(·))
1
2 are possible function spaces. We define ΓΩ(ε) as

ΓΩ(ε) := sup
u∈H

∫
Ωε
|u|2dµ

E1|Ω(u)
,
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for which ΓΩ(0) := limε→0 ΓΩ(ε) exists as above. Here Ωε is defined in an analogous

way w.r.t. the metric d.

At first we need some consequences from the doubling property which are proved in

the following lemmata.

Lemma 5.1 Let Ω ⊂ M be a bounded subset. Then for each r > 0 there exists a

cover {B(xi, r)}i=1,...,q for Ω with the following properties:

(i) xi ∈ Ω

(ii) Ω ⊂ ⋃q
i=1 B(xi, r)

(iii) d(xi, xj) ≥ r for i 6= j

Proof: Take B(x1,
r
2
) for any x1 ∈ Ω and r > 0 fixed. Then chose the xn for

n = 2, 3, . . . in the following way:

xn ∈ Ωn := Ω \
n−1⋃
i=1

B(xi,
r

2
),

s.t.

B(xn,
r

2
) ∩B(xi,

r

2
) = ∅ ∀i = 1, . . . , n− 1

until there is no xq+1 in such a manner. This procedure is finite because the doubling

property yields the following:

∃N ∈ N : ∀x ∈ M,R > 0 : B(x,R) contains max. N points xi : d(xj, xi) ≥ r

(see [CW71]). By this definition Ω ⊂ ⋃q
i=1 B(xi, r) holds true, since if x ∈ Ωq, it

follows d(x, xi) < r
2

+ r
2

= r and therefore x ∈ B(xi, r). If x ∈ Ω \ Ωq then there

exists an xi s.t. x ∈ B(xi, r). The covering was chosen in a way that 1 and 3 holds

clearly.

Lemma 5.2 If c > 0 is the doubling constant for µ let ν := log2 c. Further let

{B(xi, r)}i=1,...,q be a cover of Ω for fixed r > 0 as in Lemma 5.1 and N the maximum

number of balls Bi := B(xi, r) that covers a point x ∈ E which is equal to the number

of points xi in B(x, r). Then the following estimates holds:

(i) q ≤ c
(

2(diam(Ω)+r)
r

)ν

,
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(ii) µ(B(x, r) ≥ 1
c

(
r
R

)ν
µ(B(x,R)) for any R ≥ r,

(iii) N ≤ 24ν.

Proof: By c µ(B(x, r)) ≥ µ(B(x, 2r)) one gets via iteration:

µ(B(x, r)) ≥ 1

c
· 1

clog2(R
r )

µ(B(x,R)).

Now (ii) holds because of clog2(R
r ) =

(
R
r

)log2 c
. With (ii) one gets

µ(B(xi,
r

2
)) ≥ 2−4νµ(B(x, 2r)) for x ∈ B(xi, r)

because of

µ(B(xi,
r

2
)) ≥ 1

c

(
1

8

)ν

µ(B(xi, 4r)) ≥ 2−ν · 2−3ν · µ(B(x, 2r)).

Together with

N2−4νµ(B(x, 2r)) ≤ N min
xi∈B(x,r)

µ(B(xi,
r

2
))

≤ µ(
N⋃

i=1

B(xi,
r

2
))

≤ µ(B(x, 2r))

(iii) follows. To prove (i) let R = diamΩ + r
2

then

q∑
i=1

µ(B(xi,
r

2
)) ≤ µ(B(x,R))

holds. By (ii) one gets for x ∈ B(xi,
r
2
) and R′ := R + r

2
= diamΩ + r

µ(B(x,R)) ≤ µ(B(xi, R
′)) ≤ c

(
2(diamΩ + r)

r

)ν

µ(B(xi,
r

2
))

for all i ∈ {1, . . . , q}. Now take the minimum of µ(B(xi,
r
2
)) for i = 1, . . . , q and

divide by µ(B(xi,
r
2
)) then one has:

q ≤ µ(B(x,R))

µ(B(xi,
r
2
))
≤ c

(
2(diamΩ + r)

r

)ν

.

