Unstable extremal surfaces of the
” Shiffman functional” spanning rectifiable
boundary curves *

Ruben Jakob

Bonn, Januar 2005

*This research was supported by the Deutsche Forschungsgemeinschaft. The author would also
like to thank Prof. Dr. S. Hildebrandt and Prof. Dr. H. von der Mosel.



Contents



1 Introduction and main result

In this paper we generalize the result of [?], a sufficient condition for the existence of
unstable extremal surfaces of a parametric functional with a dominant area term via
the ”mountain pass principle”, from polygonal to arbitrary closed rectifiable boundary
curves I' C R? that merely have to satisfy a chord-arc condition (??). Hence, we give a
precise proof of a ” mountain pass theorem” claimed by Shiffman in [?] who only outlined
a very sketchy and incomplete proof in the author’s opinion.

Shiffman considered Plateau’s problem for the 2-dimensional parametric functional

T(X) = / F(Xy A Xy) 4k | Xu A X,y | dudo = F(X) + k A(X),
B

on surfaces X € H2(B,R?) of the type of the disc B := D? c R2. The Lagrangian F
is assumed to satisfy the following requirements:

F e C'(R3) n CH(R® \ {0}), (1.1)

F is convex, (1.2)

F(tz) =tF(z) Vt>0, VzeR, (1.3)

mi |z |< F(z) <mg | 2| VzeR, 0<my < ma. (1.4)

Moreover we assume that '
k> néaz.xF = mo. (1.5)

Thus J is a controlled perturbation of the area functional A, where F' depends only on
the normal X, A X,, but not on the position vector X itself. Moreover with respect
to some closed rectifiable Jordan curve T' C R? we consider the Plateau class C*(T) of
surfaces X € HY2(B,R") whose L%-traces X |sp are continuous, monotonic mappings
of S! onto T satisfying a three-point-condition:

. 2wk
X ‘BB (e“pk) ; Pka wk = %7 k= Oa 1,25 (16)

where Py, Py, P, are three fixed points on I'. Furthermore we topologize C*(I') N
CY%B,R?) by the C°(B,R?)-norm. We are going to prove (see Def. ?? and ?7 in
Subsection ?? and Def. 3.5 in [?])



Theorem 1.1 (Main result) Let T' be an arbitrary closed rectifiable Jordan curve in

R3 satisfying a chord-arc condition (??). If there exist two different conformally parametrized
surfaces X1 # Xo in (C*(I') N C°(B,R3),| - lcomy) that are in a mountain pass
situation with respect to J, then there exists an unstable J-extremal surface X* in
Cc*(T) N CY%B,R3).

Following Shiffman we replace J by its dominance functional
k
I(X) = / F(Xy AX,)+ 5 | DX P dudo = F(X) + ED(X).
B

Now the crucial tools which allow a generalization of the mountain-pass result in
[?] to the above theorem are the compactness result Theorem ?? for minimizers of 7
within boundary value classes H&,’Q(B,R?’), termed Z-surfaces, which is derived from
a fundamental ”quasi maximum principle” for Z-surfaces, Theorem ?7, the closedness
of the set of Z-surfaces with respect to C°(B,R3)-convergence, Theorem ??, and a
?continuity theorem” for Z applied to conformally parametrized Z-surfaces, Corollary
??, which is achieved by the ”continuity theorem” for A applied to harmonic surfaces
on ring domains due to Morse and Tompkins [?]. Shiffman realized the importance of
these tools in [?] but he only outlined incomplete proofs. Possessing these results one is
able to follow the lines of Heinz’ paper [?] in which Heinz tackled the analogous problem
for the H-surface functional instead of J resp. Z successfully by approximating I' by a
sequence of closed polygons and applying his results of [?] and the ”finite dimensional”
mountain pass lemma.



2 A quasi maximum principle and a
compactness result for 7-surfaces

In this chapter we prove a ”quasi mazimum principle”, Theorem ??, for the unique
minimizers of Z within boundary value classes H;J(B,R?’), which we term Z-surfaces
(see Def. 2.1 and Theorem 4.3 in [?]), and derive a fundamental compactness result,
Theorem ?7, for sequences of those surfaces. Shiffman claimed these results in Sections
6 and 7 of [?] but his proof of Theorem ?7 is incomplete. In footnote 7 on p. 552 in [?]
Shiffman gave an incorrect proof of the following fundamental lemma which turned out
to be a rather involved topological question.

Lemma 2.1 The restriction g |s> of an even function g € C*(B}, 5(0) \ Bf_5(0)), 6 €
(0, %), possesses at least three linearly independent critical points, i.e. there are at least

three linear independent unit vectors a1, ag,a3 € S? at which Vy(a;) =r;j a;-r, for some
ri €R, 7=1,2,3.

In order to combine this result with the method of ”levelling” real valued functions
on B used by Shiffman in Section 6 of [?] and by McShane in [?] we need

Definition 2.1 Let f € C°(B) and G C B be an open subset of B. We set
mg(f) := max{max f — max f, min f — min f} (2.1)

and call md(f) := supgcp ma(f) the monotonic diefficiency of f, where the supremum
is taken over all open subsets G C B.

Now let F' be a fixed integrand and g(z) := F(z) + F(—xz). By Lemma ?7? the
function g gives rise to a matrix A := (a1,a9,a3)’ € GL3(R), having chosen three
linearly independent critical points a1, a2, a3 of g |g2 arbitrarily. Now we can state the
two results of this chapter (see Lemma 2.2 and Theorems 4.3 and 5.2 in [?]).

Theorem 2.1 Let ¢ € C°(0B,R?) HH%’Q(aB,RP’) be prescribed boundary values. Then
the corresponding T-surface X* € H}D’Q(B,]R?’) NCY%B,R3), i.e. the unique minimizer of
T in Hy?(B,R?), satisfies md((AX*);) =0 fori=1,2,3.

Theorem 2.2 Let {X"} be a sequence of I-surfaces with D(X™) < const., Vn € N,
and with equicontinuous and uniformly bounded boundary values. Then there exists a
subsequence {X"™ } such that

X% — X  inCB,R®) and X" — X in HY(B,R?), (2.2)
for a surface X € HY?(B,R®) N C%(B,R?) with md((AX);) =0,i=1,2,3.



2.1 Proof of Lemma ?7?

Firstly we need

Definition 2.2 Let Z be a C™-vector field on a smooth manifold and Sing(Z) its set of
singularities. A compact subset P of Sing(Z) which can be seperated from Sing(Z)\ P by
some open neighborhood U, i.e. P = U N Sing(Z), will be termed a part of Sing(Z).

Definition 2.3 Let Z be a C*®-vector field on a 2-dimensional manifold and P a part
of Sing(Z) which is contained in a chart (V,h), i.e. h:V = B2(0), r > 0, and which

possesses an open seperating neighborhood U CC V' with a smooth boundary and such

that U = D?. We set U := h(U), P := h(P). Then we define the indez of Z around P
by

hi(Z) | pir )

| hs(Z) |afj| ’

thus 2r Ind(Z, P) = [y (|h*(z Il lag ) (ws1), where wg1 denotes the volume form yi dys—
yody1 of St and h.(Z)(y) := Dhy1 Ly )(Z(h_l(y))).

Ind(Z, P) := Ind(h.(Z), P) := deg(

Remark 2.1 For our further argumentation we have to ensure that the above notion of
degree, the "de Rham-degree”, coincides with its counterpart in singular homology with
real and integral coefficients. This can easily be carried out by using the naturality of the
de Rham isomorphism

R*: Hip(M) —» H*(M,R) = Hom(H,(M,R),R)

for a smooth, closed, orientable and connected manifold M, whose definition implies in
particular

(R([w]), [M]) = /M“’ Ve € Qr(M),

where [M] denotes the fundamental class of M and (-, -) the Kronecker product, and
the naturality of the isomorphism

H.(M,Z)®R —» H,(M,R), givenby [a]®T+— [a®7],

derived from the universal coefficient theorem (see [7], pp. 263, 264). Applying this to

the map Z log:= |Z*g 1 lag: U — S! and using R" : [wg1] — 27 [S']* we obtain:

27 degar(Z |o) = /af](Z loi)* (ws1) = (R ([(Z |5)* (wgn)]), [007])

=((Z |50)" (R ([ws1])), [007]) = (27 (Z 150)"(S'T"), [3(7])~= 2n (IS']", (2 |a(j)*(~[aﬁ]))
=27 <[S1]*1 degSingR(Z |a[~]) [SID =2m degSingR(Z |aﬁ) =2m degSingZ(Z ‘a[})'



Now we have to verify the independence of Def. ?? from the choice of the chart
(V,h) and of U. This can be done by the use of the properties of the fixed point index
I(¢(-,t) |u) (as defined in [?], p. 205) of the flow

d(z,t) :=n(z —t Z(x)) (2.3)

on S?, where we restrict ¢ € [0, %] for some sufficiently small ¢, such that the orthogonal
projection m from B3(0)\B3(0), § € (0, %), onto S? can be applied to the points z—t Z(z).
Our assertion follows immediately from

Proposition 2.1 Let P CU CCV and h be as in Def. 7?. Then we have

Ind(Z, P) = I(4(-,1) |v) (2.4)
for any choice of t € (0,1], U and the chart (V,h).
Proof: We choose some #9 > 0 sufficiently small such that ¢(-,1) : U— V vVt e [0,t],
abbreviate ¢ := ¢(-,t) for some fixed ¢ € (0, %] and set ¢ |7:= hogoh™ |5: U — BZ(0)

for U := h(U). From the commutativity of the fixed point index (see [?], p. 206) we
infer immediately:

I($|5)=1(¢oh™ oh|y) = 1( |v)- (2.5)

Furthermore we have the following commutative diagram, where we use singular homol-
ogy with integral coefficients:

r ry Ox

Hy(U,U \ P) & Hy(U, 00) = H,(80) — Hy(00)
(=) |5) b ((id=) [g)e | L(Gid =) o)+ (Hge).
Hy(R2,R2\{0}) —> Hp(R2,R2\{0}) 25 Hy(R\{0}) = Hi (8.

Due to U 2 D? the exact homology sequence of the pair (U, 8U) yields

o

8y : Hy(U,00) —> H,(8U) =

thus the isomorphism 8, takes a generator o of Hy(U, 8(]’) into a fundamental class
[0U] of 8U. Now let o € Ho(U,U \ P) denote a fundamental class around P and op a
generator of Hy(R%,R? \ {0}). From [?], pp. 269-270, we infer that i, maps o into 0p-
Hence, chasing the dioaggam along the lower way we obtain by the excision-isomorphism
Hy(U,U \ P) = Hy(U,U \ P) and by the definition of the fixed point index (see [?], S
203): 5 }

o 05 = 1§ |5) 00 = 1§ |) 5]

On the other hand following the upper way we obtain by the definition of the degree in
singular homology:

? log Vi1
0+ [80] — deg (“%U ¢|6U|)[S].



Hence, by the commutativity of the diagram we proved
- ido- — b |-
14 :) = deg(W—qu). (2.6)
| idyg = ¢ loir|

Moreover we calculate:

S 0,t) = 5 (ho 6 (1),)) = Dhyguiyp (5900 0).9).

Together with %d)(w,t) = D7(3—t 7())(—Z (7)) the evaluation in ¢ = 0 yields:

%Jﬁ(y,t) |t=0= Dhp-1) (D14 (= Z (™ ()))) = Dhp-1) (= Z (R~ (1))

Vy € U. We insert this into the taylor expansion of ¢(y,t) w. r. to t:

by, t) =y — tho(Z)(y) + t*r(y, ),

where the remainder r(y,?) depends smoothly on y € U and t € (0,g] (see [?], p. 135).
Hence we obtain for y € U and t € (0,):

y — (y,1) hi(Z)(y) —tr(y,1)
ly—dw,t)| | m(2)y) —tr(y,t) |

Now combining this with (??), (??), the homotopy invariance of the degree and Def. ??
we conclude:

3 idyy — & |og (h(Z) () = t7(-,1) |pg
10 =101 :de“’(m) - de‘q(l( hi(2)(+) —tr(-,1)) \%)
)

D) g
‘deh<znmA

The homotopy invariance of the fixed point index and its independence of the choice of
the seperating neighborhood U of P (see [?], p. 206) finally proves the assertion.

) — Ind(Z, P).

Now we consider the "right”, ”left”,” upper” and ”lower” closed hemispheres
Siay:={z €8 |21 >(<)0} and S§% ) :={zeS*|z3> ()0}
Moreover we construct charts h™! : H™! —» B1+p( ), h=™ : H™ = B}, ,»(0), for some

)
p > 0, using the stereographic projection, projecting from the points (—1 O, 0), (1,0,0)
and (0,0, 1) respectively, where we have set

H ={zeS?|z; >0}, H:={zeS? z,<d}, H :={zeS?|z3<d}, (2.7



for a 6 > 0 depending on p. Explicitly we set

—Z2 zs3 l Z2 z3
hr ) ) = ( ) )7 h ) ) = ( 1—)
(:EI 2 $3) 1 + I 1 + I (1131 72 $3) 1-— I 1-— I
_ T T
W) = (1o o) (28

Moreover one easily verifies that, for example,

o
ClyP+H

(hH ™ (y) (ly? —1,2y1,2y2)  for y = (y1,92) € B7, ,(0),
which yields for the transition function ! := h~o(h!) 1 : Wi(HINH ) — h (H'NH ")
by an easy calculation:

1
1+ |y 2 2

4
2 l
-1,2 and det D = >0
(| Yy | yl) ¢ (y) (1 | Y ‘2 _2y2)2

P (y)

Vy € hY(H' N H™). Hence, 7' yields an orientation preserving change of coordinates
and analogously 9" := h~ o (") 1. We note that the fraction 1+|y|+23/2 has its only

singularity in the point (0,1) which is mapped by (h')~! to the point of projection
(0,0,1) of h~, where h™ is not defined. Now we consider a smooth Jordan curve

y:[0,7] — S2n Si NH™ satisfying (2.9)
7(0) = (0,-1,0) and ~(m)=(0,1,0),

such that the closure of this curve by the reflection R*' at the (z2,z3)-plane, i.e. y(t) :=
R* (y(2r —t)) for t € [m,27], is smooth on [0, 27]. Moreover we consider its reflection
by R®3 at the (z1,z2)-plane, i.e. 7 := R®3(v) on [0, 27], and set

Fi=h oy lpox, Fi=hovlmory ¥ =k oFloxy V:i=h'coF|mer- (2.10)
Furthermore we choose a smooth parametrization
B:[0,1] — S2NS2NS? with B(0) =(0,1,0) and B(1) = (0,—1,0) (2.11)
and term v := h"(8) = h!(—B). Now we are able to state

Proposition 2.2 For fized curves v and B3, as described above, and any odd C*°-vector
field Z on S?, i.e. Z(x) = —Z(—xz) € R®, with Sing(Z) Ntrace(y ® (—B)) = 0 we prove:

J

Y ou

3

(Z7 lyrou)* (ws1) = —/ (7 l5tgu)* (ws1), (2.12)
Su

(77 lsrg) (wg1) = — / (2 |sten) (1),

" Bu ¥ ou

o]

where we have set Z" := |Z

* 3

(2) . n2
7)1 < Bisp

(0)\ (Sing(h%(Z))) — S' and Z' analogously.

*3



Proof: We have:
(Z~r)*(wg1) = (Zr)*(yl dys — yody1) = Z{ dZS — Zg ler

I, VA ~ 97T
| Ay %y .(dyl):.(Wf>.(dy1>
5r 07y oy 0] : r .
7% 5ot — 75 Gk dys w3 dys
Furthermore, by our choice of the charts A" and h! we see (h")"!(y) = —(h))"1(%)

Vy € B1+p(0). Thus, since Z is odd we obtain:

h(Z)(y) = D14y (Z((R) 1Y) = Dhipry-1(,y (—Z((8") (7))
— D o) @) = E)D),
Vy e B%+p(0), hence Z'(y) = Z'(y) Yy € BH_p(O) \ (Sing(h%(Z))) and

~r a_Z{ azl
o= gt ) (0 )= ( o )(.y).

oY1 6y2

Thus we arrive at:
51 87} 1 871 _
= [ Am A | - ()
Zl 6Z . Zl 6Z (g)
1 33/2 2 Byg
Vy e Bf+p(0) \ (Sing(h%(Z))). Finally we note ¥*(t) = 4" (t — ), Vt € [r, 2x], yielding
@)@ =@F) t—m) =G -7, Vi€ lr, 2]
Hence, altogether we can calculate:
/ (b)) = [ i) = [T G a
T ;y'l‘

= [l Gy + Wi Ga = [ WG G+ W

27 ~
- - / WG, Gyt = = [ W @) = = [ (2 5" )

Moreover we note that
(ZLZ;) = (—Z{,Zé) on u,
implying W™ = —W' on u, i.e.

/ (77 ) (1) = — / (7 )" (ws2). (2.13)

Hence, the first assertion in (??) is proved. The second equation in (??) follows analo-
gously due to ¥ (t) =" (¢t — ), Vt € [, 27], together with (?7?).

