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0. Introduction

The theory of Kleinian singularities is in relationship with the conjugacy
classes of finite subgroups of SL(2,C) and with Dynkin diagrams of type
ADE. This relationship can be described by the following scheme :

Finite subgroups Dynkin diagrams
I'c SL(2,C) ~— of type ADE
Kleinian singularities minimal resolutions of
c?/r C?/T.

Klein [24] determined the structure of the quotient space C? /T', where T is any
finite subgroup of SL(2,C). For each such subgroup I" the algebra of invariant
polynomials has three generators which are related by single equation. Thus
C? /T can be realized as a subspace of C* defined by a single equation. Here
the origin is the unique singular point. We list these equations below:

A, 22+ +2" n>1

D, :22+y" 1+yz2 n>4

Es :a?+y3+24

E; 2?4 y3 +y2?

Es :a2?+93+ 25
They correspond to I' being a cyclic group, a dihedral group and the groups
of the tetrahedron, the octahedron, and the icosahedron respectively. These
singularities are usually called the Kleinian singularities.

Let 7 : X — X be the minimal resolution of Kleinian singularity X. The
exceptional fiber E, the fiber of 7 over the singular point of X, is known to be
union of projective lines meeting transversally, and the graph whose vertices
correspond to the irreducible components of E, with two vertices joined if and
only if the components intersect, is a Dynkin diagram of type ADE [21].

In 1979, McKay [26] constructed directly via representation theory the bijec-
tion in the first row of the diagram. Let {Ry, Ri,...,R,} be the set of the
isomorphism classes of the complex irreducible representations of I' with R,
the trivial representation. We construct a graph A(T") as follows. The vertices



of the graph A(T") are indexed by the irreducible representations Ry, Ry,. . .,R,.
Let

N®Ri= & R; @ C™
§=0

be the decomposition of N ® R; into irreducible representations, where NV is
the natural 2-dimensional representation. Then we connect the vertex i to
the vertex j by m;; arrows. Two arrows going in opposite directions are then
replaced by an undirected edge. Then the corresponding graph is the extended
Dynkin diagram. We call this graph the McKay graph.

A new approach to the deformation and resolution theory of Kleinian
singularities was given by P. B. Kronheimer [12]. His construction starts
directly from the finite group I" and uses hyper-Kahler quotient constructions.
In 1996 Cassens and Slodowy [7] reformulated Kronheimer’s results using ge-
ometric invariant theory.

Let @ = (Qo,Q1,s,t) be a finite quiver, i.e. a finite set Qg = {1,2,...,n}
of vertices and a finite set @); of arrows a : s(a) — t(a), where s(a) and t(a)
denote the starting and terminating vertex of a, respectively.

A representation X of @) over C is a collection (X;);cq, of finite dimensional
C-vector spaces together with a collection (X (a) : Xs@) — Xa))aco, of C-
linear maps. A morphism ¢ : X — Y between two representations is a
collection (¢; : X; = Yi)icq, of C-linear maps such that ¢, X (a) = Y (a)@s()-
The dimension vector of a representation X of () is the vector

dimX = (dimX,...,dimX,,) € N¥,

We denote the category of representations of @ by Rep(Q). If we identify
any complex vector space of dimension k& with C* , then for any vector o =
(a1, 0, ..., 0,) € N2 we may view

Rep(Q, @) := @) Homg (C@ , Co)

a€Q1

as the set of all representations of the quiver () of given dimension vector a.

Let GL(«) be the algebraic group defined by

[[6L(as, 0.

1€Qo



This group acts on Rep(Q, «) by conjugation:

(9 X(@))acar = (1@ - X (@) - 9y0))acar-

Since the scalar subgroup G,, acts trivially, it is more natural to consider the
quotient group G(o):= GL()/Gyy,.

The set of isomorphism classes of representations of () with dimension vector «
is in 1-1 correspondence with the set of G(«)-orbits in Rep(Q, o). We consider
the quotient space Rep(Q, «)/G(«). Tt is equipped with a geometric structure
by King [11] using the geometric invariant theory. We note that the characters
of G(«) are given by

xo:Gla) — C
(9i)icqy = 11 [det(g:)]’,
1€Qo
for 0 € Z9 with Y 6;a; = 0. Such a vector 6 is considered as a function
1€Qo

0:72% — Z by 0(8) := Y 0:5.

1€Q0
We consider two types of quotient of Rep(Q, ) by G(a). Let C[Rep(Q, a)]
be the coordinate ring of the variety Rep(@, «). Then Rep(Q, t)//G(«) is the
variety whose coordinate ring is the invariant part of C[Rep(Q, a)]:

Rep(Q, @)//G(a) := Specm(C[Rep(Q, a)]) .

Then we consider the graded ring

C[Rep(Q, @)@ := EDCRep(Q, )]

m=0

where C[Rep (@, )], denotes the subspace of G(«)-semiinvariant with respect
to x™. Hence we define

Rep(Q, )/ /XG(a) := Projm(@C[Rep (@, )]ym).

m=0
This quotient is a projective variety [11]. There is a natural projective mor-
phism

Rep(Q, a)//*G(a) — Rep(Q, )/ /G ().
This map is called the x-linear modification of Rep(Q, )//G(c).



By the general result in the geometric invariant theory, the quotient

Rep(Q, a)//XG () has a geometric description as follows. We say that X €
Rep(Q, @) is x-semistable if there exists f € C[Rep(Q, a)]y= with m > 0
such that f(X) # 0. A point X € Rep(Q,«) is x-stable if there exists
[ € C[Rep(Q, @)]ym with m > 0 such that f(X) # 0; the isotropy group
G(a)x is finite, and the orbit G(a) - X is closed in the affine open subset
{Y € Rep(Q, ) | f(Y) # 0}. Then the variety Rep(Q, «)//XG(a) may be
identified with the set of closed orbits of G(«) in the set of y-semistable points.