This finishes the proof of the lemma.
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5.1 Rellich Embedding

In order to prove the other implication a weaker form of the Rellich embedding

theorem is needed. That means in a doubling metric measure space where the

Poincaré inequality holds for all balls one has the following:

Lemma 5.3 Let {un} ⊂ H be a sequence of functions with
∫

Ω

|un|2dµ +

∫

Ω

dΓ(un) ≤ C < ∞

uniformly and Ω open, bounded subset in M . Then there exists an u ∈ L2(Ω, µ) s.t.

for ε > 0: there exists a subsequence {unk
}k which we relabel as {un}n and un → u

in L2(Ω \ Ωε, µ) while Ωε := {x ∈ Ω : d(x, ∂Ω) < ε }.

This lemma is based on a technique used in [BT97].

Proof: Since un is bounded in L2(Ω) it has a weakly convergent sequence unk

(where un is used for unk
) in L2(Ω) towards u ∈ L2(Ω). Now take a cover

{B(xi, r)}i=1,...,q for Ω \ Ωε with r < ε as in the Lemma 5.1. Therefore, Ω \ Ωε ⊂⋃q
i=1 B(xi, r) ⊂ Ω holds. Denote Bi := B(xi, r) and ωn,m := un−um then one has to

show that
∫

Ω\Ωε
ω2

n,mdµ → 0 for n,m →∞ in order to get the strong L2 convergence

of un:

∫

Ω\Ωε

ω2
n,mdµ ≤

q∑
i=1

∫

Bi

ω2
n,mdµ

=

q∑
i=1

∫

Bi

|ωn,m − (ωn,m)i + (ωn,m)i|2dµ

≤ 2

q∑
i=1

∫

Bi

|ωn,m − (ωn,m)i|2dµ

︸ ︷︷ ︸
I1:=

+ 2

q∑
i=1

∫

Bi

|(ωn,m)i|2dµ

︸ ︷︷ ︸
I2:=

while (ωn,m)i := 1
µ(Bi)

∫
Bi

ωn,mdµ. Now one has to control I1 and I2. For I2 the

following holds

I2 ≤ 2

q∑
i=1

µ(Bi)

(
1

µ(Bi)

∫

Bi

ωn,mdµ

)2

≤ 2q sup
i∈{1,...,q}

[
1

µ(Bi)

(∫

Bi

ωn,mdµ

)2
]
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≤ 2c

(
2(diamΩ + r)

r

)ν

c

(
diamΩ

r

)ν

· . . .

. . . · 1

µ(B(xi, diamΩ))
sup

i∈{1,...,q}

(∫

Bi

ωn,mdµ

)2

≤ c′ sup
i∈{1,...,q}

(∫

Bi

ωn,mdµ

)2

while c′ := 2c2
(

2(diamΩ+r)
r

)ν (
diamΩ

r

)ν 1
µ(Ω)

. To estimate I1 one needs the Poincaré

inequality for balls and the result of Lemma 5.1 that for each point x ∈ Ω there are

at maximum N balls Bi with x ∈ Bi:

I1 ≤ 2

q∑
i=1

cpr
2

∫

Bi

dΓ(ωn,m)

≤ 2cpr
2N

∫

Ω

dΓ(ωn,m)

≤ 2cpr
2NC.

Therefore, one has
∫

Ω\Ωε

ω2
n,mdµ ≤ 2cpr

2NC + c′ sup
i∈{1,...,q}

(∫

Bi

ωn,mdµ

)2

.

Now first choose r =
(

ε
4cpNC

) 1
2

and second choose n and m large enough, s.t.

sup
i∈{1,...,q}

(∫

Bi

ωn,mdµ

)2

≤ ε

2c′
.

This is possible because un is weakly convergent in L2(Ω, µ). Hence
∫

Ω\Ωε

|ωn,m|2dµ ≤ ε

holds for n,m large enough.

We will now prove the equivalence of ΓΩ(0) = 0 and the validity of a kind of compact

embedding theorem.