10



Proof of Lemma ?7: We may suppose that ¢ is not constant, otherwise we are done.
Thus, as g is required to be even, a global maximizer and a global minimizer of ¢ cannot
coincide or be antipodal points, hence are linearly independent. Let G be the great circle
which is determined by an antipodal pair of global maximizers and minimizers of g. We
may assume G = S'. Now we assume that there does not exist any further critical point
of g |52 on S2\ S!. We mollify g by means of even Dirac kernels ¢,:

g¢(+) = pe( — ) g() dz € CF (R \ B 54(0)),

/Bﬁg(o)\Bf_g(O)
for § € (0, %) and € € (0,6). One verifies easily:

ge — g in Cl(Bi’+%(0) \ Bi’_%(O)), (2.14)

and that g¢ is even, just like g and ¢.. Next we define the vector fields

a(z) :=Vg(z) — (Vg(x),z) z, ac(x):=Vg(z) — (Vge(z), )z,
and the flows
d(z,t) :=7(z —ta(z)), ¢e(z,t) =7z —tax))

on S2, for € € (0, 6), where we restrict ¢ € [0, o] for some sufficiently small ¢y, as explained
n (??). We note:

ac —a in C°S%LRY), (2.15)

¢6(',t) — ¢(',t) in 00(82,82)5 (2'16)
Hausdorff dist.(Sing(a¢), Sing(a)) — 0, (2.17)
Sing(ae) = FZ$(¢€( 7t)) Vie (OatO]a Vee (Oa5)7 (218)

and that a. is an odd C®-vector field on S?. Since g is assumed to be not constant the
mean value theorem (in integrated form) yields that Sing(a) # S'. Thus, since Sing(a)
(C S! by hypothesis) is compact and symmetric, i.e. Sing(a) = —Sing(a), there exists
a point z* € S! and a o > 0 such that Sing(a) C S'\ (B2(z*) U B3(—z*)). We may
assume that z* = (0,1,0). Hence, by property (??) of the family {a.} we can choose a
smooth Jordan curve 7 : [0, 7] — S2NS2 N H~, whose closure by the reflection R** at
the (z2,z3)-plane is smooth on [0, 27] (as below (??)) which we call v again and which
satisfies the following two requirements:

h™(Sing(ae)) CC int(h—(y)) = K1 Ve € (0,€), (2.19)
for €y sufficiently small, where we infer K; = D? from Schoenflies’ theorem on account
of trace(y) = S (see [?], p- 68). Applying the reflection R®* at the (1, z2)-plane to -y

and setting 4 := R*3(7y) we require secondly:

h™(Sing(a¢)) Nint(h=(3)) =0 Vee (0,¢), (2.20)

11



for ¢y sufficiently small. We term Ky := int(h—(7)). Moreover we will use the curves
B and u as defined in (??). Now we fix an € € (0,¢p), push a, forward by h~, A" and

h! and term &l := ‘ng §| Bfﬂ)( )\ (Sing(hl(ac))) — S! and @’, @, analogously

€

(as in Prop. ?7). Moreover we consider the orientation preserving transition maps

o~

Ypli=h"o (M) 'R H'NH™) = h~(H'NH~) and ¢" := h™ o (h")~" as discussed in
(??). Now we show that

ot ~al  on R((H'NH™)\ Sing(ac)). (2.21)

By (??) we know that det(Dw'(y)) ™' >0 Vy € h'(H' N H), thus
(
(y

d % — sign det(Dvy* -1_9

€g |(le )) 1||Sl = sgn et( Qp(y)) — b
implying that % |si~ ids: Yy € h'(H'N H~) by deforming the angle of
(DY (y)~"

(Dw()~T] |s1 "linearly” (see [?], p. 54). In order to state this homotopy explicitly

we need the ”argument function” arg(-) := exp(27i-)~! : S! = [0,1]/(0 ~ 1). By
[?], p. 53, any continuous f : S' — S! gives rise to a unique continuous function
©:10,1]/(0 ~ 1) — R such that f(z) = f((1,0)) - exp(2mi ¢(arg(z))) on S, where ”.”
denotes complex multiplication. Thus for every y € h'(H' N H~) we obtain a unique
function goé such that

Dyt -1 D' -1 '
% %((1’0)) - exp(2mi ¢y, (arg(2))), (2.22)

Vz € St Now following [?], p. 54, we construct the homotopy

(2) =

l -1
Hl(2,1) == AQ@)(M((LO))) exp(2mi ((1—t) ¢, (arg(2)) +1 arg(2))), (2.23)

| (DyH(y)) " |
from ‘g:ﬁ;g T |s1 to idg1, where {A! (t)},e0,1 is a family of rotations turning
‘gg:ﬁjggg:‘ ((1,0)) into (1,0) clockwise, given by

Lo cos(—tdl) —sin(—tel)
Ay(t) = ( sin(—tqﬁg) cos(—t¢g) ’
where qSé =2 arg(%((l O))) Having noted that the family {Hl} depends

)
)
continuously on y € h'(H' N H™) we insert a_ o' into H, l( t) to obtain the homotopy
FL i ((H N H™) \ Sing(ac)) x [0,1] — ST,

Fl(y,t) = Hy(ag o' (y),1), (2.24)

between a_ o ¢! and al, just as asserted in (??). Similarily one achieves a homotopy
Fr(-,t):= H(T_)(d; o)"(-),t) between a_ 09" and al on h"((H"NH™)\ Sing(a.)). Now

12



on account of (??) and (??) we can choose a sequence of smooth closed curves {¢;} in
RY((H' N H™)\ Sing(ac)) that approximate ' @ u at its two corners, as in Prop. 4 on p.
125 in [?], and gain by Prop. 9.26 and Corollary 10.14 in [?] that

[ (0wt Iy s = [ (@ 1) (o)
¢ ¢j

Vj € N. Hence, letting 7 — oo we gain by the proof of Prop. 4 on p. 125 in [?] in the
limit:

[ (@7 0 %' ytgn)" (wg1) = / (@ i) (ws1) (2.25)
Y du A du

and analogously
/ @7 09" |srn)" (ws1) = / (@ 57 gu)" (ws1), (2.26)
7" du 7" Bu

where we used the notation of (??). Now we set B" := {y € Bl+p( ) | y1 > 0}
and B! := {y € Bl—|—p( ) | y1 <0} Since ¢ |srgu: 77 D u = d(Ky; N B™) and

Pt |5t @u: ¥ @u =, O(K, N BY) are orientation preserving diffeomorphisms we infer from
the transformation theorem on p. 168 in [?] together with the use of two sequences of
smooth closed curves approximating 7" @ u resp. 7' @ u at their two corners as above:

/ (@ loxsnsn) (wg) + / (@ Loy (@s1)
A(K1NBT)

6(KmBl)

- / (67) (67 |ogansn) (ws1) + / (W @ oanmn) @s1)-
" du

Fou

Hence, together with (??) and (??) we arrive at

/ (@ logisnsm)" (@s1) + / (@ Lo (@s1)
6(KlﬂBT)

6(K10B’

= [ (@ b s /@ e (@) (220)
3" du Y Du

Since " |51y V" © u = 0(K, N B") and 9! TP Fou— 0(Ky N B') (see again
(?7)) are also orientation preserving diffeomorphisms we obtain analogously due to (?7):

[ @ bogans) @)+ [ @ o) (s
a(KzﬂBT)

6(K2ﬂBl

:ﬁ o (@ |5rgu) " (ws1) / |’Yl®u (wg). (2.28)
Y Du Yo

13



Now we split up 0K; = 0(K, N B") @ 0(K; N B'), combine (??) with (??) via Prop. ??
and apply Stokes’ theorem (p. 183 in [?]):

o deg(a; |ox,) = / (@ lox)* (ws)

Ky

— / (@ logynmn)" (@s) + / (@ loarsn)” (ws1)
3(KlﬁBr)

6(K10Bl)

/yr@u "YT@U (wS1)+/ ( . |fy @u) (wSl)
= [ @) ) = [ G o) (s

Y ou ¥ ou
_ / (@ lonsn)* (ws1) — / 6 lorcanm)* (ws1)
9(KaNBl) 9(K2NBT)
. / 67 iy (dwgs) — / 6 lkanp) (dwst) =0, (2.29)
KgﬂBl K>NBT™

since a; |g,npt and a; |k,npr are well defined, i.e. smooth, due to (??) and since
Ky N B! resp. K, N B" are compactly contained in h=((H' N H™) \ Sing(ac)) resp.
h=((H" N H™)\ Sing(ac)) which are the images under % resp. %" of those sets, on which
the homotopies F! resp. F" are defined, and due to dwg: € Q%(S?) = {0} (see also p.
189 in [?]). Finally it should be mentioned that in (??) one has to work again with two
sequences of smooth closed curves approximating d(K, N B!) resp. 0(Ka N B") at their
two corners in order to apply Stokes’ theorem correctly.

Furthermore we note that H(z,s) := w(z — stac(z)), for s € [0,1], yields a homotopy
¢e( - ,t) =~ ids2, for any t € (0,tp]. Hence, the Lefschetz number A of (¢.(-,t)). reduces to
the Euler characteristic x of S2, which amounts to 2. Now using that h~ (Sing(a.)) CC
K1 by (7?7), K; = D? and that K; has a smooth boundary we finally infer from (?7?),
Def. 7?7, Prop. 77, the excision property of the fixed point index (see [?], p. 206) and
Dold’s fixed point theorem (see [?], p. 209, resp. p. 212):

0= deg(&e_ |8K1) = Ind(aea Sing(ae)) = I(¢€( ) | (h= (Kl)) = I(¢6( : at))
= A((¢e ( 1)s) = x(S%) = 2,

which is a contradiction, thus Lemma ?7? is proved.

2.2 Further preparing propositions

At first we shall make use of Lemma ??. To this end let F' be a fixed integrand (as in
the introduction), ¢g(z) := F(z) + F(—x), a1, a2, a3 three linearly independent critical
points of g |52 and A := (a1,a9,a3)" € GL3(R). We choose two vectors by, ci, such that
Oy := (a1,b1,c1)" € SO(3) and set F' :== Fo O7', g’ := go O7'. We prove
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Lemma 2.2 There are real constants cy, and c, such that
F'((z,y,2)) — F'((2,0,0)) > cyy +c, 2 (2.30)
Vz,y,z € R

Proof: Since O;'-(1,0,0)T = O -(1,0,0)T = a; and since a; is a critical point of g |g»
we calculate:

Vq'((1,0,0)7) = Vg(a1) - 07" =riaf - O =71 (01-a1)" =7 (1,0,0),

for some r; € R. Hence, (1,0,0)" is a critical point of ¢’ |52, implying in particular the
equations:

0= g;((l,0,0)) = Fé((l,0,0)) - Fé((—l,0,0)),
0= glz((l,0,0)) = le((l,0,0)) - Fé((—l,0,0)),

where we dropped the ”T”. Now using that VF"’ is positively homogenous of degree 0
on R® \ {0} by (??) we obain:

F, = const. =: ¢y, F] = const. =: ¢,

on the z-axis except {0}. Furthermore we infer from the convexity of F' € C1(R? \ {0})
(by (??) and (??)) for z # 0:

F'((z,y,2)) - F'((2,0,0)) > (VF'((2,0,0)), (z,9,2) — (,0,0))
= F,((=,0,0)) y + F,((¢,0,0)) z = ¢y y + . 2, (2.31)

Vy,z € R. Now letting z — 0 in (??) and using F' € C%(R?) we achieve the assertion
(??) also for z = 0.

o
If we choose vectors bo, ¢y, and b3, c3, such that Oy := (by, a2,¢c2) ", 03 := (b3, c3,a3) " €

SO(3) and set F'? := Fo O, ", F™® := F o O, ', then we obtain analogously:

F%((z,y,2)) — F"((0,y,0)) > const. z + const. z (2.32)

and
F®((z,y,2)) — F((0,0,2)) > const. z + const. y (2.33)

Vz,y,z € R Next we need

Definition 2.4 Let ¢ € C’O(aB,R?’)ﬂH%’Z(aB,R?’) be prescribed boundary values. Then
we define

M(p) = {{Y"} c C°(B,R*)nH"*(B,R*) | Y, |sp—> ¢ in C°OB,R%)}
and

m(p) = {Y"ilelgxl(p) hnrgggf ZYy™). (2.34)
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Clearly one has m(yp) < ian;'2(B)mCO(B) Z and

Proposition 2.3 There exists a minimizing element {X7} for T in M(yp), i.e. {X7} €
M(p) satisfies _
lim Z(X7) = m(p).

j—o0

Proof: By the definition of m(p) we can choose a minimizing sequence {{Y"}/},cn of
sequences for Z in M (yp), i.e. we have {{Y"}};eny C M(yp) such that

. .. n1jy _
Jim liminf Z({Y™}7) = m(p).

We set m; := liminf, ,o, Z({Y™}’). For each j € N we can choose an integer n(j) such
that

N 1 A 1
| Z{Y" DY) —m; |< ; and Y™ DY o5 —¢ [lcogom) < 7
Now we choose X7 := {Y™)}J Vj € N and see that {X7} is an element of M (y) which
satisfies indeed
| Z(X?) = m(e) |<| Z(X7) = my | + | mj — m(p) |— 0.
o

Proposition 2.4 For any X € C°B,R3) N HY2(B,R3) there is a mollified family
{X} C C®(B1126(0),R3), for e € (0,6) and some § > 0, that satisfies:

X.— X in CYB,R)nHY(B,R). (2.35)

Proof: Due to the continuation theorem for Sobolev functions there is a continuation
X € HY“2(B;1145(0),R3) of X, for some § > 0. An examination of this continuation,

explicitly given in [?], p. 256, shows that we also have X e CO(BH_% (0), R?) on account of

X € C°B,R?). Now we use a family {¢.} of even Dirac kernels, with supp(p.) = Bc(0),
to mollify X:

X.(-) = / (- —w) X (w) dw € C2(Br425(0), B%)
B145(0)
for € € (0,8). Due to X € HY2(B,5(0), R?) we firstly obtain by [?], p. 108, that
| Xe — X linem=| Xe — X |llmom— 0 for e\, 0.

Moreover, due to supp(p.) = B¢(0) and fBl+6(0) v(y—w)dw =1, Yy € B, Ve € (0,6),
we gain:

I Xe = X llcoay=Il Xe = X |5llco(s)= max | pely —w) X (w) dw — X(y) |
yeB Bl+6(0)
= max | pely — w)(X(w) - X(y)) dw |< max ey —w) | X(w) - X(y) | dw
y€B  JB145(0) YeB JB(y)

A~

<max max | X(w)—X(y)|— 0 for €\, 0,
YEB weB(y)
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since X is uniformly continuous on B, 5(0), which completes the proof.
2

Next we prove a proposition due to McShane in [?], p. 719 (see also [?], p. 416):

Proposition 2.5 Let ¢ € CY(0B) be prescribed boundary values and {f™} a sequence
in C°(B) N HY2(B) with the following properties:

f"las—r¢  in C°(0B), (2.36)
md(f") — 0 for n — oo, (2.37)
D(f™) < const. VneN (2.38)

Then there exists a subsequence {f™} and a function f* € C°(B) N HY?(B) such that
md(f*) =0 and )
" — f*  in C%B).

Proof: Let {p;}icy be a countable, dense subset of B. From (??) and (??) we infer
| f* llco(g)< const. Vn € N. Thus noting that {p;} is countable we obtain the
existence of a subsequence {f™} such that {f"(p;)}jen is convergent Vi € N. We
rename {f™} into {f"} and assume that this sequence would not converge uniformly
on B. Hence, {f"} would not be a Cauchy sequence in C°(B), i.e. there exists some
€ > 0 such that for any n € N there exists a pair k, > j, > n and a point ¢, € B with

| £*7(qn) = 7 (an) |> . (2.39)

Let ¢* € B denote an accumulation point of {g,}. As ¢ € C°(0B) we can choose an
1o > 0 such that

€
0SCHBB,, (w)¥ < 36 Yw € 0B. (2.40)

Now let n € (0,7m9) be arbitrarily fixed. Then we can choose some arbitrarily large 7 € N
such that gz € B, (¢*). Now let p; be a point in {p;} N B, (¢*). As {f"(p)} is convergent
there exists some N € N such that

o) - )<y Vis>N. (2.41)

If we choose n > N then we infer from (??) and (?7):

| ¥ (ga) = £ (00) | + | £ (o) = £7"(qn) | (242)
>| f¥(an) = £ (an) | = | £ ) = P2 0) > €= 5 = 5,

as kn > jn > n > N. Hence, either | f¥7(p;) — f*2(gn) | or | 77 (m) — f7*(gz) | has to be
greater than 7, let’s assume

| ¥ (p0) — £ (qn) |> (2.43)

€
T
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By (??) and (??) there exists some N € N such that

€ € ~

I ™ loB —¢ llco@my < 36 ond md(f™) < 6 'm>N (2.44)
Moreover we note that for any f € C°(B) there holds

oscaf —oscocf < 2me(f) < 2md(f) V open subsets G C B (2.45)

by Def. ??. Hence, if we choose i > ma.x{N,N}, set ¢ :== gz and k := k; and apply
(??) to f* and B,(¢*) N B we obtain due to p;,q € B,(g*) N B, (7?) and (?7?):
€ € €
oscao(s, (¢t =1 (o) = (@) | —2md(f*) > 1 26" % (2.46)

Now we firstly assume that By(¢*) N 0B # 0. Then we obtain for any two points
w',w" € By(g*) N OB by (??) and (?7?):

| o) = ") |<] FR') — o) |+ ] e(w') = p(w") | +] p(w") = f5(w") |

€ €
< 3 % ﬁ,
as k > 7 > N. Thus we conclude:
ko €
s¢g, ol < 1g¢
Together with osca(Bn(q*)mB)fk < oscmnan’“ + OSCaBn(q*)mek and (?7?) we obtain
the existence of two points b1, by € 9By (g*) N B that satisfy:
k k k ko € € _ ¢
| f5(b1) = £7(b2) |2 osca(m, () ™ = 0scp goynanl” > g = 15 = o1 (2.47)

for any 7 € (0,70). If on the other hand B, (¢*) N B = () then we have 0B,(q*) N B =
0(By(¢*) N B) and the statement of (??) follows immediately from (??). Furthermore
since f¥ € HY2?(B) and D(f*) < const.=: M, by hypothesis, we may apply the Courant-
Lebesgue-lemma which yields the existence of some 7 € (§,v/§), for any § < nZ, such
that

8T M
| fE(01) = £5(02) 1S L(* lom,(g)nm) < 47 — 0 for 60,
log(5)
(L:=lenght) which contradicts (??) (in both considered cases) as € was assumed to be a
fixed positive number. Hence, we proved the existence of a subsequence {f™i } satisfying

Y — f*  in C%B) (2.48)
for some f* € C°(B). If we combine this with D(f") < M Vn € N, we infer in particular
| £ || 1.2(B)< const., thus the existence of some further subsequence {f"*} with

fnk N f* c H1’2(B).
Finally we conclude immediately by (??) and (?7?):
0 +— md(f™) > mg(f™) — meg(f*) for j — oo,

i.e. mg(f*) =0 for every open subset G C B, which means that md(f*) = 0.
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Finally we prove the following easy (see also [?], p. 548):

Proposition 2.6 For any X, X' € H“?(B,R3) and any open subset 2 C B there holds:

| Ja(X) = Ja(X') [< 2 (m2 + k) (VDa(X) + VDa(X") VDa(X — X'),  (2.49)
| Zo(X) — Zo(X") |< (2m2 + k) (VDa(X) + /Da(X") VDa(X — X').  (2.50)

Proof: Firstly we split up:
Xu ANXy — Xy AN Xy = Xu AN ( Xy — X))+ (Xy — X)) A X,

We estimate by the Holder inequality on any open subset 2 C B:

/Q | Xy A (Xy — X2) | dudv < 24/Dq(X) Do(X — X'),

thus

/ | Xu A Xy — X, AX | dudv < 2 (v/Da(X) + vV/Da(X'))V/Da(X — X').  (2.51)
Q

In [?], p- 7, the Lipschitz continuity of the integrand F on R?, with Lip. const.= my, is
derived from its required properties (??), (??) and (?7). Together with (?7) we arrive
at

| Fo(X) = Fa(X") |< 2ma (vDa(X) + v/Da(X) v Da(X — X7). (2:52)

Combining this again with (??) we obtain (??). Furthermore by the ”triangle inequality”
| V/Da(X) — /Da(X') |< /Da(X — X') we have

| Da(X) — Da(X') |= (VDa(X) + VDa(X")) | VDa(X) — v/Da(X') |
< (VDa(X) + v/Da(X")) v/Da(X — X').