Using the Hilbert-Mumford criterion [11, Prop. 3.1], the notion y,-semistable
(resp.xg-stable) can be translated into the language of the representation of
the quiver: A representation X is xg-semistable (resp. xs-stable) if and only if
any non-trivial proper subrepresentation N of X satisfies #(dim/N) < 0 (resp.
6(dimN) < 0).

The Lie algebra of GL(«) is given by

End(a) := HMatC(ai,ai).
i€Qo
We may identify Lie(GL(«)) with its dual via the trace pairing. Under this
pairing the dual to Lie(GL(«)) is identified with the trace zero matrices in
End(«). We denote the variety of trace zero matrices by End(a)y:

End(a)o := {A € End(a) | ) _tr(4;) = 0}.
1€Qo
Let @ be the double quiver of Q. Thus @ has the same vertices as  but the set
of the edges is given by {a,a* | a € Q}, where s(a*) = t(a) and t(a*) = s(a).
Then we consider the map

fia : Rep(Q; @) — End(a)o
given by

(X(a), X(a"))aequ — (Y X(a)X(a") = D X(a")X(a))ieqo-
a€Q1 a€Q
s(a)=t t(a)=t

Let Q(T') be the quiver obtained by choosing any orientation of the McKay
graph A(T"). It is an extended Dynkin quiver with minimal positive imaginary
root § € N¥ given by §; = dim R;. We call the double quiver Q(T') of Q(T) the
McKay quiver of type A(T). Let Z; = [End(a))%?) be center of End(a),.
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For any z € Z; the reductive group G(d) acts on the fiber uj'(2) since the
G(d)-equivariance of u5. By the general result in the geometric invariant theory
[19] we can form an algebraic quotient p; ' (Z;)//G(d). Let ® be the morphism

D 115 (25)]/G(8) — Zs

which is obtained from the universal property of the quotient

115 (Zs) 1y (Zs5)/] G(5)

%

Zs.

The morphism & is a deformation of the Kleinian singularity.([12], [7])

Now we apply a linear modification to the construction above, i.e. for any
character yy we obtain a diagram

ps ' (Zs)] ¥ G(9) T~ ' (25)//G(6)
) )

X
Zs = Zs

By Cassens and Slodowy ([7],[8]) for generic xy (i.e. 8(8) # 0 for all 3 statist-
fying 0 # 6 — B € N9°) this diagram is a simultaneous resolution of ®. In
particular

™5 105 (0)/ 4 GE) — 17 (0)//G(0)
is a minimal resolution of the Kleinian singularity C?/T.
The strategy for the proof of the above result does not give an analysis of

exceptional components of 7. It is the purpose of this work to give a detailed
description of the exceptional set of the minimal resolution 7.

A point in ;' (0) can be considered as a representation of the quotient algebra
of the corresponding path algebra by the relation given by the equation us = 0:



Q) =CRI)/( Y aa’ - Z bD)icqrr

a€Q(IM1 beQ(T
s(a)=1 (b) %

Such an algebra is called preprojective algebra of the quiver Q(I"). There-
fore we would like write Rep(II(Q(T)), §) for u; ' (0) and define Rep(I1(Q(T)), §)°
as the yp-semistable part of Rep(II(Q(T)), §). Our starting point is the follow-
ing commutative diagram

Rep(II(Q(T)),0)’ L2 Rep(II(Q(T)),0)"//G(9)

™

Rep(I(Q(T)),d) —~ Rep(T(Q(T")),8)//G(d) ~C*/T

where the maps p and py are the quotient maps, and 7 is the minimal resolu-
tion.

An element X = (X(a)),cgr) € Rep(II(Q()), d) is nilpotent if there exists
an integer N > 2 such that the composition X (a;y ) -+ X (a;,)X (a;,) is equal
to zero for any sequence of arrows a,, ai,, . ..,a;, € Q(I') such that t(a;,) =
8(0’1'2)’ t(a’i2) = S(U’is), SR ’t(a”iN—l) = (CLZN) We denote Rep( (Q(F))a 5)ni1 the
subvariety consisting of all nilpotent elements of Rep(I1(Q(T)),d). The follow-
ing theorem plays an important part in our work.

Theorem 12. The exceptional set of the resolution m is given by

m(0) = ps(Rep(IL(Q(T)), 6)an)-

Thus, to describe the exceptional set 7=+(0) of the resolution 7 we need to
cons1der the nilpotent variety Rep(II(Q(T)),d)%,. This variety is a particular
case of the nilpotent variety Rep(II(Q), &)ny which is introduced by Lusztig
[13]. It has pure dimension equal to $dim Rep(Q, ). Hille [8] gave a formula
determining the number of irreducible components of Rep(IT1(Q), &)ni- In par-
ticular, this formula allows us to determine explicitly the number of irreducible
components of the variety Rep(II(Q(T")), 6)ni except the case A(T") = Es.

The central result of the thesis is the description of the variety Rep(IL(Q(T')), 6)ui1
in the cases A, D, and D5. Furthermore we also describe explicitly the action
of the Weyl group on the space of weights H(d) in the case A, .



We say that two weights # and 6’ in the space of weights with respect to the
dimension vector &

H(S) :={0 € Z' | 0(5) := ) _ 6:6; = 0}

are d-equivalent if for any X in Rep(II(Q(T)), 6)nu X is O-stable if and only
if X is #’-stable and for any X in Rep(II(Q(T")), 6)nn X is #-semistable if and
only if X is #’-semistable. We can also define the wall system with respect to
dimension vector §. That is the minimal set of hyperplanes {W;};cr in H(0),
where [ is a finite index set, with the following property: whenever two generic
weights 6 and 6’ in H(J) lie on the same side of each of these hyperplanes W},
then they are d-equivalent.