Theorem 5.4 Let {un} ⊂ H be a sequence of functions and C a constant with

C > 0 such that for all n
∫

Ω

|un|2dµ +

∫

Ω

dΓ(un) ≤ C < ∞

holds. Then the following statements are equivalent:
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(i) ΓΩ(0) = 0

(ii) There exists an u ∈ L2(Ω) such that for a subsequence {unk
}k which we relabel

as {un}n it holds that un → u strongly in L2(Ω)

Proof: (ii) ⇒ (i) : First assume that ΓΩ(0) > 0 and denote A := ΓΩ(0). Therefore,

there exist sequences {εn} and {un} with εn → 0 as n →∞ and

(∫

Ω

|un|2dµ +

∫

Ω

dΓ(un)

) 1
2

= 1,

n = 1, 2, . . . such that
∫

Ωεn

|un|2 >
A

2
n = 1, 2, . . . .

Because of the hypothesis one knows that there exits a subsequence {unk
} such that

unk
→ u in L2(Ω, µ). By the triangle inequality it follows that:

(∫

Ωεn

|u|2dµ

) 1
2

≥
(∫

Ωεn

|unk
|2dµ

) 1
2

−
(∫

Ωεn

|unk
− u|2dµ

) 1
2

(5.2)

≥
√

A

2
√

2
> 0 (5.3)

while the second inequality holds for sufficiently large nk because of the L2-convergence

of unk
towards u. Since Ωεn → ∅ gives µ(Ωεn) → 0 it follows that

∫
Ωεn

|u|2dµ → 0 as

n →∞, so this contradicts 5.2.

(i) ⇒ (ii) : For the other direction let ΓΩ(0) = 0, i.e. that ΓΩ(ε) → 0 for ε → 0. Let

{un} be any sequence in H such that
∫

Ω

|un|2dµ +

∫

Ω

dΓ(un) = 1. (5.4)

Then there exists an u ∈ L2(Ω) and a subsequence relabeled as {un} such that

un → u weakly in L2(Ω) (5.5)

as n → ∞. Now let δ > 0 and ε > 0 be small enough such that ΓΩ(ε) < δ. By

Lemma 5.3 we know that un → u strongly in L2(Ω \ Ωε, µ). Therefore,

|u− un|2L2(Ω\Ωε)
≤ δ (5.6)

for n sufficiently large and from the definition of ΓΩ(ε) one gets

|u− un|2L2(Ωε)
≤ δ

(
|u− un|2L2(Ω) +

∫

Ω

dΓ(u− un)

)
.
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Together with 5.4 and 5.5 it follows that

lim
n→∞

|u− un|2L2(Ωε)
≤ δ

(
1− |u|2L2(Ω) −

∫

Ω

dΓ(u)

)
≤ δ. (5.7)

Finally 5.6 and 5.7 yields

|u− un|2L2(Ω) = |u− un|2L2(Ω\Ωε)
+ |u− un|2L2(Ωε)

≤ 2δ

for n sufficiently large. Since δ was chosen arbitrarily un → u in L2(Ω) and the

proof is finished.

Remark 5.5 If E|Ω defined on the set of restricted functions HΩ (via its energy

measure) is closable w.r.t the norm E1|Ω one can consider the closure HΩ := HΩ
E1|Ω

and reformulate Theorem 5.4 in the following way:

ΓΩ(0) = 0 ⇔ The embedding iΩ : HΩ → L2(Ω) is compact.

5.2 Poincaré Inequality

The following lemmata prepare the proof of the equivalence and fix the gap in the

proof of Amick to extend them to metric measure spaces.

Lemma 5.6 Let Ω be an open bounded connected set in M . Then there exist a

constant c > 0 and an ε > 0 small enough, s.t.

∫

Ω\Ωε

|u− uΩ\Ωε |2dµ ≤ c ·
∫

Ω

dΓ(u)

for all u ∈ H while Ωε := {x ∈ Ω : d(x, ∂Ω) < ε}.

Proof: First take a finite cover of balls {B(xi,
ε
2
)}i=1,...,q of Ω\Ωε as in the Lemma

5.1 while the properties of the cover that comes from the doubling condition are

not necessary here. Since M is a length space it is locally arcwise connected, s.t.