Hence, a combination of this with (??) yields (??).

2.3 Levelling of C°(R?)-functions

In this section we discuss the process of "levelling” a function f € C>(R?) on the unit
disc B for a given fineness 6 > 0 (see also [?], p. 553 and [?], p. 558). To this end let

Z:ml_%nleo<l1<...<lN<lN+1:mng

be a partition of the interval [ming f, maxg f] such that AZ := max;—1 w41

{li —l;—1} < 0 and such that l1,...,Ix are regular values of f, which is possible for any
choice of § by Sard’s theorem (see [?], p. 205).

The levelling process starts on the level /1. Since I; is a regular value of f € C°(R?),
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(especially I; # 0) the implicit function theorem (see [?], p. 303) exposes f~'([l1, 00))
to be a compact 2-dimensional C*°-manifold with boundary. Hence, f~!([l1,00)) is
locally connected, in particular, and has therefore only a finite number of connected
components. Now we consider the (disjoint) union Uj_l of those connected components
of f=1([l1,00)) that are contained in B, in particular we have

flw)>l  NYweU" and  f(w)=L VYwedUl, (2.53)

as [; is a regular value of f and as f is continuous, and we set

! L : weUl *
H(w) 32{ 2\ prh
flw) + weR\UL.

We go on by considering the compact C*°-manifold f~'((—o0,/;]) which consists of only
finitely many connected components again, and term UY the union of those connected

components that are contained in B. By (?7) we infer Uj_l NUY =0 and therefore
ff& (w) <y Vwe Ut and fj_l (w) =14 Vw e ouh,

again since [y is a regular value of f, by x and as f is continuous, and we set

I . i we Uk * %
f“”’{fﬂ@ . we R\ UL,

Next we apply the same process to f! on the level I and note that for connected
components P! of Uil and P? of Uf we have P' N P? = () and for connected components

Pl of Uil and P2 of U we have either P! N P2 = ) or P! CC P2. After that we apply
the process to (f1)!2 on the level I3 and so on, until we have performed the last levelling
step on the level [y. Thus after 2 x N steps we arrive at a finite collection of ”level sets”
Uﬁf, j=1,....N, and at a function fX on R2?, that we term the ”levelled” function of f,
possessing the following properties:

Lemma 2.3 Let f € C®(R?) and a fineness § be given arbitrarily. Firstly there holds
U_fg C B and Uk NOY = ¢ for j =1,...,N. Secondly for connected components PJ
of Uﬁf and P of Ujf, with j < i, there holds P N P* = () and for connected compo-
nents PJ of Uij and P of U (j < i) there holds either PI N P* = () or P/ CC P".
Furthermore Ujf are compact 2-dimensional C°-manifolds with boundary and BUij are
closed 1-dimensional C*®-manifolds. In particular, Ujg consist of only a finite number of

connected components and (’)Ujé are Lebesgue-measurable with £2(8sz) = 0. Moreover
ft satisfies:

flec®B)nHY(B),  f'lop=flos,  md(f"|) <4 (2.54)
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Proof: The assertions Ujf C B and U_lif NUY = § follow immediately from the defi-
nition of Ujf and as the [; are regular values of f for j = 1,..., N. Next one obtains
simultaneously f¥ € C°(B) and the relations between the connected components P? of
Uﬁf and P* of Ujf resp. Uﬁ, with j < ¢, by induction during the finite levelling process.
As the levels I; are regular values of f € C2°(R?) the implicit function theorem yields
the assertions about the level sets Uﬁf and their boundaries BU:’E at once. Furthermore
one has to note that manifolds M are locally connected, thus their connected compo-
nents are open in M and compact manifolds can only consist of finitely many. Moreover
L? (BUjZ) = 0 follows immediately from the implicit function theorem and Prop. 8 of
Section 1.11 in [?], p. 101. Furthermore by construction of the first levelling step we ob-
tain f_li_1 € H%'(B) due to Lemma A 6.9 in [?], p. 254, where we have to use that 8U£L1 is
a closed C*°-manifold, thus in particular a Lipschitz boundary. Moreover it is also clear
that we have Vfi& € L%(B,R?) as fi_l = fon R?\ Uj_l and Vfil =0on Ujld and since
(9U_l|r1 especially satisfies £2(8U_l|_1) = 0. Hence, we have f_lﬁ € H"2(B). Now, using that
U is a closed C*°-manifold again, especially with £2(¢9Ulj) = 0 the same reasoning
as above yields that f!* € H"2(B) and again using that BUjf is a C'*°-manifold just the
same reasoning as above yields that (f!1)2 € H%?(B). Hence, after 2 x N steps we arrive
at f¥ € H“?(B). Next, if Ujl& N OB = () we have fj_l loa= f |aB, but if Uj_l NOB # () we
obtain by the construction of fjl&:

fi=li=f along OUY NOB.

Since this argument holds true for each step of the levelling process we finally see that
Y lsp= f |o. If we suppose that there exists an open subset G' of B such that
maxg ¥ — maxsg fL > 6, then due to AZ < § there would be some level l; € Z such
that maxgg fL < [; but maxg fE> l;. Hence, together with the continuity of L we
would have on a connected component G’ (# 0) of G N (f)1((l;,0)) cC G

fAw)y>1l;, YweG and  flw)=1; VYweodd,

which implies that f© = f on G’ and G' C Uf. Therefore we must have f = I; on
G’ for some i > j by the construction of f£ and the second part of the assertion of the
lemma, which is a contradiction. Similarily one proves that mingg f£ — ming fl<s
for all open subsets G' of B again by the construction of f” and the second part of the
assertion of the lemma, hence md(f* |5) < 4.

2.4 Levelling of the components of distorted surfaces Ar

In this section we consider some smooth surface 7 € C®°(R?,R?) and its distortion
7 := Am, where A := (a1,a9,a3)" € GL3(R) is defined at the beginning of Section ??.
Its components satisfy

i = {a;, ) = (O;7); = (2.55)
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for i = 1,2,3, where we termed 7" := O;m. We set m := min;— 9 3{ming 7;} and
M := max;—1 2 3{max 3 7;} and choose a partition

Z.m=lh<h<..<In<Iyy1=M

of the interval [m, M| of fineness AZ < §, for an arbitrarily given ¢ > 0, such that the
levels [, 7 = 1,..., N, are regular values of the three components 7; simultaneously. At
first we level the first component, i.e. #; — (71)F, abbreviate (/1)L := (7))L, 74, 7l!)

and prove (see also (6.6) in [?])
Lemma 2.4 For an arbitrary 7 € C°(R?,R3) there holds:
F(m) > F(O7H(=")h). (2.56)

Proof: We abbreviate 7’ := «'' = Oym. Tt will suffice to consider only the first step
of the levelling process on the level [ applied to 7} = 7. Let D be the open kernel
of a connected component D of the level set Uil which is a compact C'*°-manifold with
boundary by Lemma ??. Now we choose an Atlas A := {(V}, ;) =o,...x} of D such that
0D C Ule V; and a subordinate partition of unity {n;},o,. x. Furthermore a careful
examination of the implicit function theorem (see [?], p. 303) shows that we may arrange
the charts ; : B;'; (0) = V;N D such that vy, := 1, l[=r;ri) (=755 75] = V;NOD yields
a parametrization of V; N D with respect to its arc lenght, for j = 1,...,k, implying
that ((7;)5, —(7;)}1) yields an outward pointing unit normal field v; along V;NOD. Since
we have 7} =[; along 0D we infer:

L) =0 Vse ) (2.57)

for j = 1,...,k. Now we consider the vector field h(z,y, z) := (—¥,0,0) on R?. Firstly
we note that rot A = (0,0,1), thus setting N := (N1, Na, N3) := 7, A 7}, we have

N3 = (roth(x'), 7, A m) on R?. (2.58)

Furthermore we set w := ({(h('), 7)), —(h(7'),n.)) € C*(R?,R?). Using 7!, = m}, due

7
to Schwarz we calculate, as in the proof of Stokes’ theorem (see p. 492 in [?]):

divw = (roth(z"),nl, A ) on R?.

Now combining this with (??), the divergence theorem for Lipschitz boudaries (see [?],
p. 252) and (?7?) we arrive at:
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/Ngdudv:/divwdudv:/ ’LUVdS—Z/ i (w,v;) ds
D D aD 6DOVJ

ko
=3 [ ) s(6) )y (g m) ) () s

= /Tj (nj (=5 (1)) (75 (5)) (77) — (15 75 (71)w) (75(3)) (75)} ds
j=17-7i
ke
= Z/ EACO) %711(’71'(3)) ds = 0. (2.59)
j=17-"i

Moreover using h(z,y, z) := (z,0,0), with roth = (0,1,0), we obtain analogously:

/ Ny dudv = Z/ (n; 75) (v4(s)) Zgﬂi(’yj(s)) ds =0, (2.60)

on account of (?7?). Furthermore, as we have V(ﬂ{)ﬂ{ =0 on D we see:

L (™ (n}) 2 ((=)'D)e
Ni=| N )= | m A (m
N?l)I (ﬂ-é)u (ﬂ'é)v
((wwu(wg)v <wa)v<wg)u) (N)
= 0 = 0 |.
0 0

Thus by Lemma ?? we can conclude now:
F'(N) — F'(N%") = F'(Ny, Ny, N3) — F'(Ny,0,0) > cy N2 + ¢, N3.
Integration of this inequality over D yields

/ F'(N) dudv — / F'(N") dudv > ¢, / Ny dudv + ¢, / N3 dudv = 0,
D D D
where we used (??) and (??). Hence, as we have (7r1)l4{ =} on B\ U_lﬁ we obtain
/ F'(N) dudv > / F'(N") dudwv.
B B
Thus due to O; € SO(3) we finally achieve after 2 x N levelling steps:

Flw) = /B F(OT (Ovmu A Oyy)) dudy = /B F'(N) dudy

> / FOTH ()L A ()2)) dudv = F(OT* (")),
B
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Furthermore we shall also level the second and third component of 7, i.e. 7; > (7;)*
for i = 2,3. Abbreviating (7/2)F := (72, (#2)F, 72) and (7))L = (a3, 7, (7)) we
gain by (??) and (??) analogously for i = 2, 3:

F(r) > F(O; ' (=")h), (2.61)

where one has to use the vector fields h? := (0,—2,0), h? := (0,z,0) for i = 2 and
h3 := (0,0,y), h® := (0,0,—z) for i« = 3 to obtain the counterparts of the central
equations (??) and (??). Next we prove (see also (6.7) in [?])

Lemma 2.5 For an arbitrary 1 € C°(R?,R3) there holds
D(r) - D(O; " (x")*) = D(x}’ — (x}")*), (2.62)

13
fori=1,2,3.
Proof: For i = 1 we abbreviate again 7’ := 7’!. We consider the union £ := U;V:1 Ui] of
all level sets that arise during the levelling process applied to 1 = 7}. Now combining
the facts that 7 and 74 remain unchanged on B and that 7} remains unchanged on
B\ L, while we level 7}, and that V7} =0 on £ we infer:

D(n') = D((n)*) = De(n}) = De((n1)") = De(nh) = De(n — (x1)") = D(w — (x1)").
Together with the invariance of the Euclidean scalar product with respect to the action

of SO(3) we finally achieve the assertion (??) for ¢+ = 1. For i = 2,3 the proof works
analogously.

o
A combination of (??), (??) and (??) yields
. . 1 .
D(mj' = (r")") < 7 (Z(x) = T(O; 1 (x")")), (2.63
for i = 1,2,3. Furthermore we define 7~ := ((71)%, (7o), (73)Y) and =l := A~1xl

(= A 1(Am)t) and state (see also Lemma 6.3 in [?])

Lemma 2.6 The surface 7L has the following properties:
(i) =t € C%B,R¥) n HY?(B,R3), (ii) 7l |sp= 7 |ap, (iii) md((A7"); |g) < & for
i=1,2,3. (iv) Using the matriz norm || B |:= sup,eg2 | Bz | on Mats 3(R) we have:

1112 3
D(rl —7) < w ( > I(r) - z(o;l(ﬂ'i)L)). (2.64)
=1

Proof: The points (i), (ii) and (iii) follow immediately from Lemma ?? and the definition
of 7L'. Moreover we calculate by (??) and (?7):
3

D(x" —m) = DA™ (7" - ) <|| A7 |2 D" —7) =] 4712 (D D((=)" — 7))
=1
3 . . -1 92 3 .
a2 (S - wty) < LA (S 1m - 207 ().
=1 =1
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2.5 Proof of Theorems ?? and ?7?

Proof of Theorem ?7: .
Now let ¢ € C°(0B,R?) N H2?(0B,R?) be prescribed boundary values. By Prop. ??
there exists a minimizing element { X"} for 7 in M (p), i.e. {X"} € M(yp) satisfies

lim Z(X™) = m(y). (2.65)

n—0o0

By Prop. ?? there exists a mollified sequence {7"} := {X" } C C°(R?,R?) such that
1
Firstly we infer from (??) and {X"} € M (p):

| 7" loB —¢ llco@my<I| 7" lop —=X™ |osllco@amy + | X™ loB —¢ |lcoaBy—> 0,  (2.67)

for n — oo, which shows that {7} € M (¢). Secondly a combination of (??) with Prop.
?7 and (?7) yields

| Z(n") = m(p) |<| Z(x") = Z(X") [ + [ Z(X™) = m(p) | — 0, (2.68)

where we also used that D(X") < £ Z(X™) < const. Vn € N due to (??). Hence, {7"} is
a minimizing element for Z in M (y) again. Now we level the components of 7" := A",
ie. @~ ()L, with decreasing fineness d, \, 0. Firstly by (??) and (??) we have

O7H (™YD" lop= 7" lop—+ ¢ in C°(9B,R’), (2.69)

1

and therefore {O; (7))t} € M(p), for i = 1,2,3, having used (??) again. Further-
more by (??), (??7) and (??) we obtain
O <T(x")  VneN,

for i = 1,2,3. Combining this with (??) and (??) we conclude:

m(yp) < liminf Z(0; *((™)")*) < limsup Z(O; ((z")")*) < lim Z(7") = m(yp),

n—00 N—00 n—00

implying that {O; *((#")")F} is a minimizing element for Z in M (p), for i = 1,2,3. If
we insert this and (?7?) into (?7?), applied to 7", we obtain:

mL . n | A7t )P & ny —1(( n\ri\L

0 < D((n")" — ") < e (YT — (07 (x))E)) — 0, (270)
i=1

for n — oo. Combining this with (??) and noting that {D(n")} and {D((7")L)} are

bounded due to (??) and (??) we arrive at:

| Z((x™)") = m(p) <] Z((@™)") = Z(x") | + | Z(z") = m(p) |— 0, (2.71)
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for n — 0o. Moreover by Lemma ?? (ii) and (??) we know that
(™) |op= 1" log—> ¢  in C°(IB,R?).

Hence, together with Lemma ?? (i) and (??) we see that {(7™)’} is a minimizing element
for 7 in M(p). Now recalling Lemma ?? (iii) we gather the following facts about the
sequence {A (7")¢}:

A |sp— Ap  in C°(6B,R?),
md((A (™)) |5) < 0n (O for 1 =1,2,3,
DA (™) <|| A > D((7™)") < const. VneN

Hence, we can apply Prop. ?? and obtain a subsequence {A (7")L} and a surface
7* € C°(B,R) N H?(B,R) such that

A(r)l | g— o* in C°(B,R?),

md(n}) = 0, for i = 1,2,3, and 7* |sp= A¢. Thus, if we rename {A (7™ )"} into
{A (7))} we conclude:

(W”)L lg— A" lr* in CO(B,R3), (2.72)

with A='7* |sp= ¢. As we already know D((n")¥) < const. this entails in particular
| (@)E | g2 < const., Vn € N, implying the existence of a further subsequence
{(7)L} with

(7))L |p—= A7 lx*  in HY(B,R®).