Let X and Y be two varieties of the same dimension. We say that the variety
X meets the variety Y if and only if codim(XNY) = 1. Let X be a reducible
variety which has pure dimension n. We define the intersection diagram
['(X) with respect to X as follows: Associate to each irreducible component X;
a vertex ¢ € I'(X). Vertices i and j are connected by an edge if the component
X; meets the component X;.

We first consider the variety Rep(IT(A, 1),d).. We investigate the action of
symmetric group on the space of weights H(d) and construct the wall system
in H(6). We describe the intersection behavious of the irreducible components
of Rep(IT(A, 1),0)s1 and put it in relationship with Kleinian singularity of
type A,,.

Let Q(T) be the McKay quiver of type A,_; with n > 2. We assume that Q(I")
has the set of vertices Q(T')y = Z/n = {1,2,...,n}, and consists of arrows:
o1+ 1—=14,0f 17 —=14+1,7€ I. Let Q be the set of all arrows ;. The
nilpotent variety Rep(H(;&n_l), 8)nil has 2" — 2 irreducible components. Each
component has the form

[

Cr :=Cl({(a;,a}); € .GnBl(CZ la; =0ifa; € [; a; =0if o; ¢ I})

where [ is a subset of € such that @ # I # ). We say that C} is a component
of type k if | I | = k and write C;, 3,3} for Cia; @i}

..........

Let ¢! . be the non-trivial proper subdimension vectors of d given by
irj

J
8 :=(0,...,0,1,...,1,0,...,0), 1<i<j<n.
’ .
(]




Then we define hyperplanes

W, = {6 € H(5) | 6(5,) = 0}.

The action of symmetric group on H(6), the d-equivalence classes and the wall
system are described in the following theorem:

Theorem 13. 1) The symmetric group S, acts on the space of weights H(4) by
reflections with respect to the hyperplanes Wi ; dividing H(S) in n! chambers:

o(1) (2

) a(n)
O(0) :={0eH®) |D> <) << 0} 0ESn
=1 1=1 =1
The resulting action of S, on the set of these n! chambers is simply transitive.

2) For each generic § € O(o) there are eractly (n-1) 0-stable components of

the nilpotent variety Rep(I1(Ay_1), d)nit which are

Cio(),0(2)yo(@}, 1=1,2,...,n—1

3) For each generic § € ©(0) the corresponding d-equivalence class of 6 is the
chamber (o).

4) The set of hyperplanes {W; ;}1<icj<n forms the wall system in H(J).

Let F(An:ﬂ denote the intersection diagram of the variety Rep(H(&n_l), ) nil-

Then I'(A,,_;) relates with the intersection diagram of the resolution of the
Kleinian singularity of type A,_; by the following theorem:

Theorem 14. 1) For each permutation o € S, the map @, given by

(pa:i—%---o—n;l — F(An—l)
k
. > 905 (k) = Clo(1).0(2),...0(k)}

gives an embedding of the Dynkin diagram A,_1 into the intersection diagram

I'(An-1).

2) For each 0 € ©(0) the intersection diagram of the exceptional set of the
resolution

Rep(T1(An-1),8)°//G(3) — Rep(Il(Aq-1),8)//G(0)
s the Dynkin diagram A,_;.
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We denote Rep(I1(Ap_1), 8)w-nil the subvariety consisting of all locally nilpo-

tent elements of Rep(II(A, 1),0) (see definition in Sect. 5.1). Let I'(A, 1)y
be the intersection diagram of Rep(H(&n_l),(S)W_nﬂ. It is obtained from the
intersection diagram F(&n,l) by adding two vertices which correspond to the
components Cy and Cp. Then the intersection diagram F(l&n_l)w is described
as follows:

Theorem 16. The intersection diagram F(&n—l)w is a skeleton of a
n-dimensional cube H™. Its vertices are the vertices of the cube H™ and its
edges are the edges of the cube H™.

Let Rep(H(@),é)Stab denote the stable part of the variety Rep(II(Dy), 6)ui.

nil
The Rep(I1(Dy), §)%t" has 48 irreducible components. Then the intersection
diagrams T'(Dy) of Rep(IT(Dy), §)5t2P is described as follows:
Theorem 18. The intersection diagram F(]I~])4) has 48 vertices. They are ar-
ranged in a 4-dimensional cube H* as follows.

The 16 vertices correspond to the vertices O}, i = 1,...,16, of H*. The 24
vertices correspond to the centers 0]2-, j=1,...,24, of the 2-facets of H*. The
8 vertices correspond to the centers O3, k =1,...,8, of the 3-facets of H*.

Vertices O} and OF are connected by an edge if the verter Of belongs to a
2-facet whose center is OJZ-.

Vertices O} and OF are connected by an edge if the 2-facet whose center is O3
belongs to a 3-facet whose center is O}.

The Rep(I1(Ds), §)stab has 162 irreducible components. The intersection dia-

\_ nil
grams ['(Ds) of Rep(I1(Ds), )P is described as follows:
Theorem 20. The intersection diagram F(]ﬁ%) has 162 vertices. They are
arranged in a 5-dimensional cube H® as follows.

The 82 vertices corresponds to the vertices O}, i = 1,...,32, of H5. The 80
vertices correspond to the centers 0]2-, j=1,...,80, of the 2-facets, of H®. The
40 vertices correspond to the centers O3, k =1,...,40, of the 3-facets, of H®.
The 10 vertices correspond to the centers Of, h =1,...,10, of the 4-facets, of
H°.

11



Vertices O; and OF are connected by an edge if the vertex O] belongs to a
2-facet whose center is OJZ-.

Vertices O and O3 are connected by an edge if the 2-facet whose center is O3
belongs to a 3-facet whose center is O3.

Vertices Oy and O} are connected by an edge if the 3-facet whose center is O3
belongs to a 4-facet whose center is O} .