Ω is arcwise connected too. Further for I := [0, 1] the length of a path γ : I → Ω

between x, y ∈ Ω is finite as it is clear by compactness of γ(I) and the fact that

M is a length space. Denote Bi := B(xi,
ε
2
) and fix a set Bk ∈ {Bi}i=1,...,q. Let

γxk,xi
: I → Ω for i 6= k be a set of finite length curves inside Ω which connect the
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Ω

Ω

Ω

γ
ε

xy

ε

x y

Figure 5.1: Proof of Lemma 5.6

midpoints of Bk with the midpoint of Bi for i ∈ {1, ...q} \ {k} respectively. Now

consider the distances d(γxk,xi
(I), ∂Ω) and take the minimum

δ := min
i∈{1,...q}\{k}

d(γxk,xi
(I), ∂Ω).

This minimum δ exists and is nonzero because of the compactness of γxk,xi
(I). Con-

sider a finite cover of γxk,xi
(I) with balls Bki

j for j = 1, . . . , nki with radius ρ(Bki
j ) = δ

4

while ρ(B) denotes the radius of a ball B. Then enlarge the radius of these balls by

the factor two so that ρ(Bki
j ) = δ

2
and still Bki

j ⊂ Ω holds.

Now w.l.o.g. Bki
1 ⊂ Bi, Bki

nki
⊂ Bk, s.t. µ(Bi) ≤ cdµ(Bi∩Bki

1 ), µ(Bi) ≤ cdµ(Bk∩Bki
nki

)

and µ(Bi) ≤ cdµ(Bki
j ∩Bki

j+1) for j = 1, . . . , nki − 1 holds for a universal constant cd

because of the doubling property and the boundedness of Ω. If cp is the constant

for the Poincaré inequality for balls then with the following calculation: ∀ u ∈ H
∫

B

|uB1 − uB2|2dµ =
µ(B)

µ(B1 ∩B2)

∫

B1∩B2

|uB1 − uB2|2dµ

≤ 2µ(B)

µ(B1 ∩B2)

[∫

B1∩B2

|u− uB1|2dµ +

∫

B1∩B2

|u− uB2|2dµ

]

≤ 2µ(B)

µ(B1 ∩B2)

[∫

B1

|u− uB1|2dµ +

∫

B2

|u− uB2|2dµ

]

while B1 ∩B2 6= ∅, one gets
∫

Bi

|u− uBk
|2dµ =

∫

Bi

|u− uBi
+ uBi

− uBki
1

+

nki−1∑
j=1

(uBki
j
− uBki

j+1
) + uBki

nki
− uBk

|2dµ

≤ 2nki

[∫

Bi

|u− uBi
|2dµ +

∫

Bi

|uBi
− uBki

1
|2dµ

+

nki−1∑
i=1

∫

Bi

|uBki
j
− uBki

j+1
|2dµ +

∫

Bi

|uBki
nki
− uBk

|2dµ

]
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≤ 10 · nki · cp · ε2 · cd ·
[∫

Bi

dΓ(u) +

∫

Bki
1

dΓ(u)

+

nki−1∑
i=1

(∫

Bki
j

dΓ(u) +

∫

Bki
j+1

dΓ(u)

)

+

∫

Bki
nki

dΓ(u) +

∫

Bk

dΓ(u)

]

≤ N · 10 · nki · cp · ε2 · cd ·
∫

Ω

dΓ(u),

using that
∑q

k=1 nki < N for N large enough. Summing over all Bi one gets

∫

Ω\Ωε

|u− uBk
|2dµ ≤

q∑
i=1

∫

Bi

|u− uBk
|2dµ

≤ q ·N · 10 · nki · cp · ε2 · cd ·
∫

Ω

dΓ(u).

Because of

min
a∈R

∫

Ω\Ωε

|u− a|2dµ =

∫

Ω\Ωε

|u− uΩ\Ωε |2dµ

this finishes the proof.