We set X* := A~ ln*. Now using the weak lower semicontinuity of Z due to [?], Theorem
I1.4, (see also [?], p. 12) we conclude together with (??) and (?7):

i(p):= inf T <I(X*) <liminf Z((7"™)") = m(p) < (). (2.73)
Hy?(B)NCO(B) j—o0

Moreover in [?], p. 34, it is proved that the (unique) minimizer Y of Z within the class
HY?(B,R3) lies already in CO(B,R3), if ¢ € C°(0B,R®) N H22(B, R3), which implies

IZ(Y)= inf T< inf T <I(Y).
Hy*(B)  Hp*(B)NCO(B)

Combining this with (??) we finally obtain:

LX) = j(¢) = inf T,
Hp*(B)

with md((A X*);) = md(n}) =0, for i =1,2,3.
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Proof of Theorem ?7:
Firstly by hypothesis we have the equicontinuity and uniform boundedness of the dis-
torted boundary values {A X™ |5p}, thus we gain a convergent subsequence {A X" |gp}
in CY(0B,R3) by Arzela-Ascoli’s theorem, which we rename {A X" |5p} again. Now we
infer by Theorem ?? that {A X"} C C°(B,R3) N H?(B,R?) satisfies

md((AX");) =0 for 1 =1,2,3, VneN

Hence, together with D(AX™) <|| A ||? D(X") < const. we see that Prop. ?? implies
the existence of a further subsequence {4 X™} and some surface Y € C°(B,R®) N
H'?(B,R3) such that

AX" —Y  in C°B,R%

and md(Y;) = 0 for ¢« = 1,2,3. Thus the subsequence {X"i} converges uniformly to
X =AY € C°B,R®*) N HY(B,R3) and md((A X);) = 0 for i = 1,2,3. Together
with the required boundedness of {D(X")} we obtain || X" ||g1,2(p)< const., Vj € N,
and therefore the asserted weak H'2-convergence in (?7?) for a further subsequence.
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3 Compactness resp cIosedness of the set
of Z-surfaces in H,>(B,R?) resp. C°(B,R%)

In this chapter we prove Theorems 10.2 and 10.3 of [?], pp. 558-561, whose proofs in
[?] are rather sketchy. Throughout the paper we will use the notations Z := X, A X,
67 = Xy A @y + pu A X, and 627 := @, A, for any X, o € H'?(B,R3),

R :=R(X) := {(u,v) € B| (Xy A Xy)(u,v) #£ 0},

§:=8(X) =B\ R(X)
and Cy,y, := By, (0) \ B, (0) for r; < 75 € (0,1). Firstly we prove (see p. 560 in [?])

Proposition 3.1 Let {Y™} be a sequence in HY2(B,R3) with D(Y™) < const. and let
{6n} C Rso be some sequence with 6, — 0. Setting ry, := r + &y, for every r € (0,1) we

prove that

m(r) := liminf D¢, (Y") =0 for a.e. 7 € (0,1). (3.1)

n—oo

Proof: We assume that there is some ¢y > 0 such that P, := {r € (0,1) | m(r) > €} is
non-empty for € € (0, €], otherwise we are done. We choose some € € (0, ¢y] arbitrarily
and a collection of finitely many different radii r!,...,79 in P., where ¢ < card(P.)
is arbitrarily fixed (which means that we choose ¢ € N arbitrarily if P, should have
infinitely many elements). Firstly due to d, — 0 there exists a number N; such that
Crirg NCy,5 = 0 Vi#j,Vn > Np, which implies that

q
Z 7”‘7“1 ) <DY") < const. =: M, (3.2)

Vn > Nj. Furthermore we can determine a number Ny > N; such that DCM.M. Yym) >

( ) > § Vn > Ny and for i = 1,...,q simultaneously. Hence, together with (??) we
see that q2 <M, ie g< QM. This shows that card( ) < 2]6\/1 Now every r € (0,1)
with m(r) > 0 lies in some set P1 for some n > (r), ie. B:={r € (0,1) | m( ) >

0} C U,en P2 which is a countable set on account of card(P1) <2Mmn, Vn > _, thus

in particular L‘l(B) = 0, which proves the assertion.
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For the readers convenience we recall here that we have by Proposition 3.3, Lemma
4.1 and (8) in [?]:

2/(VF(Z),(SZ)dudU—l—/F((SZ)dudU—Fk/DX-D(pdud'u (3.3)
R S B

for any X, p € H"?(B,R3).
Theorem 3.1 Let {X"} be a sequence of I-surfaces with D(X™) < const., Vn € N, and

with equicontinuous and uniformly bounded boundary values, as in Theorem ?7. Then
for every r € (0,1) there ezists a subsequence {X™} such that

| X" — X ||H1,2(BT(O))_> 0 for k£ — oo, (3.4)
for the surface X of Theorem ?7.

Proof: From Theorem ?? we infer the existence of a subsequence { X"} such that

| X —Xm lco(zy— 0. Without loss of generality we may assume that || X—-X" lcomy>
0 Vj € N. We rename {n;} into {n}, choose some r € (0,1) arbitrarily such that (??)
holds for Y" := X — X" and §, :=|| X — X" o) and consider the sequence {ry}
given by r, := r 4+, (as in (??)). Without loss of generality we may assume that
{rn} C (r,1) Vn € N. By Lemma 2 of Section 2.5 in [?], p. 23, the Z-surfaces X" are
characterized by the variational inequality

STI(X™, ) >0 Vee HY(B,R), (3.5)
(see (?7?7)) which we are going to test now by

§ :)Z'(w) — X™w) : w e B(0)
o (w) = ¢ T (X (w) - X"(w)) : w € Crpr
0 : we€ Cpmi.

Knowing that X", X € H'2(B,R3) one easily checks that ¢" € H"2(B,R3), Vn € N,
on account of Lemma A 6.9 in [?], p. 254, and by the estimate

- _ X — Xxn»
|D¢"|SM\D(X—X")|+¥

< DX —-X"|+1 on Cnp, (3.6)
Tn —T Tn —T

where we inserted the definition of {r,}. We will use the following abbreviations as in
Section 4 of [?]:

ZM= Xy AXY,  $ZM=XpAQL el AKXy, 82N =y ey, (3.T)
and we observe that Z := X, A X, can be expressed as

Z=2"+6Z" +6°Z" on B(0). (3.8)
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Furthermore we define R™ := R(X") and 8™ := S(X™). Firstly we note that
o DX". D(X — X") dudv = Dy, (0(X) — D5, 0)(X™) — Dy, 0y (X — X™)
Vp € (0,1]. Now combining this with (??), (??) and F(0) = 0 we arrive at:
0 < SHI(X™, ") = / (VF(Z"), 62" dudv + / (VF(Z"), 62" dudv
R0B,(0) R*M\Crry

+ / F(62") dudv + / F(62") dudv  (3.9)
SnﬂBT(O) SnmCTrn

+k (Dp,0)(X) — Dp,(0)(X") = Dp,0)(X — X")) + k ; DX" - D¢" dudv.

As in (9) and (11) of [?] we gain by (??), the convexity of F € C1(R3\{0}), | VF |< mq
on R\ {0} and | 622" |< 1 | Dy |2

Froo,o)(X) = Frong, 0)(X") > / (VF(Z"), 62") dudv
RB,(0)

—ma Drang,0) ("), (3.10)

and together with F > 0 on R®* and F(0) = 0, using that Z" =0 on S™
Fsrnp,0)(X) = Fsrap, ) (X") > /s 50) F(0Z") dudv —my Dgnnp, ) (") (3.11)
nNB,

Now combining (??) and (??) with (??) and noting that & > mq we obtain:

Ip,0)(X) — Ip,0)(X")
> / (VF(Z"),82™) dudv + / F(62™) dudv
ROB,(0) S"NB,(0)

—ma Dp, 0)(¢") + k (DB, 0)(X) — DB, (0)(X™))

> / (VF(Z"),62") dudy — / F(62™) dudv
’R"ﬂCMn Snmcrrn
+(k —m2) Dp,0)(¢") — k DX™ - D" dudv
Crrn
> / (VF(Z"),62") dudy — / F(62™) dudv
R”OCTM SnnCrTn
—k DX" - D¢™ dudv = =61 I¢,, (X", ¢"). (3.12)
Crrn

Next combining (??) with £2(Ci,,) < 27 (r, —7) we gain by Cauchy-Schwarz’ inequality:

Dg,,, (¢") <2Dg,,, (X — X™) + 27 (1 — 1), (3.13)
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Vn € N. Moreover by Proposition ?? and our choice of r € (0,1) we obtain an increasing
sequence {n;} C N with

Déyyy, (X = X™) — 0 for k — oo. (3.14)

Combining this with (??), D(X"™) < const. by hypothesis, r, — r and the Holder
inequality we arrive at

| DX™ . D¢™ dudv |< const. Dq,,,, (pne) — 0 for k - o00.  (3.15)

Cﬁrnk

Moreover by (??) we estimate 0Z™ = Xp* A ok + ¢yt A X% on Cyy, by
| 6Z™ |< 2| DX™ || D™ |[< 2| DX™ | (| D(X — X™) | +1),

which implies by the Holder inequality, (??), D(X™) < const. and r,, — r:

/ | 62" | dudv < const.\/’DCMnk (X — X™) + const./Tn, —7 — 0. (3.16)

TTng

Hence by | VF |< mg on R® \ {0} and F(z) < my |z | Vz € R® we arrive at

| (VF(Z™), §2™) dudv | < my / |62 | dudv — 0 (3.17)
R™"NCrrp, Ty

and | / F(52™) dudv |< ms / 162" | dudy —s 0. (3.18)
S"kﬁCthk (hrnk

Now combining (??), (??) and (??) with (??) we gain

k—o0

On the other hand we have X" — X in H%2(B,R3) by Theorem ??, hence by the weak
lower semicontinuity of Zp (o) and (??) we finally obtain

limsup Zg, (0)(X™*) < Zp, (0)(X) < liminf Zp g)(X™*).
k—o00

k—o00

Due to this result and the weak convergence of {X™} to X we infer from Lemma 6 in
Chapter 4 of [?]: B
Dp,(0)(X™) — Dp,)(X)  for k— oo,

which again combined with the weak convergence in H 1.2(B,R?) and the convergence in
CY%(B,R3?) of {X™} to X finally yields the assertion in (??) for a.e. 7 € (0, 1), thus for
every r € (0,1).
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Now combining the above theorem with Lemma 2 of Section 2.5 in [?], p. 23, we
prove Theorem 10.3 of [?], p. 560.

Theorem 3.2 The surface X of Theorem 17 is an I-surface again.

Proof: Let r € (0,1) be arbitrarily chosen. We rename the sequence {ny} in (??) into
{n} and define S” := S(X™) N B,(0), R™ := R(X™) N B,(0),

" =8'\S =R, \ R} and 7™ :=8\S' =R\ R,

and moreover Z := Xy A Xy, 2" := X' ANXD, 0Z = Xu Ay + pu A X, and §Z7 :=
X" A @y + @y A X? for some arbitrarily chosen ¢ € H2(B,(0),R?). The decisive step
consists of the proof of

5" Fp,(0)(X, @) > liminf §* Fp_(0)(X", @) (3.20)

n—o0
V¢ € H"2(B,(0),R3). Firstly we estimate:

| Z" — Z |=| XPAXE — Xy AKXy |=| XPA (XD — Xp) — X A (XD — X)) |
<(DX"|+|DX|)| D(X" - X)|.

From this we infer by the Holder inequality and (?7?):

/Br(o) |27 = 2| dudv <2 (\/DBT(O)(XTL) + \/DBT(O)(X)) \/DBT(O)(X” -X)—0.

(3.21)
Next we estimate:

62" —0Z |=| (Xif = Xu) ANy + 0u N (X)) = X)) [< 2 | Do [| D(X™ = X) |, (3:22)

which implies again by (?7?):

/ 62" — 62 | dudv < 44/Ds (0 (¢) D 0)(X" — X) —> 0. (3.23)
B (0)
Next we split up the integrals on the sets R} and R, occuring in (??) resp. (?7?):

/ (VF(Z”),&Z”)dud’u—/ (VF(Z),6Z) dudv
Ry

r

- / o X (VF(Z),027) 4 e (VE(Z),677)
(0
—XR,nR2(VF(Z),6Z) — xon(VF(Z),6Z) dudv
- / oo (VE(Z™), 62" — §2) + xrenr, (VE(Z") — VF(Z), 62) dudv
(0)

—/ Xon(VF(Z),8Z) dudv + / X (VF(Z"),6Z") dudv. (3.24)
»(0) B:(0)
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For the first integral in (??) we have by | VF |< mg on R? \ {0} and (?7?):

[ xreor, (VE(Z™), 627 — §2) dudv |< ms / 162" — 67 | dudv —> 0. (3.25)
B.(0) B.(0)

Now we are going to examine the second integral in (??). By (??) we obtain a subse-
quence {Z"k} for which

Z"(w) — Z(w)  for a.e. w € By(0). (3.26)

We rename {ny} into {n} again and shall consider this sequence henceforth. Now we
choose some point w € B,(0) \ N arbitrarily, where N' C B,(0) is the subset of £
measure zero on which (??) does not hold and 6Z does not exist, and distinguish between
the following two cases:

Case (1): There holds w € R;Y N R, for an increasing sequence {n;} C N. Then we
obtain by (??) and the continuity of VF on R? \ {0}:

VF(Z")(w) — VF(Z)(w) for j — oo.
As we have w € R} N R;, i.e. xrnar,(w) =0, for n € N\ {n;} we can conclude:
XrenR, (W) (VF(Z")(w) — VF(Z)(w)) 6Z(w) — 0 for n — oo. (3.27)

Case (2): There exists some number N € N such that w ¢ R} N\R,, i.e. xrznr, (w) =0,
Vn > N. In this case we obtain (??) immediately.
Hence, we gain (??) for a.e. w € B,(0). Furthermore we see due to | VF |< mg on

R3 \ {0}:
| xrpnr, (VF(Z") = VF(Z))6Z | < 2ms | 07 |€ L'(B,(0)),

Vn € N. Therefore the Lebesgue convergence theorem finally implies that
/ XRoRr, (VF(Z") = VF(Z))6Z dudv — 0. (3.28)
»(0)

Now we examine the third integral in (??). We have Z" = 0 a.e. on 0" = S\ S,.
Hence, we obtain by (?7?):

/ Xo.n|Z|d’U,d’U:/ Xon | Z— 2" | dudv — 0.
B (0)

B (0

Thus we gain an increasing sequence {ny} such that
Xomk (W) | Z(w) |[— 0 for a.e. w € B,(0).

Renaming {n} into {n} again and noticing that | Z |> 0 on o™ C R;, Vn € N, we
arrive at x,n(w) — 0 for a.e. w € B,(0), i.e.

L*(6™) — 0 for n — oo. (3.29)
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As we know (VF(Z),0Z) € L'(R;) due to | VF |< my on R \ {0} we infer from the
absolute continuity of the Lebesgue integral that

/ Xon(VF(Z),8Z) dudv — 0 for n — oo. (3.30)
B, (0)

Now the fourth integral in (??) has to be examined simultaneously with the remaining
integrals on the sets S;* and S, occuring in (?7?) resp. (?7), which we also split up:

/ F(6Z")dudv — | F(0Z)dudv :/
St

F((SZ")dudv—{—/ F(6Z") dudv
SnNS,

Sn on

_ / F(57) dudv — / FOZ) dudv.  (3.31)
SyNSe Tn

Since F is Lipschitz continuous with Lip.-const.= mgy by Lemma 3.2 in [?] we firstly
obtain together with (??) that

/ | F(0Z™) = F(6Z) | dudv < mo / 162" =67 | dudv —> 0,  (3.32)
) B,(0)

which estimates the difference of the first and third integral in (??) in particular. Now
(??) yields a subsequence {§Z"} such that F(6Z™)(w) — F(6Z)(w) for a.e. w € B,(0)
and by Vitali’s theorem we know that Ve > 0 there exists some d(€) such that

/ FOZ™)dudv < e,  if L2(E) < 6(¢) (3.33)
E

uniformly V& € N. Again we rename {ny} into {n}. As (??) means that for any given
§ > 0 there is some N(§) with £2(c") < § Vn > N(§) we conclude together with (?7)
that

/ F(0Z")dudv — 0  for n — oc. (3.34)

Now there only remain the fourth integrals in (??) and (??). On 7" = R\ R, we obtain
by the convexity of F € C*(R? \ {0}) and its positive homogeneity:

(VF(Z™),82") < F(§Z") — F(Z") + (VF(Z"), Z")
= F(62") — F(Z") + F(Z") = F(62").

Hence we obtain together with (?7?):

/ (VE(Z"),62™) — F(67) dudy < / P57 — F(07Z) dudv —> 0. (3.35)

Tn

Now terming {n;} C N the resulting increasing sequence, having selected subsequences
several times after (?7), and collecting (??), (?7?), (?7), (?7), (?7), (?7), (?7), (??) and
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(??) we finally conclude:

liminf (5 Fp, ) (X", ¢) = 67 Fp, (0)(X, )
< liminf (5% Fp, (o) (X", @) — 6 Fp, 0)(X, 0))
j—oo
— lim inf / (VF(Z"),62™) — F(5Z) dudv < 0
j—oo o mj

V¢ € H“2(B,(0),R3), which proves (??). Moreover we obtain immediately by (??) (for
the same sequence as in (?7)):

6Dp, ) (X", p) = DX" - Dy dudv — DX - Dy dudv = 0DB, (o) (X, ).
B,(0) B, (0)

Hence, together with (??) and (??) we arrive at

6+IBT(0) (X, (p) Z lim inf 5+IBT(O) (Xn, (p) Z O, (336)

n—oo

V¢ € H"2(B,(0),R?), where we used that the Z-surfaces X" satisfy 6t Tg, ) (X", ) >0
Vo € H'2(B,(0),R3) by Lemma 2 in Section 2.5 in [?] and F(0) = 0. Moreover for any
¢ € C*(B,R?) we have supp(p) CC B,(0) for some r € (0,1), hence we gain by (?7)
and F(0) = 0:

STI(X,0) >0 Ve CX(B,R). (3.37)

Now we consider some arbitrarily fixed ¢ € H 1.2(B,R3) and some approximating se-
quence {¢/} C C®(B,R?), i.e.

¢ — o in HY?(B,R). (3.38)
We set 629 := X, A ¢l + ¢}, A X, and estimate as in (??):
1627 —6Z |<2 | DX || D(¢’ - ¢) |, (3.39)

which implies by (?7?):

/B 627 — 62 | dudv < 4\/D(X) D(¢? — ) — 0.
Therefore we obtain as in (??):
| /R (VF(2),027 — §Z) dudv |< my /R | 027 — 67 | dudv — 0, (3.40)
and as in (?7):

| / F(627) — F(62) dudv |< my / | 627 —6Z | dudv — 0. (3.41)
S S
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Moreover we have
/ DX - D¢’ dudv —)/ DX - Dy dudv (3.42)
B B

immediately by (??). Hence, recalling (??) and combining (??), (??) and (??) with (?7?)
we finally arrive at B -
S*I(X, ) = lim §TI(X, ) > 0
j—00
Vo € I;T1’2(B,R3), which exposes X to be an Z-surface by Lemma, 2 in Section 2.5 in

[2].
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4 Continuity theorems for A, 7 and 7

The aim of this chapter are precise proofs of the ”continuity theorems” 11.1 and 12.2 in
[?] for the functionals J and Z in application to sequences of Z-surfaces that converge
in C%(B,R3), see Theorem ?? and Corollary ?? below. In fact these results are easily
derived from a deep ”continuity theorem” for the area functional A applied to harmonic
surfaces on ring regions Cy; = B1(0) \ B,(0) with convergent boundary values in (C° N
BV)(8C)1,R?) due to Morse and Tompkins in [?].