CONJECTURE. One may hope that the following statements might be true:

1) The number of stable components of Rep(IT(D,,), §)ni is

> ()

k=0
k#1

where (ﬁ) 27—k is the number of k-facets in a n-dimensional cube H™.

2) One can describe the intersection diagram I'(DD,) by induction on n the
intersection diagram I'(Djs).

The thesis is organized as follows. In Section 1 we shall give a quick review
of the definition of Kleinian singularities. In Section 2 we shall introduce the
deformation and resolution theory of sigularities. In Section 3 we collect the
basic notations and definitions of the representation theory of quivers. In Sec-
tion 4 we present the main results from the deformation and resolution theory
of the Kleinian singularities which are related to quiver varieties. These results
are given by Kronheimer, Cassens and Slodowy. In Section 5 we say about
the nilpotent and stable representations of quivers and related results. These
results are given by Lusztig and Hille. We explain how these results apply to
a description of the exceptional set of the minimal resolution of Kleinian sin-
gularity. In Section 6 we describe explicitly the intersection diagram I'(A,_;)
and consider action of the Weyl group on the space of weights H(d). In Section
7 we shall describe the intersecion diagrams I'(Dy) and I'(ID5).

12



NOTATIONS. We list a few notations that will be used throughout this

thesis.

ACNZ

*

anqQaa

set of natural numbers

set of integers

set of rational numbers

set of real numbers

set of complex numbers

multiplicativve group of complex numbers # 0
numerical complex vector space of dimension n
strict inclusion

polynomial ring over C

general linear group

special linear group

unit matrix of dimension n

scalar subgroup

affine n-space over C

projective n-space over C

coordinate ring of X

ring of invariants

quotient of X by G

quotient the y-semistable part of X by G
closure of X

stable part of X

maximal spectrum of R

homogeneous maximal spectrum of the graded ring R
homomorphism group

endomorphism ring = Hom(R,R)

path algebra of the quiver ()

preprojective algebra of the quiver ()

category of representations of the quiver @)
category of finite dimensional CQ-modules

McKay graph associated to a finite subgroup I' of SL(2,C)

McKay quiver of type A(T")

the space of weights with respect to the dimension vector d

intersection diagram of X
orbit of X by GG
stabilizer of X

13
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1 Kleinian Singularities

1.1 Singularities

Let X C C" be an algebraic or analytic variety defined by the vanishing of
polynomial or analytic functions

X =V(f, for-- . fir) = {2 € C"|fi(2) = fa(2) = ... = fu(2) = 0}.

Definition. A point z € X is called regular if there exists a neighborhood
of x € X is isomorphic to a complex manifold (isomorphism in the category of
analytic varieties).

A point z € X is called singular if it is not regular.

A point x € X is called isolated singular if it is singular and all near-by
points are regular.

Theorem 1 [18] Let X C C? is a hypersurface

X =V(f) ={(z,9,2) € C|f(z,y,2) = 0}.

f: C — C a polynomial or analytic, f(0) = 0, f square-free, then 0 € X is a
wsolated singularity iff

(i)
of of of
2: ) = 3,0 = 5,0 =0

(i1)
of of 0
dimcC{z, vy, z}/(a—i, 8_;;’ a_JZC) <00

where C{z,y, 2z} denotes the ring of the convergent power series in z, y, 2.

Example. Let S = {y* — 22> = 0} be the variety in C*>. This variety has
clearly singularity in 0. It is non-isolated singularity because C{z, vy, 2} /(y, 2%, x2)
has a infinite basis {1,z,2,2%,...,2",...}.

Example. Let C = {y> — 2® = 0} be the variety in C?. This variety has
isolated singularity in 0.

15



J
<

C={y*—23=0} S ={y?— 222 =0}

\

1.2 Kleinian singularities

Let T' be a nontrivial finite subgroup of SL(2,C). The action of the group T
on C? by matrix multiplication induces an action on the C-algebra Clu,v] of
all polynomials in 2 variables by means of

(7, f(2)) — f(y.2) for yel and zeC.

Theorem 2 [23] The C-algebra Clu,v]' of T'-invariant polynomials on C?
1s generated by three fundamental generators X, Y, Z, satisfying a relation
R(X,Y,Z) =0, where R is a polynomial on C3.

Here is the list of the finite subgroups I' € SLy(C) and the corresponding
relations

r C, D, T 1) T
N n in 24 18 120

R X" +YZ | X(Y2-X")4+2% | X*+Y34+2% | X34 XY34+2% | X0 4vV3 422

where C,, 1is cyclic group of order n, and D,, T, O, T are binary dihedral,
tetrahedral, octahedral, icosahedral groups.

Geometrically, the theorem means that the quotient variety C?/I" may be
viewed as a hypersurface in C* given by the equation R(X,Y, Z) = 0:

C/I ={(X,Y,2) € C|R(X,Y, Z) = 0}.

The hypersurface C?/I" has an isolated singularity at the origin. This singu-
larity is called Kleinian singularity.

16



Example. Let I' be the cyclic of order n which is generated by the matrix
diag(e, e '), where € is a n-th primitive root of 1. The basis invariants are
expressed in terms of the variables (u,v) in C? as follows: X = uv, ¥ = u",
Z =v". They are related by X" =Y Z.

17



2 Deformation and resolution theory of singularities

2.1 Deformation of singularities

Definition. Let S be a variety. A deformation of S consists of a pair (x,1)
where x : X —— (U, u) is flat morphism (i.e. all fibers have the same dimen-
sion) of varieties and i: S — x~!(u) is an isomorphism of S onto the special
fibre of X over u.

X is called the total space and U the base of the deformation yx.

Let (x, %) be a deformation of S, and let ¢ : (U, u) — (Uy, u1) be a morphism
of pointed varieties (i.e. ¢(u1) = u). Then the pull-back

X XU U1 L, X
©*(x) X
(U, ug) % (U,u)

gives another deformation of S which is called the induced deformation by
the base change ¢.