The proof of Lemma 5.6 is similar to the proof of the Poincaré inequality by Jerison

[Je86] but there is no counting of ’Whitney-balls’ nessecary because the irregularity

is enclosed in the boundary which is cut out by Ωε.

The next theorem will give the characterization for the validity of a Poincaré in-

equality on an open, bounded and connected subset Ω ⊂ M .

Theorem 5.7 For Ω ⊂ M open, bounded and connected the following statements

are equivalent

(i) ΓΩ(0) < 1

(ii) ∃ c > 0 : ∀ u ∈ H :
∫

Ω
|u− uΩ|2dµ ≤ c

∫
Ω

dΓ(u)

Proof: (ii) ⇒ (i) : Assume that ΓΩ(0) = 1. Then there exists a sequence of

positive numbers {εn} with εn → 0 and a sequence {un} of functions such that:

lim
n→∞

∫

Ωεn

|un|2dµ = 1
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and
(∫

Ω

|un|2dµ +

∫

Ω

dΓ(un)

) 1
2

= 1, n = 1, 2, . . .

holds. Therefore, one gets

∫
Ω

dΓ(un)
∫
Ω\Ωεn

|un|2dµ



 → 0 as n →∞. (5.8)

By the Poincaré inequality
∫

Ω

|un − (un)Ω|2dµ ≤ c(Ω)

∫

Ω

dΓ(un)

while c(Ω) depends on Ω only, it follows that

lim
n→∞

∫

Ω

|un − (un)Ω|2dµ = 0. (5.9)

The triangle inequality yields

|(un)Ω| · µ(Ω \ Ωεn)
1
2 ≤

(∫

Ω\Ωεn

|un − (un)Ω|2dµ

) 1
2

+

(∫

Ω\Ωεn

|un|2dµ

) 1
2

.

Now together with 5.8 and 5.9 this implies:

lim
n→∞

(un)Ω = 0. (5.10)

But 5.9 and 5.10 give the following contradiction

lim
n→∞

∫

Ω

|un − (un)Ω|2dµ = lim
n→∞

∫

Ω

|un|2dµ

= lim
n→∞

(∫

Ω

|un|2dµ +

∫

Ω

dΓ(un)

) 1
2

= 1

which implies that ΓΩ(0) < 1.

(i) ⇒ (ii) : For the reverse direction assume that ΓΩ(0) < 1 and let ε > 0 be a fixed

number small enough that Lemma 5.6 holds and so that ΓΩ(ε) ≤ α < 1. For any

u ∈ H we have
∫

Ω

|u− uΩ\Ωε|2dµ ≤
∫

Ωε

|u− uΩ\Ωε|2dµ +

∫

Ω\Ωε

|u− uΩ\Ωε|2dµ. (5.11)

Because of ΓΩ(ε) ≤ α it follows that
∫

Ωε

|u− uΩ\Ωε|2dµ ≤ α

∫

Ω

|u− uΩ\Ωε|2dµ + α

∫

Ω

dΓ(u). (5.12)
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Now 5.11 and 5.12 yield
∫

Ω

|u− uΩ\Ωε|2dµ ≤ α

∫

Ω

|u− uΩ\Ωε|2dµ + α

∫

Ω

dΓ(u) +

∫

Ω\Ωε

|u− uΩ\Ωε |2dµ

and therefore
∫

Ω

|u− uΩ\Ωε|2dµ ≤
(

α

1− α

) ∫

Ω

dΓ(u) +

(
1

1− α

) ∫

Ω\Ωε

|u− uΩ\Ωε|2dµ(5.13)

follows. Since by Lemma 5.6 it holds that
∫

Ω\Ωε

|u− uΩ\Ωε |2dµ ≤ c

∫

Ω

dΓ(u)

and so one gets with
∫

Ω

|u− uΩ\Ωε|2dµ ≤
(

α

1− α

) ∫

Ω

dΓ(u) +

(
1

1− α

)
c

∫

Ω

dΓ(u)

for all u ∈ H and because of

min
a∈R

∫

Ω

|u− a|2dµ =

∫

Ω

|u− uΩ|2dµ

the proof is finished.
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