4.1 Continuity theorem for A by Morse and Tompkins

In this section we present a detailed proof of Morse’s and Tompkin’s ” continuity theorem”
for A applied to harmonic surfaces on ring regions in [?] which is precisely

Theorem 4.1 Let {47} C (C°N H>? N BV)(9B1(0),R3) and {7} C (C°N H32N
BV)(8B,(0),R3) be prescribed boundary values on 8C, = 8B1(0) U B,(0) for some
p € (0,1) such that

of — @1 in C°0Bi(0),R’)  and  L(¢}) — L(p1), (4.1)
Py — Pp in C°(0B,(0),R?) and Lpy) — L(pp)- (4.2)

(L:=lenght) for some functions ¢1 € (C°nN H3?n BV)(8B1(0),R3) and ¢, € (C°N
H3? NBV)(0B,(0),R?). Then we prove for the harmonic extensions H™ resp. H of the
boundary values (¢, ¢}) resp. (p1,9,) onto Cp1 that

Ac,, (H") — Ac,, (H) for n — oo. (4.3)

Before giving the proof we need several fundamental formulas based on the Poisson
representation (in polar coordinates) of harmonic surfaces on discs B;(0), for s € (0, 1].

Proposition 4.1 Let h denote the harmonic extension of some prescribed boundary

values ¢ € (C°NBV)(0B4(0),R3?) onto the disc B,(0), for some s € (0,1], then we have
the following Poisson formulas:
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o §2 _ g2
h(r,0) = i/0 o(a) da, (4.4)

27 s2 — 2srcos(a — 0) + r?
1 [ §2 _ 2
_ 1 4.
o (r,9) 27 /0 s2 — 2srcos(a — 0) + r? de(c), (45)
1 [ s sin(a — 0)
== 4.
fir(r,0) 7 /0 52 — 2rscos(a — 0) + r? de(c) (46)
2 2_ .2
and L 5T da=1 (4.7)

21 Jo  s%2 —2srcos(f — ) + 12
Vre (0,s), VO € [0, 27].

Proof: (?7) is well known. (??) follows by means of (??), commuting % with fOQW ...da
by [?], p- 146, transforming the Lebesgue integral into a Stieltjes integral by [?], p. 177,
and integration by parts by [?], p. 161:

1 27 o 82 _ 7‘2
hg(r,0) = — — d
o(r ) 27 /0 w(@) a0 (32 — 2srcos(a — 0) + 7"2) “
1 [ 0 52 —r?
o ), (p(a)_a(SQ—2srcos(a—9)+r2)da
1 r2m 2 _ .2

- o) d — )

2w Jo s2 — 2srcos(a — 6) + r?

1 [ §2 _ g2
/0 do(a).

T or s2 — 2sr cos(a — 6) + r?

(??): Firstly we introduce polar coordinates on B,(0) by ¢(r,8) := re? and remember
the Cauchy-Riemann DE in polar coordinates of the components u', u? of a holomorphic
function u on B,(0) (terming u o ¢ again u):

1 _
;=

rul = uj, ug = —ru’ (4.8)

Vr € (0,s), VO € [0,2n]. In particular, u! and u? are harmonic on By(0), i.e.
iy._ Lo i _
Ag(u') := ;(7‘ Uup)r + 72U = 0, (4.9)

i = 1,2. Vice versa, given a harmonic function v on Bg(0) the functions 7 u,, —ug are
conjugate to each other, i.e. satisfy (??) due to

77
(7 up), () (—ug)g and (rup)g =rug=—1(—ug)r. (4.10)
Now we show that the functions
§2 _ 2
s2 — 2srcos(a — ) + 12’

2rs sin(a — 0)
s%2 — 2srcos(a — 0) + r?

E'(r,0) = — E*(r,0) := (4.11)
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are conjugate to each other, where « is arbitrarily fixed in [0,27]. To this end we set
Qs(r, @, 0) := s? — 2sr cos(a — 6) + r? and calculate:

Qs (7, @, 0)(—2r) — (=25 cos(a — 0) + 2r)(s% — 1?)

Kkl =
! QS(”"’ a’ 0)2
~ 2r2scos(a — 0) — 4rs? + 2% cos(a — 0)
N QS(T’ a’ 0)2
and
2 Qs(r, a, 0)(—2rs cos(a — 0)) — (—(2rs sin(a — 6))?)
H B QS(Ta a’ 0)2
_ 4r?s? —2rs® cos(a — ) — 2r’s cos(a — 0) kil
- Qy(r, a,0)2 T

Furthermore we have
Qs(r, a, 0) 2s sin(a — 0) — (—2s cos(a — ) + 2r) 2rs sin(a — )

k=
Q(r, @, 0)?
253 sin(a — 0) + 2r?s sin(a — 0) — 4r2s sin(a — 0)  2(s% — r?)s sin(a — 6)
- Qy(r, a, 6)2 - Qy(r, a, 0)2
and ) s 9
K = _ 2rs sin(a — 0)(s* — %) R

Qs(r’ a’ 0)2
Vre (0,s), V0, a € [0,2n]. Thus together with (??) we see that

1 2m 9 1 2w )
K=o ~hg=— [ k'd
o7 s k% dp(a) and hgy o7 /. o(a)
are conjugate to each other, where we used that % and % commute with fozw . do(a)
by [?], p- 146. On the other hand, since h is harmonic on B,(0) we know by (??) that
rh, and —hy are conjugate to each other, as well. Hence, recalling (??) it follows that
Vo (rh) = VK Vr € (0,s), VO € [0,2n], implying rh, = K+const.. Further-
more as h, is bounded on a punctured neighborhood B¢(0) \ {0} of 0, ¢ < s, we have
7 hy(r,0) — 0 for r \, 0, and since k%(r,0) — 0 for r\,0 and

| k’2(’f‘, 0) |< const.(e) Vr e (0,¢), € < s, Va,0 € [0,27]

we infer by the theorem of dominated convergence for Stieltjes integrals in [?], p. 146,
that K(r,0) — 0 for r \, 0. Hence, we arrive at rh, = K Vr € (0,s), V0 € [0, 27},
which yields (??) by (?7?).

Finally we obtain (??) by substitution and by the periodicity of cos:

1 27 32 _ T2 1 —27+0 82 _ 7"2 p
— a=—— 2
2 Jo 82— 2srcos(f — ) + 12 21 Jg s%2 — 2srcos(z) + r?
1 —27 82 _ 7.2 1 2w 82 _ ,,,2
=—— de = — 5 5 dz.
2 Jo 82— 2srcos(z + 0) + 12 2r Jo 82— 2srcos(z +0) +r
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Now applying (??) to ¢ = 1 we see by the maximum principle for harmonic functions
that the last integral yields the value of the constant function H = 1 in the point (r, —0),
which proves the assertion.

Using these formulas and several ideas of [?] Courant proved in [?], pp. 134-139:

Proposition 4.2 Let {¢"} C (C'N H>2N BV)(0B,R3) be prescribed boundary values
on OB such that

" —p in C°(0B,R?) and L") — L(p) (4.12)

(L:=lenght) for some function p € (C°NBV)(0B,R3). Then we prove for the harmonic
extensions h™ of the boundary values @™ onto B that for any € > 0 there is some R(e) €
(0,1) such that

Ac,, (h"™) <€ Vn €N, (4.13)

if o€ (R(e),1).

Proof: Firstly we infer from (??) and (??) for s = 1:

n o~ om o2 (1 —p?) 2sin(a—0) |, n
(hy A hy)(r,6) 47r2/ / 01 0) 0 (. B.0) de™ () A de™(B), (4.14)

VneN, V(r,0) € (0,1) x [0,27]. Now interchanging the variables o and § in (??) and
noting that do™(a) A de™(B) = —de™(8) A de™(a) we obtain:

2w 2” — sin(aw — 0) — sin(B —
e ) e e )
(4.15)

If we use sin( —siné = 2 cos (g%i) sin (g%g) for ( == a— 0 and £ := B — 0 we gain
| sin(a — @) —sin(8 — 0) |< 2| sin (#) |. Hence, applying the ”triangle inequality” for
Stieltjes integrals (see [?], p. 144) we derive from this and (?7):

. 2 r2m2(1—r?) |sin (9452 ﬂ)| n
a6 | o [T A d1g"(@) ] d|@"(B) . (416)

1(r,,6)
By the invariance of A with respect to diffeomorphic transformations of its parameter
domain, (??) and Fubini’s theorem for Stieltjes integrals (see [?], p. 151) we obtain the
estimate

2 0
ny — / /|h:%/\hg|d7«d9 (4.17)
0 0

¢s(h
L 2 2 0 27r _ \51n(a2—ﬂ)| o
Sw/o /0 //0 (Tae)gl(Taﬁ,e)dodrdw()|dw(ﬂ)|,
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for any o < ¢ € (0,1) and Vn € N. Now we calculate the inner integral

= 02” WM df. To this end we fix some 7 € (0,1) and «, 8 € [0, 27| arbitrarily

and interpret b() := Q1(r, B, 6)~! as boundary values along OB of the unique harmonic
extension u(se'?) onto B whose evaluation in re® is given by its Poisson representation
which is just the considered integral. Noting that

0<(s—7)°=s%—2sr+7?<s?—2srcos(B—0)+r? (4.18)
for s # r we know that the Poisson kernel
52 — 12 52 —r?

k(s,0) = s2 —2srcos(B — 0) +r? N Qs(r, 8,0)

is a harmonic function, i.e. satisfies (?7?), especially for s > r. One easily calculates for
its Kelvin-transform

1
k*(s,0) = —k(;,o) for s € (0,1] (4.19)
by the Beltrami-Laplace operator in (?7?):
1 1
Dok’ (5,6) = - Ad)k(g,e) =0 Vse(0,1), Vo€ 0,2q]. (4.20)
Hence, the function
: 1 1 el
0 52
= ,0
u(se") 1—r2 (,6) = 1—12% — 2y cos(B—0) +r2

is harmonic on B\ {0} and satisfies u(w) — =3
u possesses a harmonic continuation onto B by setting u(0) :=

for | w |\, 0, which guarantees that
Furthermore we

1
1—r2"
see that u(e®®) = Qi(r, 5,0) "' V6 € [0,2x], hence, as explained above its evaluation in

* yields the unknown integral:

1 /27r L-r df = u(reio‘) = 1 g
2 Jo  u(r, ,0) Qi (r, 8,0) 1—12 %5 — 27 cos(B — a) + 12

B 1+72 1—rt _ 1+7?
1-r)1+r2)1-2r2cos(B—a)+7r* 1—2r2cos(f —a)+r?’
Vre(0,1), Vae [0 2] and any B € [0,27]. Now we can calculate the integral

B) : //2” L dod —1/§ (rei®) d (4.21)
Slah) =503 (0,0 (B0 " x), VT ‘

as follows. We have:

1 1
+
1—2r cos (852) +72 1+ 2r cos (£52) + 12
(1+ 27 cos (252) +r?) + (1 — 2r cos (32 52 +1%) 2 + 2r2
(1427 cos (2 a)—l—r2)(1—2rcos( @) £72) 1422 —4r2 cos? (B52) 4t
2
2+2T —9 147 :2u(rem)_

T 14202 4r2 (1 +cos(B—a)) +r! 1—2r2 cos(f — a) +r*

41



Hence, using integration formulas for rational functions we arrive at

S(a, B) = ! /Q ! + ! dr
27 0 1—2rcos( ) + 72 1+27"cos(’3 ES2) 4 2

1 2 2r — 2 cos (ﬂ%"‘
= 2—( arctan( )
i \/4—4(:052 (ﬂ%o‘) \/4—4(:032 (ﬁ%a)
2r + 2 Ba i
+ 2 arctan( r+2cos (55°) )) 12
\/4—40052 (%a \/4—4cos2 (’B%a)

If we also use arctanz + arctany = arctan (1 ) and calculate

Yy

((r — oS (’320‘)) + (r + cos (ﬁ%a))) m

1— (r —cos (ﬂTa)) (r + cos (Ta))m
2r
B |sin (BTO‘)\ . 2r | sin (%a) |
_1—(7"2—(:032(’370‘ N 1—172

M‘

1
) isin (£52))2
we finally obtain

1
27 |sm(’3 2y

S(a, B) =
Thus combining this with (??) we achieve in (?7):

" 1 [ o2 2T|sin(ﬁ%°‘)| " " "
Ao < 5o [ [ arctan (R | @) 41 B) ] (42)

for any o < g € (0,1) and Vn € N. Now we denote
n(l) := sup{ Varﬁ“(go") | 9 €[0,27]/(0 ~ 27), n € N}
for [ € (0,7) and prove that
nl) — 0 for 1, 0. (4.23)

We assume the contrary. By (??) we know in particular that £(¢™) < const., hence
there would have to exist sequences [; N\, 0, {¢;} C [0,27]/(0 ~ 27), a subsequence
{¢™"} and some € > 0 such that

9+l s 9+l n.
| Vary ™ (9") — € |<| Vary) ™2 (") = n(l3) | + [ n(lj) — € |— 0 (4.24)
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for j — oo. By the compactness of [0,27]/(0 ~ 27) there exists a convergent subsequence
9, — 9*. We rename {9, } into {,} and term ~; the arc on S! that corresponds to
(9;,9; +1;) via exp(i-) and k; := S'\ ;. Due to ¢ € (C°N BV)(S',R?) we can choose
some § > 0 such that on v* := B;(e?") N'S! there holds L(y |,+) < € (see [?], p. 250).
Furthermore we have by (?7)

o™ |Sl\7*—> 7 |Sl\7* in C’O(S1 \ 7*,R3).
Hence, by the lower semicontinuity of £ w. r. to C%-convergence (see [?], p. 15) we

obtain:
[’(QO |S1\’y*) < hmlnfﬁ((pnf |Sl\'y*) < llmlnfﬁ(ganJ |I€j)7
j—00 j—ro0

where we used that S'\ v* C k; for sufficiently large j. Thus we obtain together with

(??) and (?7?):

L(p) = lim L(p™) = Lm (L(¢"™ |x;) + L(9" |5;)) = liminf L(©™ [x;) + lim L(p™ |;)
j—o00 j—00 j—o00 j—o00

= Hminf L6 |uy) + € > £{p lgnye) + £ |ye) = £(g)

which is a contradiction and proves (?7). Now we fix some [ € (0,7) arbitrarily and
split up ([0, 27]/(0 ~ 27))? into the sets of pairs of angles Dy (l) := {(a, B) || a— B |< £}
and Do(l) := {(e,B) || @ — B |> L}, where | @ — B | means the shorter distance in
[0,27]/(0 ~ 2m). Now by the definition of n(l) and D;(I) and L(¢") < const.=: L we
can estimate on account of Fubini’s theorem for Stieltjes integrals:

2 9+
[ e tale@is [C( s [Tl )dl e @ <n0L 129

0,27],neEN

Vn € N. Moreover by arctan: R —» (=5, %) we see that

2r | sin (252

1—r2

0< arctan( ) |) |g< T for 0 < 5€(0,1), VY(a,B) € 0,2n]%. (4.26)

Hence, combining this with (??) we conclude:

B—a

2r |sli11(r22 ) |) 2d|e"(a)| d] ™B) |< %Tl(l)L (4.27)

o . arctan (
Vo< 9 € (0,1) and Vn € N. Furthermore on account of (??) and ¢™ € BV (S, R?) we

may use the theorem of dominated convergence for Stieltjes integrals (see [?], p. 146)
which yields in (??) for g  1:

L 2r |sin (5% 1Y 15 4| o .
ﬂ/marcta“( 1= 12 )‘@dlwaﬂdwwn

B—a

1 2r | sin | " n 1
H—W/Dlarctan(T (2 jhd @) | a1 @) 1< En0 L (29
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—Q

Vn €N, Vo€ (0,1). Moreover on Ds(l) we have £ <| ﬂT |< 7 implying that
. B—

2r | sin (559) \) N
1—r2 2

Hence, again on account of (??) we may use the theorem of dominated convergence for

Stieltjes integrals yielding for o ~ 1:

arctan ( for r =1, V(a,B) € Da(l). (4.29)

or |sin (532) I\ 5 1 o« n
o D2a,rctan( 1= ,2 )|gd|90(04)|d|90(5)|
1 [« 20 | sin (552) | " n
2 [, 3wt () dl @ L dl @) | @30

Vn €N, Vo€ (0,1). Furthermore one easily derives from the Taylor expansion of sin:

3

i > $ > J:
sing >z — — > =
6 2
Hence, due to ﬁ <7< V3 we obtain

for z € (0,V3).

| sin (ﬁ _ a) |> sin£ > é on Ds(1),

2 4
which yields together with the monotonicity of arctan:
20 | sin (52 l
arctan( al . _(922 ) ‘) > arctan (ﬁ) on Ds(1)

and Vo € (0,1). Hence, combining this with £(¢") < L and tanz = cot (% — z) we
obtain
1 20 | sin (252
— E—arctan( ¢ | (22
27 Ip, 2 1—o

< %(g — arctan (4(197_102))) L = % (arccot(zl(lgi_léﬂ))) L? Vn e N (4.31)

and Vo € (0,1). Finally we have by hypothesis ¢" € H%’Q(BB,]R?’), ie. D(h") < oo.
Thus combining now (??), (??) and (??) we finally achieve:
1 " 1 1 ol 9

-AC’Q1 (h ) = g_)l/lﬁi Ang(h ) < 5 ’f](l) L+ Z(afccot(m)) L (432)
VneN, Voe (0,1) and VI € (0,7). By (??) there exists for any fixed e > 0 an [* > 0
such that n(l*) L < e. After that we use arccot x — 0 for £ — oo, which guarantees the
existence of some R(e) € (0,1) such that %(arccot(zl(fifgg))) L? < € Vo € (R(e),1).
Thus we finally conclude by (??) that

Y a1gn@) 1 a1 o)

€ €
Acgl(hn)<§+§:6 Vn €N

if o € (R(€),1), which proves the assertion of the proposition.
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Remark 4.1 From (??) one can immediately derive an isoperimetric inequality for har-
monic surfaces on B which will be stated in Section ?? (see [?7], p. 138).