Two deformations (x,7) and (x',i') of S over the same base (U, u) are called
isomorphism if there exist an isomorphism ¢ : X — X’ of the total spaces
such that the following diagram is commutative

X ¢ X'

~

(U, u).

Definition. A deformations (x, ) of S is called semi-universal if the follow-
ing conditions hold:

i) Up to isomorphism any deformation of S can be induced from (x,i) by

18



means of some base change ¢ : (U',u') — (U, u).

ii) The differential D, : T,,U" — T,U of ¢ at v’ is uniquely determined.

Theorem 3 [24] Let S = {f = 0} € C" be a hypersurface with an isolated
singularity at 0. Then a semi-universal deformation of S is given by
X ={(z,u) € C" x C|f(z) = >wibi(2)}
i=0
X = Pra
(C,0)

i:S— X, zr—(z0)

where by, by, ..., b, are a basis of space
of of
R M

Example. Let S = {z""! — (y% + 2%)} be the singularity of type A,. Then
Cl[z,y,z]/ < x",y,z > has a basis {1,z,z?%,...,z2" 1}
Thus, a semi-universal deformation of S is given by

n .
X = {(z,y, 2, u1,Ug, - . -, uy) € CT7|z" T + Sz — 92 — 22 = 0}
i=1

(C[ZlaZQa"'aZn]/ <f)

X = Dra
(", 0).

2.2 Resolution of singularities

Definition. Let S be a variety with set of regular points 57% dense in S and
set of singularities S = S\ S™. A resolution of singularities or desin-
gularization of S is a morphism 7: S — S (in the category of algebraic or
analytic varieties) with the following properties

a) S is smooth, i.e. S = S,

b) 7 is proper, i.e. 7 }(K) is compact if K C S is compact,
¢) m: m1(S79) — (S7%) is an isomorphism.
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The set E = 771(5%"9) is called the exceptional set of the resolution 7.

A resolution 7: S — S is called minimal if it has the property that any
other resolution 7' : S — S there is a unique morphism ¢ : ' — S with
ToOY ="

It follows that the minimal resolution is unique up to isomorphism.

Using the blowing-up procedure we shall describe resolutions of singularities
in some simple cases. Let

B(0,C") = {(z,[y] € C" x P"" |z € [y]}

={(x1,- s T0), (Y1t - 1Y) €C" X P | iy — 2y5,8,5 = 1,...,n}.
The first projection ¢: B(0,C") — C" is called the blow-up of 0 € C*. One
has

o Hz) ={(z,[2] €eC" x P}~ {(x)} e P! for z #0O.

and
e '(0) = {0} x P"! > P"".

Thus ¢ induces an isomorphism

¢ B(0,C") \ p~'(0) — C"\ {0}.
The point 0 € C" is replaced in B(0,C") by the projective space P! of all
lines through 0.

Let S C C" be a subvariety with 0 € S. The restriction

Y5 = go\(p_l(s) : 9071(5) — S

is called the blow-up of 0 € S. The ¢3'(S) is called the total transform of
S. The (Zariski-)closure of ¢ *(S \ {0}) is called the proper transform of
S. The ¢g'(0) is called the exceptional divisor of ¢g.
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To calculate the blowing-up we give a local form of ¢. We cover P*~! by n
standard affine charts

U={(z1:...:1:...:2,) eP" 1} ~C"ti=1,2,...,n
This covering induces a covering of B(0,C")

B(0,C") = Ue™'(U) == U Ti.

1=

We construct an isomorphism C* ~ U;. Then restriction w; = 90|f17- of ¢ on U;
is described as follows

Wiy os¥n) — o ((yrreec ety )y, (yr oot 1ot yy)) €U

.

©i

(Y1, -5 1o o Yn)Ys)-

Theorem 4 (Hironaka) Any variety may be desingularized by succesive blow-
up of point and normalization.

Examples. 1) Let C be the variety in C?
C={z*-9*=0}.

We choose the chart Us. In this chart the blowing up ¢, is given by

N

We have

o1(z,u) = (z, zu)
u ' v
$1 X () %

01 (0) =A{
-1

z,u) € Up|a* — 22u? = 0}
zr=0}U{u=z}U{u=—x}
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for the total transform of C. The proper transform C; = 7' (C\ {0}) consists
of the two lines u =z and u = —z. The (] has a isolated singularity in 0. We
blow again up. We choose also chart U; as before. In this chart the blowing
up v is given by
Uy (z,v) = (z, zv)
The total transform of C is
YrH(C) = {(,v) € Ui|2? — 2%0? = 0}
={r=0}u{v=1}U{v=-1}.

The proper transform ;' (C; \ {0}) consists of the two lines v = 1 and v =
—1. It has no more singularity. Thus, by iterated application of the blowing-
up procedure the curve C' € C? can be transformed to a smooth curve.

2) Let S be the variety in C*

S = {4z* — 52%y* + y* + 2* = 0}
We choose the chart f]: In this chart the blowing up ¢; is given by

o1(z,v,w) = (z, zv, zW)
The total transform of S is
o7'(S) = {(z,v,w) € Uy|[4z* — 5z*0? + z'v* + z2w? = 0}
={z =0} U {4224 — 5v? + v*) + w? = 0}.

The proper transform S; = ¢; (S \ {0}) has a non-isolated singularity along
the exceptional divisor ¢7*(S) N {z = 0}. Here we have to use normalization.
Note that t = w/x is an element of the field of fractions of

C[S:1] = Clz, v, w]/(z* (4 — 50* + v*) + w?)
which is integral over C[S;] :
2 = —(v* — 50 +4).
We define the map a by

a:C— ﬁi, (z,v,t) —> (z,v,tz).