Proof of Theorem ?7: Firstly we obtain by the weak maximum principle for harmonic
functions, (??) and (77?):

| H" = H [|gog,) < V3|l (H" = H) |ac,, | cooc,1y— 0. (4.33)
Together with Cauchy estimates this yields
| DH™ — DH ||go(sy— 0 Vcompact S CC Cp1, (4.34)
which especially implies:
As(H") — Ag(H) Vcompact S CC Cpy. (4.35)

Hence, in view of (?7) we have to estimate the areas Ac,, (H") resp. Ac,, (H") on small
boundary strips about 0B,(0) resp. 0B1(0).

Part I) Firstly we examine Ac,, (H") for ¢ € (p,1):

We consider the harmonic extensions A" of the boundary values ¢7 onto the whole disc
B, the harmonic differences w™ := H™ — h™ on C'pl and their Kelvin-transforms

(W) (w) = —w"( v ) for we 01%- (4.36)

| w [?
As already stated in (?7) one easily calculates:

1
|w |*

A(w™)* (w) = Aw™) (#) =0 VYweC,.. (4.37)
p

Now on account of (w")* [sB,(0)= —w" |aB,(0)= 0 Schwarz’ reflection principle for

spheres confirms that the composed functions

. Wwh(w) : weC
W (w) = { (W")*(w) : we C’i *

are harmonic continuations of w™ onto C b1 Using the maximum principle again we have
p

maxg | A" |< V3 maxsp | 7 |< const. by (??), thus together with (??), (??) and x we
see that

max | @" |= max | w" |[< max | H" | + max | " |< const. VneN (4.38)
p% Cp1 Cp1 Cp1

Now on account of x we may apply Cauchy estimates to w™ on a ring region Cj; for any

0 € (p,1):
sup | Dw" |< const.(p — p) max | @" |< const. VneN (4.39)
C

ol 1
P
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By the invariance of A with respect to diffeomorphic transformations of its parameter
domain we have

2w 1
MMWFJQ/|MA%MM& (4.40)
0 0
and by the definition of w™ we see:
H!NHp = w Nwy +w, ANhg + k! Awy + hy A hy. (4.41)

Firstly by (??) we gain immediately that for any € > 0 there exists an R(¢) € (p,1) such
that

2m 1
/ / |w) Awg | drdd <e  VneN, (4.42)
0 0

if o € (R(e),1). Furthermore on account of (??7) we may apply Proposition ?? to the
harmonic extensions h™ of ¢7' onto the whole disc B, thus for any € > 0 there exists an
R(e) € (p,1) such that

27 1
/ /|MAW|WW<6 VneN, (4.43)
0 Y

if o € (R(€),1). In view of (??) we now estimate f027r fgl | w? || h§ | drdf. Combining
(?7), (?77), (??7) (below) and (??) we obtain by Fubini’s theorem and the ”triangle
inequality” for Stieltjes integrals (see [?], p. 151 and p. 144):

27 C 2 pl 27 1— 7,2
n < = n
J/ j/ LW || B | drdo j/ /f |}€ e ) | dras

2w 2 1—1“ i
dodrd
_2” / / 1 —2rcos(a — ) +r? rd|¢t(a) |

=c/0”/g Ldrd | @}(a) |= CL(g}) (1 - o).

Now by L(¢7) < const.=:L, Vn € N, due to (??) we conclude that for any € > 0 there
exists an R(e) € (p, 1) such that

2 1
/ /|wnw|ww<e Vnen, (4.44)
0 0

whenever R(e) < p < 1. Now we estimate the remaining integral f027r fgl | A || wp | drd6.
Combining (??), (??) and

0<(1—r)?2=1-2r+7r2<1—2r|cos(a—0)|+r? <1—2rcos(a—0)+12 (4.45)

Vr e (0,1), V@, a € [0,2n], we obtain by Fubini’s theorem and the ”triangle inequality”
for Stieltjes integrals (see [?], p. 151 and p. 144):
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2T o
Tmed):= [ [ 1H || dro (1
0 Jo
2 2w Sin(a _ 0)
< . Y
/ / | o 1—2rcos(a—0)+r2 et () | drdf

e | sin(a — 0) |
< = n
/ / /g 1—2r|cos(a—8)|+ de@d\gol(aH

Vo < 0 € (p,1). Furthermore one easily verifies that

r— | cos(a — ) |) 2
| sin(a — 0) |
= W(b,q,0,0) (4.47)

| sin(a dr = arctan (

1
|/ 1—2r | cos(a—0) | +r2

Vo< o€ (p1),V(0,a) €l0,2r]?\ O, where © := {(0,a) € [0,27]? || @ — 0 |€ {0,7}}.
Noting that sin(a —6) =0 V(0,a) € ©, (??) and that W can be extended continuously
onto © by setting W (-, -,0,0) =0 on ©,Vp < g € (p,1), we arrive at:

2 27
e <z [ [ W0l i@)]. (4.45)

Now noting that W is periodic in  with period = and that W (-, -, g, 0) only depends
on the difference a — 6 we may rearrange (?7) into

B 20 2w [e% g B n
Tmed) <= [ [ W0 0] o) | (4.49)
)

~

Since arctan: R — (-7, %) is monotonic we have 0 < W (60, a,0,0) <7 Yo < g € (p, 1),
V (0, @) € [0,2n]?. Moreover we set I(a,6) := (a—%,a+%)\(a—4, a+4) for an arbitrarily
chosen ¢ € (0, ) and split up the right hand side of (?7?):

2 a+o
J(n,0,6) < 2C / / d6d | (o) | (4.50)
0 a—0
20
+_

W (0, a, 0,0) dbd | o7 () | -
™ Jo I(a,9)

The first integral in (??) can immediately be estimated by L(¢7) <L, Vn e N:
2n  poté
20/ / d0d | o7(a) |< ACLS  VneN (4.51)
0 a—9

Furthermore, as we have § <| a — 0 |< § V6 € I(«, ) we obtain the estimate

1 < 1
[sin(a— ) | = [sin(d) |

Vo e I(a,d), Yae|0,2n].
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Hence, we see that for any € > 0 there exists an R(e, ) € (p,1) such that

R

0< o lcos(a—0)| o—|cosfa—6)| ¢-¢

[sin(a—0) | [sin(@—0)| _ |sin(a <

—0
0) |~ [ sin(9)

Vo € I(a,d), Va € [0,27], whenever R(e,d) < o < ¢ < 1. Together with the uniform
continuity of arctan on R and (??) we conclude that for any ¢ > 0 there exists an
R(e, ) € (p,1) such that

0<W(0,a,0,0) <e Vo€ I(a,d), Va € |0,27],

whenever R(e,d) < p < p < 1. Combining this with L(¢7) < L,Vn € N, | I(e,0) |< 7
and choosing now € = § we arrive at:

2 27
20 / W(0,,0,6)d0d | 7(a) |< 2CL5  ¥n €N, (4.52)
™ Jo I(a,0)
whenever R(0) < p < ¢ < 1. Hence, together with (??) and (??) we achieve:
2w 0
/ / | (| wf | drdf = J(n, 0,8) < 2CL5 +4CL8 = 6CLS  VneN, (4.53)
0 0

whenever R(6) < ¢ < ¢ < 1, where ¢ € (0, §) was arbitrary. Now by (??) and VA" ¢
L?(B,R%) due to 7 € H%’Q(BB,]R?’) we obtain for g ~ 1:

2w 1
/ / | BT [ Wl | drdd = lim J(n,0,6) < 6CLS  VneN,
0 Jo /1
if p € (R(0),1), Vé € (0,%). Hence, for any € > 0 there exists an R(¢) € (p,1) such that
2w 1
/ / WM ||l | drdf<e  VneN, (4.54)
0 0

if 0 € (R(e),1). Now combining (??), (7?), (??) and (??) with (??) and (??) we finally
infer that for any € > 0 there exists an R(¢) € (p,1) such that

2T 1
A, (H™) = / / |HY AHP | drd < 4e  VmeN, (4.55)
0 Y

whenever R(e) < p < 1.
Part IT) Now we are going to examine Ac,, (H") for o € (p,1):
To this end we consider the scaled Kelvin-transforms of H", given by

~ w —

(H™)*(w) :== (H")"(pw) := —H"(p —73)  on Cp. (4.56)

| w |

One easily verifies that A(H™)*(w) = — 2 A(H™)(p #) =0 Vw € Cj,. Hence,

|w]

(H™)* are the unique harmonic extensions of the boundary values —pp(p-) on OB and
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—w?(% -) on 0B,(0) onto Cp;. Therefore we may replace the H" in Part I of the proof
by the (H™)* and infer from (??) that for any € > 0 there is an R(e) € (p,1) such that

Ac, ((H")*) <4e  VneN, (4.57)

whenever R(e) < ¢ < 1. Furthermore by the invariance of A with respect to the reflection
¢:Cpp — Cp2p, Pp(w) := pQ#, and w. r. to scaling we have:

Acy (H")") = Ac, g (< H") = Ac, (H"). (458)
4
Hence, setting o := 2 we conclude by (??) and (??) that for any ¢ > 0 there is an

R(e) € (p,1) (near p) such that
2 po
Ac,, (H") = / / (H™, A(H", | drdd <de  ¥neN,  (4.59)
0 P
if o € (p, R(e)). Hence, combining the estimates (??) and (??) with (??) we see that for
any € > 0 there exists a 6(¢) > 0 and an N(e) € N with

| Ac,, (H) — Ac,, (H") |<| Ac,,(H) — Ac, ,(H") | +Ac,, (H) + Ac,, (H")
+Ac, (H) + Ac,, (H") < 17¢

VYn > N, if we choose 0 — p < § and 1 — g < §, which proves the theorem.

4.2 Continuity theorems for 7 and Z

In this section we prove the ”continuity theorems” 11.1 and 12.2 in [?], see Theorem 77
and Corollary ?? below, by combining Theorem ?? with the following estimate, Lemma
8.1 in [?], which is gained by ”harmonic substitution”.

Lemma 4.1 Let X be an Z-surface and 2 C B any open subset with a Lipschitz bound-
ary. Then for the harmonic extension H of the boundary values X |pq we have:

Fao(X) < Fo(H) — kDo(X — H). (4.60)

Remark 4.2 We note that for any open bounded subset Q of R? with a Lipschitz bound-

ary and any ¢ € H %’2((%2, R3) there exists a unique harmonic surface H in the boundary
value class Hé’Q(Q,]R:S) which satisfies

Do(H) <Do(Y) VY € H*(Q,R). (4.61)

To see this one has to consider a minimizing sequence { X, } for Dq in Hi,’Q(Q, R (#0)
yielding a weakly convergent subsequence

Xp, ~H  in H’(Q,R?)
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for some weak limit H € Hi,’Q(Q,]R?’) (see [?], p. 223). By the weak lower semicontinuity
of Dq one confirms (??). As usual this implies:

0 = 6D (H, 7) = / DH-Dndw  Vne HZ(QR). (4.62)
Q

Hence, we conclude by the weak mazimum principle of the L?-Theory that H is the
unique solution of (??) in Hé’Z(Q,]R?’) and by Weyl’s lemma that H is in fact harmonic
on €, i.e. @ possesses a unique harmonic extension H in Hy”(Q,R3) satisfying (?7).

Proof of Lemma ??7: We consider the composed surface

1oy Hw) : wen
X(“’)'_{X(w) . weB\Q.

By the above remark we have H € H"2(Q,R?). Together with H |s0= X |sq and
as 0% is required to be a Lipschitz boundary Lemma A 6.9 in [?], p. 254, yields that
X' € H“?(B,R?). Furthermore as X is an Z-surface and X' |sp= X |gp we infer
Z(X) < Z(X'), which implies together with X' [g o= X |p\0:

Fa(X) + kDo(X) = Io(X) < Io(H) = Fo(H) + k Do(H). (4.63)

Testing (??) with X — H € H"“(Q,R?) we obtain [, DH - D(X — H) dw = 0, thus
Da(X — H) = Do(X) + Do (H) — /QDH - DX dw
= Do (X) + Do (H) — /QDH -(DH + D(X — H))dw = Dqo(X) — Do(H).
Combining this with (??) we gain (?7).
o

Theorem 4.2 Let {X"} be a sequence of I-surfaces with X™ |sp€ (C°NBV)(0B,R?),
D(X™) <const. ¥Yn € N and

X" — X  in C%B,R%),  L(X"|s8) — L(X |oB) (4.64)
for an I-surface X with X |gp€ (C° N BV)(0B,R3). Then there holds:
J(X™) — J(X) for n — oo. (4.65)

Proof: Let € > 0 be given arbitrarily. By the absolute continuity of the Lebesgue integral
there exists some p’ € (0,1) such that

D, (X)<e Vpeld,1]. (4.66)
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By Theorem ?? we obtain for every p” € (p,1) a subsequence {X™} with

Dp(0)(X™ = X) — 0  for k — oo. (4.67)

We fix such a p” arbitrarily, rename the corresponding subsequence into { X"} again and
show firstly that there is a further subsequence { X"} which satisfies

L(X™ |ap, ) — L(X lop,0)  for a.e.r € (0, p"). (4.68)

We set S"(+) =1 027r | (X™ — X)g(-,0) |? d0 € L*((p',p")) and see by (?77)

pll pll 1
0< / S™(r)dr < p”/ S™(r) . dr < p”DCp,p,, (X" -X)—0.
o o

Hence, there exists a subsequence {S™} such that S™ (r) — 0 for a.e. r € (o, p"),
which implies

LX™ — X) 55,0 2/0 (X = X)p(r,0) | dB < /Tr S (r) — 0

for a.e. 7 € (p',p"), thus (??7). We rename { X"} into { X"} again, fix some p € (o, p")
for which holds (??) and consider the harmonic extensions H™ resp. H of the boundary
values (X" [58,(0), X" |ap) resp. (X |3Bp(0),X' lop) onto Cy1, which exist by Remark
??. From (??) and (??) we infer:

-ACp1 (H) < DC,n (H) < DCp1 (X) <eE€. (4.69)

Now on account of (??) and (??) and recalling that the Z-surfaces X™ and X lie in
HY2(B,R?®) N C°B,R?) we may apply the continuity theorem ?? yielding:

Ac,, (H") — Ac,, (H) for n — oc.
Thus together with (??) we infer that there exists an N(e) € N such that
Ac,, (H") < 2¢ Vn > N(e). (4.70)
Together with my | z |[< F(z) <mg | z| and (??) we arrive at
miAc, (X") < Fe,, (X") < Fe,, (H") <ma Ac,, (H") < 2mae Vn > N(e),

which finally implies for J = F + k A:

k
T, (XT) <2 (m2 + n"Z?)e V> N(e). (4.71)

Furthermore by (??) we have Ac,,(X) < Dg,, (X) < ¢, hence

e, (X) < (m2 +k)e (4.72)
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Moreover by (??), p < p” and D(X™) <const. one obtains by Proposition ?? that there
exists an N (e) € N such that

| TB,)(X") = Tg,0)(X) |[<e  Vn> Ne).
Now combining this with (??) and (??) we see that there exists an N(e) € N such that

| T(X™) = T(X) <] T, (0)(X™) = TB,0)(X) | +T,i (X™) + T,0 (X)
2mgo + my k) .
mi

ma

<6—|—2(m2+k Vn > N(e).

o )6+(m2+k)6:(1+3m2+

Since we selected several subsequences we can firstly only conclude that there is a subse-
quence { X" } of the original sequence { X"} for which holds the assertion (??). But then
we achieve (?7?) for the whole sequence {X"} due to the ”principle of subsequences”.

The above theorem immediately implies Theorem 12.2 in [?]:

Corollary 4.1 Let {X"} be a sequence of I-surfaces as in Theorem ?? that are addi-
tionally (a.e.) conformally parametrized on B. Then firstly there holds

I(X™) — I(X) for n — oo, (4.73)
where X is the limit T-surface as in Theorem 77, and secondly X proves to be (a.e.)
conformally parametrized on B.

Proof: Applying Theorem ?7? to the conformally parametrized Z-surfaces X™ we have

J(X) = lim J(X™) = lim Z(X") (4.74)
n—0o0 n—0o0
(see (6) in [?]). Moreover we infer from our hypothesises that || X™ || g1,2(prs)< const.
Vn € N, hence there exists a subsequence {X"*} which satisfies X" — X weakly in
H'Y“2(B,R3). Thus the weak lower semicontinuity of Z and (??) imply:
J(X) < Z(X) < liminf Z(X™) = lim Z(X") = J(X).

k—o0 n—00

This proves simultaneously the assertion (??) and J(X) = Z(X), i.e. A(X) = D(X)
yielding the second assertion of the corollary (see (6) in [?]).

4.3 Isoperimetric inequalities for A and 7

In this section we prove Theorem 9.1 in [?]. As already mentioned in Remark ?? we
can derive the following isoperimetric inequality for harmonic surfaces on B (see [?], p.
138):
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Theorem 4.3 Let ¢ € (C'n H2?n BV)(8B,R?) and h the harmonic extension of ¢
onto B, then there holds:

A(h) < = L(p)*. (4.75)
Proof: Considering the constant sequence h™ = h in Proposition 7?7 we achieve as in the
proof of (??) the estimate

Ac,, (h) < %n(l) L(p) + % (arccot (4(197_102)>) L(p)*

Vo € (0,1) and for any [ € (0,7). On account of D(h) < oo due to ¢ € H%’Q(BB,]I@),

(?7?) and arccot 0 = § we gain the assertion of the theorem by letting o\, 0 and I \, 0.

o
Combining this result with Lemma 77 one easily obtains
Corollary 4.2 For an I-surface X with X |sp€ (C° N BV)(0B,R3) there holds:
k me9 2
X)<(1+—)—L(X . 4.
TX) < (14 =) LK lon) (4.76)

Proof: Let h denote the harmonic extension of the boundary values X |55 onto B.
Lemma ?? yields for Q := B in particular F(X) < F(h). Hence, together with
my |z |< F(z) <mg|z| and (??) we see:

my A(X) < F(X) < F(h) < mg A(h) < =2 L(X [95)".