Then we have

a1(S)) = {224 — 5+ vt +¢?) =0}
={a® =0} U {4—-50"+ 0"+ =0}
= {£E2 :0}U51
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The smoothness of 5~’1 follows that oz|§; : §1 — S is a normalization of Sj.

Thus, the map 7 = ¢ 0 : S — S give a resolution of singularity of S.

The Kleinian singularities and the Dynkin diagrams are closely related. The
following theorem says about that due to Du Val.

Theorem 5 [21] 1) Let 7 : S —» S be the minimal resolution of a Kleinian
singularity. Then the exceptional set of m is a union of smooth rational curves

' 0)=CiU---UC,,C; ~ P
All self-intersection C;C; are -2 (i.e the normal bundle Nci|§ of C; in S s
isomorphic to Op(-2)) and pairwise intersections are transversal. The inter-

section matriz (C;C})ij,%,j =1,2,...,n, is the negative of a cartan matriz of
A,, D, and E,.

2) Conversely, let m : S — S be the minimal resolution of a isolated surface
singularity and assume that 7='(0) satisfies the properties as in i). Then S is
a Kleinian singularity.

Hier is list of Kleinian singularities C*/T', and their Dynkin diagrams A(T").

' | Type of A(I) A(T)
Cn A'n—l e — o e — o
°

D,, D,_{ Y e __ o

°
T Es o o _ o o o

°
() E, o 06— ©e— oe— o_— o

°
A Eg o o _ e o o e o

The Dynkin diagrams (see Sect. 3.4) has a direct intepretation as the inter-
section diagram of the exceptional set of the resolution 7 which consis-
der of vertices representing the components of 77'(0) and edges representing
transversal intersections of these components.
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2.3 Simultaneous resolutions

Let f: X — S be a morphism of varieties. A simultaneous resolution of
the morphism f is a commutative diagram of varieties and morphisms

y_ ¥ X
g /
T ¥ S

with the following properties
(i) The morphism g : Y — T is flat;
(ii) ¢ is surjective; 1 is proper and surjective,

(iii) each fiber Y; of g is non-singular and
Uly, : ¥V — Xy

is a resolution of singularities in the sense of 2.2.

Example.[10] Let f: X — S = C" be the deformation of the singularity of
type A,

n .
X = T, Y, 2, U1, U2y - - -y Up €C3+"x2+y2+z”+1+ $:2"77 =0
2.5]

j=1
[ =opr
(C",0).
Let T C C* be the hyperplane
ti+ty 4+t = 0.
Define a map ¢ : T" — S by setting
S5 = (pJ(t) = O'j+1,j = 1,2,. ..,
where 01 is the (j+1)-th elementary symmetric function of ¢1,ts, ..., t41.

The base change ¢ give an induced deformation by pulling back X to 7', which
has the equation
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n+1
X : x2+y2+H(z—tj):0.

j=1
Blow X up by taking the closure of graph of the mapping

/,LX—>IP%1)XXIP%”)

given by ( IP%J.) is the j-th factor, ]P’%j) =P')
J
(X, ¥) = (i —9): [ [ - )i =1

v=1

where (X : Y;) are homogeneous coordinates in ]P’%j) and i = /—1.

We going to show that the closure of graph G, of this mapping, together with
its obvious projective on hyperplane 7', is a simultaneous resolution of the
morphism f: X — §.

The graph G, C ]P’%l) X - x P! ) X C® x T is defined by the equations

(n
n+1
2+’ + [[(z-t) =0
v=1

J
X [[e-t) =Xz -y),i=1,2,...,n.

v=1
Let o
Y =G, \{t, =t;,7 # s}.
The projection

Py X - X Py xC xT — T

inducesamapg:Y — T.
The composition

lP’%l)><---><]P’%n)><C3><T—>C3><T1ip>C3><S

induces a map ¢ : Y — X.

Then we have the following commutative diagram
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We show that this diagram is a simultaneous resolution of the morphism
f: X —5.

Let Uy, Uy, ..., U, be the open subsets of ]P’%l) X e X ]P’%n) x C? x T defined by

Uy ={X; #0}
U ={Y,#0,X,,1#0},p=1,...,n—-1
U, ={Y,#0}
in U,, we let
X, Yy
0, = — and T, = 2
’ Yp g Xp+1

By an elementary commutation we can take a parametrization of Y in U, as
follows

(X;:Y)) =0, [z =t 1 1) for j<p-1
(Xj : YJ) =(1: Tp+1 H]y:p+2(z —t,) for j>p+2
(X, :Y)) = (0p:1)

(Xpr1 2 Ypr1) = (1:7p41)

1z +y = Tp+1 HIT/L:p—I—Q(Z — )

=y =0, [z — 1)

Z4+ 141 = 0pTpt1

In U, the simultaneous resolution can be written as follows

CxT = YU, N X
(Upan-l-l;t) — ((Xj:ij)ijayaz:t) — (x,y,z,cp(t))
lyg LS
teT s p(t) €S
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It follows that Y is non-singular, and g : Y — T has maximal rank, hence g
is flat. It follows also from the definitions of ¢, ¥ that ¢ is surjective and 1) is
proper and surjective.
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3 Quivers

3.1 Definition of quivers

A quiver Q = (Qo, Q1;5,t: Q1 —> Qo) consists of a finite set Qg of vertices,
a finite set () of arrows and two maps s,t which send an arrow a € ) to its
starting vertex s(a) and its terminating vertex t(a). We shall write ¢ : i — j

or i = j for an arrow starting in i and ending in j.

3.2 Representations of quivers

One defines a category Rep(Q) of representations of the quiver @ as follows.

A representation M of () consists of a collection of finite dimensional vec-
tor space (M;)qeq, for each vertex ¢ € @y, together with linear maps M(a) :
My — My, for each arrow a € ;. The dimension vector of the repre-
sentation M is the vector dimM € N9 with (dimM); = dim M;.