Thus by J = F + kA we obtain the assertion of the corollary.
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5 Combination with the results of [?]

In this chapter we combine all results that we have achieved so far in this paper and
in [?] with a special continuity theorem for Z, Prop. ??, and a compactness result for
boundary values, Prop. ??, in order to prove the main result, Theorem ?7.

5.1 Preliminary definitions and propositions

5.1.1 Approximation of closed rectifiable Jordan curves by polygons

In this subsection we prove a technical approximation lemma which is also stated in [?],
Lemma 5 (without proof), a compactness result for boundary values due to Nitsche ([?],
p. 208) and a crucial continuity theorem which enables us to apply the results of [?] to
the proof of the main result, Theorem ??, and which is proved similarily as Lemma 6 in
[?]. Firstly we need the following

Definition 5.1 i) Let T be an arbitrary closed rectifiable Jordan curve in R3. Then
we term a simple closed polygon PTCR g polygonal approzimation of ' if all vertices
Ay, .. An (M >3) of T lie on T and if the arc on T between any two adjacent points
Am, Am+1, which does not contain the remaining vertices of T, is indeed the shorter one
T |(Am Amtr) connecting A, and Am+1

ii) For a polygonal approzimation r of I with vertices Ay, ..., Ay we define its fineness
A() by A(D) : = max;_i.. M |A AJ 1|, with Ag —AM

iii) Let T, T" be two polygonal approzimations of T. Then their common refinement
I .= TV VT is defined to be the polygonal approzimation of T' whose set of vertices
consists of the vertices of I and T".

Definition 5.2 A closed rectifiable Jordan curve T' in R® meets a chord-arc condition
if there is a constant C' such that

L(T |(p1,p2y) <C | Pt — P?| VPLP2eT, (5.1)
where T' |(P1’P2) denotes the shorter arc on T connecting P! and P?.

Proposition 5.1 Let ' be an arbitrary closed rectifiable Jordan curve in R® which sat-
isfies a chord-arc condition (7). Then there ezists a sequence {I'"} of polygonal ap-

prozimations of I' and homeomorphisms ¢™ : I’ =5 T that satisfy:

L(T"™) —s £(T), (5.2)
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A(T™) — 0, (5.3)

max | P—¢"(P)|—0 for n — oo, (5.4)
| ¢"(P') — ¢"(P?) |[< L(T |(pr,p2)) VP,P?*€T, VneN (5.5)

Finally the ©" keep the vertices of the I'™ fized.
Firstly we need the following elementary

Lemma 5.1 Let T be an arbitrary closed rectifiable Jordan curve in R® that satisfies a
chord-arc condition (?7). Then for any € > 0 there exists some 0 > 0, depending on
e and T, such that for any polygonal approzimation T' of T' with A(T") < § there holds

0< L) - L@ <e

Proof: We choose an arbitrary € > 0 and some arbitrary polygonal approximation I'* of
I' with [ vertices A7,..., A] and with

0< L(T) — L(T*) < (5.6)

N ™

Moreover we consider an arbitrary polygonal approximation T’ of I' with the vertices
Ay,..., Ay and with A(T) < &, where § will be determined later. Now we work with
their common refinement T' := I'* V I. The summands in the expressions of £(I")
and L(T) only differ if there are vertices Aj,..., A%, 1 > 0, of I'™ on some open
mer)? M€ {0,...,M — 1} (Ay := Ap). We can estimate the respective
contribution to £L(I') by the chord-arc condition (??) imposed on I' as follows:

arc I’ |(Am7A

| Am = A5 |+ 1 A7 = Afpy [+ 4 [ A — A [S LT 4, 4)
<C | Am - Am—l—l |S CA(f) < Cé.

As T* has [ vertices and as I" is a refinement of I'* we are led to the rough estimate
0< L) — £(T) < L) — L(I") + 105 < L(T) — L(T*) +1C6 < % + g —,

where we used (??) and set J := 5 which in fact only depends on € and T'.
o

Proof of Proposition ?7?: Firstly we note that Lemma ?? guarantees the existence of a
sequence {I'""} of polygonal approximations of I which satisfies (??) and (??). Moreover
let

(P, AT, AL Pl AL AL P AL g AT (5.7

denote the vertices of I'", where we may assume that the three points { P’} of the three-
point-condition in C*(I'") satisfy P* = Py, k = 0,1,2, (see (??)) and where 0 < [, <
my, < N, are fixed for each n € N. Now we define the homeomorphisms ¢™. To this
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27k

end we consider a parametrization v : S* =5 T of T with Y(e¥k) = Py, for 1y = o

k =0,1,2, and some fixed I'", which yields unique angles

0= <07 <...<O <p1 <O 1 <...<0p <pa<bp 4 <...<0Oy <2,

. (5.8)
such that (') = A} for j=1,...,N,. Now we fix some interval [0]_,,07] that does
not contain any angle ¥, k = 0,1,2, and set

L(y |[a7.z t])
Qr(t) i= —— = and ) =671+ Q% (¢t) (07 — 07
_7( ) £(7|[H;’71,0}’]) ]() 7j—1 ]()( j j 1)
for t € [07_,,07] and furthermore
o 07— f1(1) fi(@) - 07
P = gy At T AT fr teBLL6 (59)
i Vi- i i-

These terms are defined analogously on intervals like [67,41] and [¢1,6] ,;] and so

o

on. Hence, the collection of functions in (??) yields a homeomorphism 7" : St —
I'", mapping the arcs [e?%-1, €% ] resp. [¢"in,e™1], and so on, onto the line segments

[A7_y, A7] resp. [A]l, P1] of I'". Now the compositions ¢™ := Yoy~ T =T, n €N,
will turn out to have the required properties. Due to A(I'™") — 0 and (??) there is for

every € > 0 an N(¢) € N such that for two arbitrary points P!, P? € T |(A?71,A}z), for
any j € {1,..., Ny}, (Af := A}, ) there holds:

| Pt — P2 |< L(T |z ,am) S C | A} — A} [S4CA(TT) < Vn > Ne).

N ™

Hence, we obtain for any point P € T |(A;;71,A?) and any j € {1,...,N,}:
| P—¢™(P) |<| P —Af [+ | A —"(P) |<[ P - A} [+ | Af — A}, \<2§=6,

Vn > N(e), which proves the assertion (??). Now for some fixed n € N, some interval
[07_1,07] that does not contain any angle 14 and for any two angles 91 < 5 € [0} _;,67]
we consider the quotient

LY |191,82))

Qf (91,92) == LT [, am) = Q7 (¥2) — QF (V1). (5.10)

For the corresponding two points P! = y(e?1), P? = ~(e'?) we show:

| " (P?) — ¢"(P') |= QF(¥1,02) | AT 4 — AT |. (5.11)

To this end we calculate by (??):

07 — (07_ + Q7 (%) (67 — 07_,))

AME0) — AT = I Af o+
07_1 + Q3 (90) (67 — 071) — 011 gn _ yn
o — o, 7o

= (1 -@QF () Af_1 + QF (0) A7 — A}, = Q7 (91) (A7 — AT 1),
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for { = 1,2. Thus we obtain together with (?7):

| ™(P?) = " (P) =77 (€772) =7 (1) =] 9 (¢72) = AF_y | = | 27 () — Ay |
= Qj(92) [ A} — AJ_, [ —QF () [ A} — AF_1 [= QF (0h,92) | Af — A7 |,

which is (??) and which implies by (??) the estimate
| " (P?) — "(P") |< Q}(91,92) L(T lcan_,,.amy) = L0 |191,02))5 (5.12)

which proves (??) in the special case P!, P2 ¢ T |(A?_1’A§z), where T' |(A?_1,A§z) does not
contain any of the points {Py}r—o12. Now for the general case it suffices to consider
the situation P! € T’ |(A?_1’A§;), P2el |(A?_1’A?), for some fixed n and 7 <[ —-1 €
{2,...,N,, — 1}, such that the shorter arc T |(A;L_1’A2n) connecting A7 ; and A7 on T
coincides with image(~y \[gﬁlﬁln]) and such that vy ¢ [07_;,67'], K = 0,1,2. Then setting
again P! = y(et?), 1 = 1,2, we infer by A} = " (A7) = ©"(7(e%)) and (27):

| "(P") — "(P?) |<| 9" (P") — A} | +L(T l(am,ap )+ [ ALy — ©"(P?) |
< LY lpor,om) + L0Y lrgz,0p 1) + L0y ligp,001) = £0Y [191,02) = £(T [(p1,p2));

which proves the assertion (??). The last statement about the ¢" is clear by their
construction.

Lo

Now let T' be a fixed, closed rectifiable Jordan curve in R® meeting a chord-arc
condition (??) and {I'"} a fixed sequence of polygonal approximations as in Prop. 77
with vertices as in (?7). We consider some arbitrarily chosen Z-surface X € C*(I') and
the sequence of boundary values ¢"(X |s5) : S — I'" which by their surjectivity give
rise to a sequence of angles

0=t <1 <...<T <Y1 <71 <. < T <thp <7y 1 < ... < TN <2,

(5.13)

with ¢, = @, for every n € N such that
(pn(X |aB)(eiTJﬂ) :A;l for J=1..., Ny, (514)
resp. (X |sB)(e¥*) =P,  for k=0,1,2. (5.15)

Hence, we obtain a sequence of tuples 7" € T™ C (0,27)"» (see Def. 6.1 in [?]) which
yield the unique minimizers X (7") of Z in the sets U(I'™, ") (see (4), (5) and Def. 6.2,
6.3 in [?]). We are going to prove the crucial

Proposition 5.2 There holds

X(t") — X  in C°%B,R?), (5.16)
(X (") — Z(X) for n — oo. (5.17)
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Proof: We set Z" := ¢™(X |gpp) and " := Z"™ — X |sp and consider the harmonic
extensions h resp. h"™ of X |sp resp. 7™ onto B. By (??) and (??) we derive the
estimate

(e =) [<] X () = X(e) | +| 2°() = 26|
<I X (") = X(67) | +£(T |(x(ein) x(eiry) < (1+C) | X(%) = X(¢9) | (5.18)

Va,p € [0,27]. Now combining this with Douglas’ formula (2.23) in [?] (see [?], p. 277,
for a proof) and (??) we infer:
)P
dadf

2T 27r|,'7 _
Aol") 47T/ / 4sm 2 2)

n" (e g6
ﬁ
1+C 2 271"X (zﬂ)'Qdd
odf3
/ / 4sm a2ﬁ)
=(1+0)° AO(X lon) = (1+C)?D(h) < (1+C)*D(X).

Hence, (1 + C)? X(E)-X(eP)]? yields a Lebesgue dominant for the integrands

' 4sin?(255 By
% on [0, 27]?. Moreover by (??) we see that
T
n" = ¢"(X |sg) — X lap— 0 in C°(0B,R?). (5.19)

Hence, using Douglas’ formula again we can infer by Lebesgue’s convergence theorem:

2r 27 n zﬂ
D(h™) = Ao(n 47T/ / [ n"(e 4sm é) )P dodp —s 0, (5.20)

2

and by the weak maximum principle for harmonic functions:
B —0  in C°%B,R?). (5.21)

Furthermore we consider the surfaces X™ := X + h™ on B. By (??) we have that
D(X™ — X) = D(h"™) — 0, hence, together with D(X") < 2(D(X) + D(h™)) <const.
Prop. ?? yields

| Z(X™) — Z(X) |< const.A/D(X" — X) — 0 for n — oc. (5.22)

Moreover we see X" |gp= X |op +n" = X |op +Z" — X |sp= ¢"(X |sp). Hence,
since o™(X |sp) : ST — '™ yields a weakly monotonic continuous map satisfying (?7)
and (??) and since h™ € H%?(B,R3?) by (??) and (??) we obtain that X" € U(I'™, "),
Vn € N (see (4), (5) and Def. 6.2 in [?]). Thus we conclude for the unique minimizer
X(t") of Zin U™, ") Z(X (")) < I(X™), Vn € N, which implies together with
(?7):

limsup Z(X (7")) < limsup Z(X") = lim Z(X") = Z(X), (5.23)

n—00 n—00 n—00
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especially
D(X (")) < const. VneN (5.24)

Moreover using that both X (7™), X™ € U(I'™,7™) we gain together with (??) and (?7?):

| (X (") = X) lop|<| (X(7") = X") |os] + | (X" = X) |o5]
< AT+ | 9" |— 0  in C°(OB). (5.25)

Now recalling that the X (7™) are Z-surfaces in particular (see Def. 2.1 and 6.3 in [?]) we
infer by (?7) and (??) that we may apply Theorems ?? and ?? which yield a subsequence
X (7™) satisfying

X(r) — X  in C%B,R), (5.26)
for some Z-surface X. Again by (??) we conclude that X |sp= X |sp. Thus as we
required X to be an Z-surface the uniqueness of Z-surfaces, by Theorem 4.3 in [?], yields
X = X. Hence, we gain the assertion (??) by (??) and the ”principle of subsequences”.
Now combining this with Theorem ?7 again we arrive at

X(r") =X  in HY*(B,R®).
Hence, on account of the weak lower semicontinuity of Z and (??) we finally achieve:

limsup Z(X (7")) < limsup Z(X (")) < Z(X) < liminf Z(X(7"7)).

j—o0 n—00 J—o0

Thus we obtain the assertion (??) again by the ”principle of subsequences”.

Finally we need a compactness result which is also proved in [?], p. 208:

Proposition 5.3 Let I" and {T'"™} be as in Proposition 7?7 and X" € C*(I'"), n €N, a
sequence of surfaces with D(X™) < const., Vn € N, satisfying the three-point-condition
X"(ek) =P, €T VYn €N (see (77) and (77)). Then there exists a subsequence {X™*}
whose boundary values satisfy:

X" |ap— B in C°(0B,R?),

where B: S' — T is a continuous, weakly monotonic map onto T, with B(e®¥*) = P;.

Proof: We consider a fixed parametrization 7 : S =, T of T and the weakly monotonic
maps (¢") 1oX" |sp: 8B — T onto I'. For each n € N there exist non-decreasing maps
o™ : [0,21] — [0,4n), with 6™(21) = 0™(0) 42, such that (")~ o X" (e') = y(e'7"®)
Vit e [0,2r]. By (??) we conclude that
i0™(t)\ _ yn( ity | o™ (t)y _  n io™(t)
x| [ y(e7) = X™(e") |= hax | y(e ) — " (v(e7)) |
= max |P—¢"(P)|— 0  for n— oo. (5.27)
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Furthermore Helley’s selection principle (see [?], p. 248) yields a subsequence {¢"*} and
a non-decreasing function o on [0, 27] such that

o™k (t) — o(t) Vit e [0,2n], for k — oo, (5.28)
thus also y(e??"*(®)) — (e V¢ € [0,2n]. Hence together with (??) we arrive at
X" () — (D) Vit e |0,2n], for k — oo, (5.29)

which especially implies 7(ei”(wk)) = P, k = 0,1,2, due to the required three-point-
condition imposed on the X" |55. Hence, since P; # P; for i # j we see that

o(hi) # o(v;) mod 2, for i # 7. (5.30)

Now an extension of Helley’s selection principle (see [?], p. 63 and p. 226) provides the
uniform convergence of the ¢+ if ¢ is known to be continuous, what we are going to
prove now. We assume ¢ not to be continuous. As ¢ is weakly monotonic there exist
the one-sided limits o(¢ + 0) and o(t — 0), Vt € [0,27], where we mean o(0 — 0) :=
o(2r — 0) — 27 and o(27 + 0) := o(0 + 0) + 27. The points of discontinuity of o
coincide with those points ¢* in which we have 0 < o(t* +0) — o(t* —0). Moreover there
holds o(t* + 0) — o(t* — 0) < 27, otherwise on account of the monotonicity of o and
a(2m) = o(0) + 27 we would have o(t) = o(t* —0) on [0,t*) and o(t) = o(t* +0) on
(t*,2x], which contradicts (??). Hence, we conclude that o(t*+0) # o(t* —0) mod 27
and therefore by the injectivity of 7

(e )Y £ (it -0)) (5.31)

in all discontinuity points t* of 0. Now we fix such a point ¢* which we suppose to lie in
(0, 27) without loss of generality. By (??) we have | y(e?{"+0)) — 4(eio("=0)) |= ¢ > 0
for some € > 0. Moreover by the existence of the one-sided limits o(¢+0), o(t—0) and by
the continuity of -y there is some sufficienty small @ > 0 such that [t* —«, t*+«] C (0,27)
and

[7D) = (7 ) <5 VEe (' - at)

and | 9(70) = (" E ) < £ Vie (.4 +a),
which implies together with (?7?):

lim | X" () — X (") =] (7)) — (")) |> (5-32)
k—o00 3

V' € (t* — o, t*) and V" € (¢*,4* + a). Now we only consider pairs #', ¢ such that
0 <t"—t*=t"—t < o Forr:=2sin (Y5%) we have 8B, (¢"")NdB = {&'*, &' }. We
introduce the notation {wi(p), wa(p)} := 0B,(e" )N OB, for p < 2sin (%). Now making
use of the requirement D(X") < const.=: M Vn € N and of the Holder inequality
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one easily infers from Fatou’s lemma that liminfy_, ., | X™ (w1 (p)) — X™ (w2(p)) |2 5 €

LY([6,4/3]) for § < 4sin? (%) and that there holds (see [?], p. 207):
Ve , 1
_ imi N — X"k _ < .
27 s lim inf | X™ (w1(p)) — X™* (w2(p)) | pdp <M
Combining this with (??) we achieve:
e (Vi €2 1 o
T lgp=10g(x § < 4sin® (&
")y 2% 36 Og(d) Vo <dsin (2)

which yields a contradiction letting § N\, 0. Hence, o must be continuous on [0, 27| and
therefore the convergence in (??) even uniform:

o — o in C°([0, 27]).
As v is uniformly continuous on S this yields
(e ) — y(et)) in CO([0,2x], R?),
and together with (??) we finally arrive at
X (e C)) — ()Y in C0([0,2n], R3). (5.33)

Hence, defining 8 : S — T via B(ef(")) := v(e"?(*)) we see that § has in fact the
asserted properties due to the continuity and weak monotonicity of ¢ and since v is a
homeomorphism. Finally 8(e¥*) = Py, k =0, 1,2, follows immediately from (?7).