A morphism ¢ between representations M and N of quiver @ is given by
linear maps ¢; : M; — N;, for each 7 € @)y, such that the diagram

M, ¥i N;
M(a) N(a)
M; L N;j

commutes for each arrow a : 1 — j € Q1.

The composition of the morphism ¢ : M — N with the morphism ¥ :
M — P is given by (¢ 0 ¢); = 9; 0 ¢;.

A subrepresentation of a representation (M;, M(a))icgyaco, 1S & represen-

tation (N;, N(a))icgo.acq, With NN; is a vector subspace of M; and N(a) is the
restriction of M (a) to the vector space Ny).
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The direct sum of two representations (M;, M(a)) and (V;, N(a)) is the rep-
resentation (M; & N;, M;(a) & N;(a)).

A representation (M;, M(a)) is called indecomposable if it is not zero and
can not be represented as a direct sum of two non-trivial representations.

3.3 Path algebras

A path of length 1 > 1 in a quiver () has the form

al a2 a
*e—He —>e------ *e e

with ¢(a;1+1) = s(a;) for 1 <i < n. This path starts at s(a;) and ends at t(a,,).
For each vertex i we denote by e; the path of length 0 which starts and ends
at i. We also use the notation s(z) and #(x) to denote the starting and ending
vertex of the path zx.

The path algebra CQ is the C-algebra with basis the paths in (), and with
product of two paths

T — e — @ —> @ e —©
,y — @ —> @ —> @ e — O
given by
LTS eI e if s(x) = t(y)

This is an associative multiplication.

Lemma 1 The category Rep(Q) of representations of the quiver @ is equiv-
alent to the category CQ-mod of finite dimensional CQ-modules.

PROOF. If X is a CQ-mod, we define a representation M with

Mi = eiX

M(a) : M) — Mya), =+ ax = eyq)

If M = (M;, M(a))icgo.acq, 1S a representation, then we define a module X via
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X = @M

1€Qo

Next, the CQ-mod structure on X is given by

(0% oS aie®e) 50 = Mlan) 00 M(ar) (@uun) 0
1€Q0
REMARK. 1) CQ is finitely generated. The path algebra CQ is finite di-
mensional if and only if ) has no oriented cycles, i.e paths of length > 1 from
a vertex i to itself.

2) The e; are orthogonal idempotents, i.e. e;e; = 0 for i # j and e? = e;.

3) If @ consists of one vertex and one loop, then CQ ~ C[T]. If Q) consists of
one vertex and n loops, then CQ is the free associative algebra on n letters.

3.4 Dynkin and extended Dynkin quivers

Give a quiver Q = (Qo, @1,5s,t). The Ringel form for @ is the bilinear on
7,90 defined by

<a,f>= Zaiﬁi - Zat(a)ﬁs(a)-

1€Qo acQ1

The Tits form is the quadratic form ¢(a) = < o, a >.
The corresponding symmetric bilinear form is

(o, 8) =< a,f >+ < B,a>

We say ¢ is positive definite if ¢(a) > 0 for all 0 # «a € Z?. The form q is
called semi-positive definite if g(a) > 0 for all a € Z<.

The radical of the Tit’s form g is

Rad(q) = {a € 7,90 | (o, ;) =0, Ve },

where ¢; is the ¢-th coordinate vector.

We have a partial ordering on Z?° given by o < 3 if  — a € N®. We say
that o € Z% is sincere if each component is non-zero.
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The underlying graph of @) is the graph obtained by replacing an arrow in
@ with a simple edge.

Lemma 2 If ) is connected and B > 0 is a non-zero radical vector, then (3
is sincere and q is positive semi-definite. For o € Z2° we have

¢(a) =0 <= a € QF < «a € Rad(g).

PROOF. Let n;; be the number of edges ¢ — j in the underlying graph of @
(loops count twice). The condition that § is in the radical translates as

2 - nzz anﬁj

J#

If B; = 0 then ) n;;4; = 0. Since each term in this sum is > 0 we have 3; =
J#i

0 whenever there is an edge 7 — j . Since () is connected it follows that g = 0.

This gives a contradiction. Thus, 3 is sincere.

We have

> i ,816]( o aj) Z”za 25; % — 2oniosoy + an

Z

1<J 1<J 1<j 1<J
= Yonijgko? — Yooy
i#] i<7'
=> (2 2"%)61 26, & Zn”ala] = q(a).
i 1<j

It follows that ¢ is positive semi-definite.

If g(a) = 0 then ‘“ = ‘;—] whenever there is an edge i — j , and since @ is

connected it follows that a € Qf.

If o € QB then a € Rad(q) since 8 € Rad(q) by assumption.

Finally if o« € Rad(q) then certainly ¢(a) = 0. O
We say that, @ is Dynkin (resp. extended Dynkin) quiver if its un-

derlying graph is one of the Dynkin (resp. extended Dynkin) diagrams. By
definition the Dynkin diagrams are
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D, S e oo
A
AN S

A S

By definition the extended Dynkin diagrams are as below. Here we have
marked each vertex 7 with the value of §;. Note that ¢ is sincere and § >
0.

® — @ +ceen- o— o
1 1 1 1
1 1
° °
Dn ._.—. -------- .—._.
1 2 2 2 2 1
o1
o2
1D e— oe— o—o— o
1 2 3 2 1
2 e
E; e—o0—0—0—0—0— o
1 2 3 4 3 2 1



[ ]
w

o~

s

XY
e
oe
e
~e
we
Y'Y
—e

Note that & has one vertex and one loop, and I\q has two vertices joined by
two edges.

Lemma 3 Let () be a connected quiver.

1) If @ is an extended Dynkin quiver, then q is positive semi-definite and
Rad(q) = Zé.

2) If @ is the Dynkin quiver then q is positive definite.