5.1.2 Limit Superior of continua

In this subsection we are concerned with the following objects (see Section 6.1 in [?]):

Definition 5.3 Let (Y,d) be some metric space. For any sequence of subsets {M" }nen
of Y we define its limit inferior by

limil\?fM" := {y € Y | Ipoints m,, € M" such that d(m,,y) — 0 for n — oo}
ne

and its limit superior by
limsl\1]1p M" :={y € Y | 3some subseq. {M" } of {M"} and points
" mj € M"™ such that d(m;,y) — 0 for j — oo}.
Furthermore we will make use of the identity

limsup M" = (] | ] M7, (5.34)
neN kEN n>k

which is proved in [?], p. 86. The result of this subsection is (see also [?], p. 388)
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Proposition 5.4 Let {M"},cn be some sequence of compact and connected subsets
(continua) of a metric space (Y, d) such that |J,,cy M™ is compact and lim inf,eny M™ #
0. Then limsup,cy M™ is compact and connected, i.e. a continuum again.

Proof: Using (??7) we see that

M :=limsup M" C | J M7, (5.35)
neN neN

thus that M is a closed subset of a compact set, by hypothesis, hence compact itself.
Now we assume that M is not connected, i.e. there are open subsets O, O" of Y such
that M' := M NO" and M" := M N O" satisfy

M #£0, M"#£0¢, MuUuM'=M, MAM"'=0. (5.36)

One easily verifies that M’ and M" are closed in M and therefore also compact. Thus
together with (??) we conclude that § := dist(M', M") > 0. Now we set € := & and
consider the disjoint, open e-neighborhoods M, and M/ of M' and M" in Y. We choose
a point y € liminf,cy M™ C M, for which by Definition ?? there exists some sequence
Yn € M™ with d(y,y,) — 0. Without loss of generality we assume that y € M’, thus

there exists some N(€) € N such that
M"NM!#0 Vn > N(e). (5.37)

Furthermore by M" # () and Definition ?? there has to exist some subsequence {M" }
with M™ N M! # 0 Vj € N. Hence, assuming that n; > N(e) Vj € N we obtain
together with (?7):

MYAM #0  and MYNAM'#0 VjeN

Now, since the sets M™ are compact and connected we infer from Satz 4.14 in [?], p.
46, that there exists for every pair 1,22 € M™ and every p > 0 a finite sequence
{#1,...,2m} C M™ with 21 = z1, 2y = 2 and d(z;,z;—1) < p for i = 2,...,m, where j
is fixed now. Hence choosing 1 € M™ N M/, zo € M™ N M/ and p := € we obtain by
dist(M!, M!") > 6§ — 2¢ = 2¢ the existence of some point 2/ € M™ with 2/ ¢ M! U M”,
i.e. with

dist(z, M) > ¢ for each j €N, (5.38)

if we recall (??). Now using the required compactness of J,,.y M™ we obtain the exis-
tence of some convergent subsequence z/* — z*, where the limit point z* has to lie in
M by Definition ??, which contradicts (?7?).
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5.1.3 Mountain pass situation and instability

For the convenience of the reader we firstly recall the definition of the "mountain pass
situation” of a pair of surfaces in (C*(I') N C°(B,R3), || - lco(p)) and a pair of points in
the configuration space T C (0,27)" assigned to a simple closed polygon with N + 3
vertices (see Def. 7.4 and 7.7 in [7]).

Definition 5.4 (i) Let X1, X5 be a pair of surfaces in (C*(T') N C°(B,R3),| - o))
then we define:

Pixy,x5) = {2 C C*(I)NC%(B,R?) | ¥ is compact and connected and ¥ D {X;, X5}}.

(ii) For a fized polygon T with N + 3 vertices, N > 1, and any pair 71,79 € T C (0,27)V
we also consider

P(r1,m) = {P CT | P is compact and connected, P D {71, 72}}.

Definition 5.5 a) Two different surfaces X1, X, € (C*(T) N C°(B,R3),|| - lcoci)) are
i a "mountain pass situation” with respect to the evaluations by K := J,Z if

sup K > max{K(X1),K(X2)} VX € Pixy,xy)-
)

b) Let T' be a fized polygon with N + 3 vertices, N > 1. Then a pair of different points
11,72 €T C (0,2m)N is in a "mountain pass situation” with respect to the evaluation by

fY' =Toy" (see Def. 6.3 in [?7]) if
m}z;ucfF > max{fr(ﬁ),fr(m)} VP € Q(r) ry)-
c¢) A set P* € oy, 1,) with the property

r : r
max f* = inf maxf =:[(7,m)
P PE@(Tla"?) ’

is called a minimizing connected set (with respect to (11,72)) and we set
Py i={r € P*| f'(r) = B(r1,72)}
Now analogously to the proof of Proposition 7.8 in [?] we derive

Proposition 5.5 If there exist two different conformally parametrized surfaces X1 # Xo
in (C*(T) N CO(B,R3),|| - lcocp)) that are in a mountain pass situation with respect to
J, then the unique Z-surfaces X[ in the boundary value classes H)l(’iaB (B,R?),1=1,2,
are in a mountain pass situation with respect to T.
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Proof: Since X; and X5 are assumed to be conformally parametrized and Z > J we
obtain by hypothesis

sgpl' > sgpj > max{J(X1), J(X2)} = max{Z(X1),Z(X2)} (5.39)

VY € Px,,x,); thus the pair (X1, Xo) is in a mountain pass situation with respect to Z,
as well. By Lemma 2.2 and Theorem 4.3 in [?] there exist unique Z-surfaces X; in the
boundary value classes H;(’ﬁaB (B,R?), I = 1,2, and Corollary 4.5 in [?] guarantees that
the functions Z(H;(-)) : [0,1] — R are non-decreasing, where H;(t) := X+t (X; — X)
for t € [0,1], I = 1,2. Combining this with (??) we obtain

I(Hy(t)) <supZI V€ Px,x, and Vi€ [0,1], I =1,2. (5.40)
>

Suppose now that X7 and X3 could be connected by some II € P(x; x;) satisfying
supZ < supZ VE € Pix,,x,)- (5.41)
i )
Since image(H;) C C*(T') N CQ(B,R:’) is compact and connected and image(H;) NII =
{X}, for I = 1,2, the union II := image(H;) U Il U image(H>) is a compact connected
subset of C*(I') N C°(B,R?) that contains X; and X», hence II € P(x, x,). On the
other hand (??) and (??) imply supzZ < supy,Z VX € P(x,,x,), in contradiction to

I € P(x1,x,)- Thus together with (??) we obtain that for every IT € P(x;,xz) there is
some ¥* € P(x, x,) with the property

supZ > supZ > max{Z(X1),Z(X2)} > max{Z(X7),Z(X3)},
I DR

hence, the pair (X7, X}) is in a mountain pass situation with respect to Z.

Finally we recall the notion of ”instability” of J-extremal surfaces.
Definition 5.6 We call a J-extremal surface X* € (C*(I') N C°(B,R3),]| - o)) K-
unstable, for K =1,7, if in every e-ball B((X*)NC*(T') around X* there is some surface
X such that ~
K(X) < K(X7™).
5.2 Proof of the main result

Firstly by Prop. ?? we obtain the existence of two Z-surfaces X € H)l(’?'aB(B,]R?’),
[ = 1,2, that satisfy

supZ > max{Z(X;)} VE € Pxs xp)- (5.42)
) 1=1,2 172
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Now let {I'"} be a fixed sequence of polygonal approximations as in Prop. ?? whose
vertices are given in (??) and Z* := ¢" (X[ |sB), for | = 1,2, n € N. As explained in
(??) and (??) we gain two sequences of tuples 7/ € T™ C (0,27)V» with

ZMe Ty = A7, 1=1,2, j=1,...,N,, VneN,
that yield the unique minimizers X (7;*) of Z in #(I'™,7*) which satisfy by Prop. 77:

X(") — X7  in CY(B,R*), 1=1,2, (5.43)
Z(X(") —= I(X])  forn— oo, [=1,2. (5.44)

Furthermore by Prop. 7.6 in [?] there exists a minimizing connected set P" € p(n )
w. 1. to the pair {7’} for every n € N, and we firstly prove that

g = IIIIDaT;Xan < max{Z(X (")), Z(X (t})),C L(I"™)?} Vn eN, (5.45)

with C := (1 + mil)% For, if we assume that /" > max{Z(X(7]")),Z(X(7}))} =

max{ " (1), fI" (v3)} for some n € N, then the pair {7/} is in a mountain pass situ-
ation w. r. to f'", and the ”finite dimensional” mountain pass lemma, Lemma 7.10 in
[?], yields the existence of a critical point 7" € P, of fI". Then by Theorem 6.17 in
[?] the surface X (7") = 9(7") is a (a.e.) conformally parametrized Z-surface. Hence, in
combination with fI = Z o 4" and the isoperimetric inequality for J, Corollary ??,
we gain:

B = max {7 = {7 (7") = T(X(7") = T(X(7")) < C L"),

4
obtain a convergent subsequence

with C = (1 + mil)m which proves (??). Combining (??) with (??) and (??) we

f" —d  for some d < max{Z(X}),Z(X3),C L(T)?}. (5.46)

We rename {ny} into {n} again and work with this subsequence henceforth. Now
we consider the images II" := 9!" (P") which are compact and connected subsets of
(C*(T™)NC%B,R3), || - lcocs)) on account of the continuity of %" with respect to this
topology on the target space, in particular, by Theorem 6.6 (i) in [?]. Now we are going
to prove the relative compactness of the union |J,cyII" (w. 1. to || - [|co())- To this
end we firstly consider an arbitrary sequence {Y*} C |J,cnII". If {Y*} is contained in
only finitely many IT" then we can certainly select a convergent subsequence of {Y*} due
to the compactness of the I1". Hence, we shall suppose the contrary, which means that
we can select a subsequence {Y*i} satisfying Y% € IV Vj € N, where {n;} is a mono-
tonically increasing sequence in N. In particular we have Y% € C*(I'"™) N C°(B,R3),
thus Y (e?*) = P, by (??),Vj € N. Furthermore as (??) implies Z(Y)) < 8" < const.
VY € II" and Vn € N, we obtain especially

D(Y) < const. VY € U mn". (5.47)
neN
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Therefore we may apply Prop. ?? yielding a further subsequence {Y*} with equicon-
tinuous and uniformly bounded boundary values. Hence, due to (??) and since the
sets TI" = 97" (P™) consist of Z-surfaces we see that the Y* meet all requirements of
Theorem ?7 which just guarantees the existence of a further convergent subsequence of
{Yk} w. r. to || - lco(B)- Now together with a standard argument one also shows that
every sequence {Yk} C Upen 1" \ Upen II" possesses a convergent subsequence, aswell,

which yields the asserted compactness of | J, oy II". Moreover by X (17*) = ¢ (1) € 11",
for | = 1,2, and recalling (??) we infer that

{X;} C liminfII". (5.48)
neN

Hence, we see that the sequence {II"} satisfies all requirements of Proposition ?? im-
plying that II := lim sup,,cy II" is compact and connected, i.e. a continuum again. Now
we examine II. By the definition of II for any X € II there exists a subsequence {II"*}
and Z-surfaces X* € II"™ C C*(T"™) N C°(B,R3) that satisfy

Xk —X  in CYB,R). (5.49)

Now recalling (??) Theorem ?? yields that X has to be an Z-surface again which lies in
C*(I") on account of Proposition ?? (see again (?7?)). Hence, II is a continuum consisting
of Z-surfaces in C*(I') N C%(B,R?) and containing the pair {X;} due to (??), which
implies IT € P(x» x;) in particular and therefore

supZ > max{Z(X;)} (5.50)
11 1=1,2

on account of (??). Next we prove that

B :=supZ < d. (5.51)
I

If this would be wrong then there would have to exist some surface X € IT with Z(X) > d.
By the definition of I we infer the existence of some sequence {X*} as in (??) which
implies together with (7?) || X* || m12(B)< const.. Hence, we obtain some subsequence
X7 € II"i with

X/ ~X  in HY(B,R®),

which yields by the weak lower semicontinuity of Z and (?7):

d < I(X) < liminf Z(X7) < liminf 8% = lim g" = d,

Jj—o0 Jj—o0 n—o0

which is a contradiction. Hence, combining (??) with (?7), (??), (??) and f'" = Zoy™"

we conclude that there exists some ng € N such that

B > ma(T(X ()} = max{f" ()} Vn>no (5.52)
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As below (?77) this yields by Lemma 7.10 in [?] a critical point 7" € Pg, of I and by
Theorem 6.17 in [?] a conformally parametrized Z-surface X (7") € II" satisfying

B =T(X(")  Vn>ny. (5.53)

Now as below (??) we firstly infer by (??) (and (??)) that we may apply Prop. ?? yielding
a subsequence { X (7™)} with converging boundary values in C°(0B,R?), which enables
us to apply Theorem ?? to the Z-surfaces X (7"*) guaranteeing the existence of a further
convergent subsequence:

X(7¥) — X in C%B,R?). (5.54)

Hence, since X (f_”f) € II" we obtain X € II by the definition of II, which implies in
particular that X has to be again an Z-surface lying in C*(I'). Since we additionally
know that the Z-surfaces X (7" ) are conformally parametrized and that

L(X(7") o) = LT™) — L(T) = L(X [op) ~ for j = 0

on account of the weak monotonicity of the boundary values and (??), we infer from
Corollary ?7 that

IZ(X(7%)) — I(X)  for j — o (5.55)
and that X is also conformally parametrized on B, hence in particular a J-extremal
surface by Lemma 3.6 in [?]. Now combining (??), (??), (??) and (??) with the fact
that X € II we arrive at:

B<d+— pM =T(X(7T")) — I(X) <supZ =  for j — oo, (5.56)
1l

which implies at once: B
I(X)=d =B, (5.57)

i.e. X ”sits on the top of II”. This gives rise to consider the following set of J-extremal
surfaces:

" :={X el | Z(X) = B, X is conform. param. on B} (£ (). (5.58)

Furthermore (??) guarantees that IT \ IT* # (). Now we prove that II* is closed. To this
end we consider a convergent sequence {Y7} C (II*, || - [|co(z)), i-e.

Y/ —Y  in CY%B,R3).

First of all we see that Y € II, as I is closed. As all Y7 are conformally parametrized
Z-surfaces in C*(T), satisfying L(Y7 |55) = £L(T) and D(Y7) < % Vj € Nby (??) we see
due to Corollary ?? that firstly 8 = Z(Y7) — Z(Y), thus Z(Y) = 3, and secondly that
Y is conformally parametrized on B again. Hence, in fact we confirm that Y € IT*. Now
combining this with the facts that both II* and IT \ IT* are non-empty and II connected
we can conclude that the boundary 9II* of IT* in II is also non-empty, i.e. there exist
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points X* € IT* which satisfy B(X*)N(II\II*) # 0 Ve > 0. We choose such a
boundary point X* and show firstly that X™* is Z-unstable. To this end we consider the
(non-empty) intersection B¢(X™*) N (IT \ IT*) for an arbitrarily fixed e > 0. If there were
a surface X in B.(X*) N (IT\ IT*) with Z(X) < 8 = Z(X*), then we were done. Hence,
we have to consider the case in which Z(Y) > 8 VY € B(X*) N (II\ II*), but then we
have

B<I(Y)<supI=p, ie ZI(Y)=B VY €B(X*)N(II\II*). (5.59)
11

Now we fix some Y € B(X*)N(IT\IT*) and choose another ball Bs(Y) C B¢(X*) around
Y for a sufficiently small § > 0. Again we only have to consider the case in which

I(Z)>B=1I(Y) VZeBs(Y)nc*T), (5.60)

otherwise we were done. Now we choose an arbitrary family ¢, : B =5 B of inner
variations of ”medium type”, i.e. of the class V, as defined in Def. 6.7 in [?], which do
not affect the three points {e?¥*} of the three-point-condition. Then the inner variations
Y o ¢ still satisfy Y o ¢ € Bs(Y) N C*(I), for | € |< ¢y sufficiently small. Hence, we
infer by (?7?):

FY)+EDY)=Z(Y)<I(Yog) = F(Yogp) + kD(Y o)  V |e|<e.

Together with the invariance of the parametric functional F w. r. to orientation pre-
serving reparametrizations of B we arrive at

DY) <D(Y o ¢e) V| €< €,

yielding
ID(Y,)\) = %D(Y 0 ¢¢) le=0= 0, (5.61)

with A := %qﬁe le=o (see Prop. 6.10 in [?]). Moreover an arbitrary family {¢.} € V can
be ”"renormed” by a uniquely determined family of Moebius transformations {K.} C
Aut(B), which means that ¢, := ¢ o K, satisfies ¢(e’¥*) = e¥* and again {¢.} € V
(see Remark 6.11 in [?] and p. 71 in [?]). Since D is invariant with respect to conformal
reparametrizations of B we infer together with (??) for an arbitrary family {¢.} € V:

DY, \) = %D(Y 0 @¢) le=0= %D(Y 0 ¢¢) le=o= 0D(Y, ) =0,
with X\ := %(ﬁe l|e=o and = %(;56 |e=o- Now by Lemma 6.18 and Prop. 6.19 in [?] we
conclude from this that Y is conformally parametrized on B. Thus together with (?7)
we conclude Y € IT*, in contradiction to our choice Y € B(X™*) N (IT\ II*). Thus in fact
there has to be a surface X € B.(X*) N (II\ II*) C B(X*)NC*() with Z(X) < Z(X*).
Now using J < 7 and that X* is conformally parametrized we conclude from this:

J(X) <I(X) < I(X") = J(X7),
which proves the J-instability of the J-extremal surface X* € C*(T') N C°(B, R3).
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