3) If Q is neither Dynkin nor extended Dynkin, then there is a vector o > 0
with q(a) < 0.

PROOQOF. 1) It is easy to check that the vector  satisfy

26 =) 6
j—i

Thus the vector ¢ is radical. Note that ¢ is sincere and 6 > 0. Now q is positive
semi-definite by the Lemma 2. Finally, since there always is a vertex ¢ with ¢;
= 1 we have Rad(q) = ZJ.

2) Embed the Dynkin quiver in the corresponding extended Dynkin quiver @,
and note that the quadratic form for @ is strictly positive on non-zero, non-
sincere vectors.

3) If @ is neither Dynkin nor extended Dynkin then @) contains an extended
Dynkin quiver @)'. If all vertices of @} are in Q' we take a = §. Otherwise
choose 7 be a vertex not in Q’, connected to @' by an edge. Then we take
o = 252 + €;. O

3.5 Roots

Given a quiver Q = (Qo, @1, s, t) we introduce the associated root system A(Q)
as subset in Z%° as follows. If k is a loopfree vertex, then there is a reflection

gt L9 — 79 5.(0) = a — (o, €) €.

The group W C Aut(Z%°) generated by all reflections is called the Weyl group
of the quiver ). For an element o = Y~ k;e; € Z9° we call the height of « the
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number »_ k;.

1€Qo0
We call the support of o (write: supp «) the subquiver of @) consisting of those
vertices ¢ for which k; # 0 and the arrows joining these vertices. Define the
fundamental set F C Z?° by

F ={a € N9 | o # 0, with connected support, (, ¢;) < 0,Vi}.

The real roots are the orbits of ¢, (k loopfree) under W. The imaginary
roots are the orbits of +a (o € F') under W.

The real roots have ¢(«) = 1. The imaginary roots have ¢(«)< 0. Hence

{real roots} N {imaginary roots} = &
Then the root system A(Q) is defined by

A(Q) = {real roots} U {imaginary roots}.
Lemma 4 If () is Dynkin or extended Dynkin quiver, then
AQ)={a€Z | a#0,q(a) <1}.
In particular, if QQ is Dynkin quiver, then

AQ) ={aeZ? | g(a) = 1},
and if Q is extended Dynkin quiver, then

{real roots} = {a € Z?° | q(a) = 1}, {imaginary roots} = (Z%° \ 0)4.

PROOF. Let a € Z% \ {0} be such that g(o) < 1. We have to show that
a € A(Q). Note that supp « is connected , for if in the contrary case o = S+,
where supp § and supp 7y are unions of subgraphs of Dynkin type and (5,7)
= 0, but then (o, a) > 2.

Either a or o € Z?O, where Z, = {0,1,2,...}. Indeed, in the contrary case,
a = 3 —, where v, 8 € Zgo, supp v N supp B = &, supp B is an union
of subgraphs of type Dynkin or is a subgraph of extended Dynkin type. But
(o, ) = (B, 8)+(v,v)—2(8,7) < 1and (8,7) < 0. Hence the only possiblility
is that (5,5) =1, (v,v) =0 and (3,7v) = 0. But then supp 7 is a subgraph of
extended Dynkin type and (8,7) < 0, a contradiction.
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So, supp « is connected and we can assume that a € Zgo. We can assume

that W(a) is not simple root. Then W(a) € Z%°. Taking in W(a) an element
of minimal height, we can assume that («, «;) < 0 for simple ;. Since supp «
is connected, it follows that « lies in the fundamental domain. Il

3.6 Reflection functors

If k is a loopfree vertex of the quiver (), define reflections

Tk - ZQO — ZQO,’/']C(A)]' = /\j — (6k,€j))\k-
dual to sy (see Sect. 3.5) via ri(A) - a = X - sg(a).

A vertex k € Qg is called a sink (resp. a source) if there are no arrows start-
ing (resp. terminating) at k.

Given a sink (or a source) k € (). Let @' be the quiver obtained by reversing
the direction of every arrow connected to k. We say that @)’ is obtained from
Q by reflecting at the vertex k. The two categories Rep(Q) and Rep(Q') are
closely related by means of so-called reflection functors.

We define the reflection functor

Fi : Rep(Q) — Rep(Q')

associated with a sink k as follows.

Let M = (M;, M(a)) be a representation of Q).
Ifj#kanda:i— j € Qq, then we take

Fi (M); = M;, 7/ (M)(a) = M(a)
Ifj=kanda:i1— k € Qq, then we take

Fi (M) = Ker( & M; = My)

i—k

and

Ff (M) — MpFF(M); = M;

be the composition

i—k
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Let ¢ = (¢;) : M — N be a morphism in Rep(Q). Then F,/(¢) is defined as
follows:

If j # k , then we take F, (); = ¢;.
If j = k , then we take F; () be the restriction to F, (M) of the mapping

i—k

i—k i—k

Dually, we can also define the reflection functor

F; : Rep(Q) — Rep(Q")

associated with a source k.
Note that the short exact sequence

0— F(M)y — & M; =5 My — 0
i—k

gives
dimF* (M) = —dimMj, + > dimM; = —ry,(dimM).

i—k

Hence dimF (M) = ri(dimM).

3.7 The variety of representations

Let Q = (Qo, @1, 5,t) be a quiver and o € N2, We define

Rep(Q, o) == @Homc((c%(w , Cot@),

acQ1

This is an affine space and isomorphic to A” where

Identifying any complex vector space of dimension k with C*, we may be view
Rep(Q, a,) as the set of all representations of the quiver @) of given dimension
vector . We also say that, Rep(Q, ) is the variety of representations of
Q of dimension vector o € N9,
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We define GL(«) := [] GL(a;,C). The linear algebraic group GL(«) acts on
1€Qo
Rep(Q, ) by conjugation. Explicitly

(g ) X(a))ate = (gt(a) . X(a’) ) gs_((ll))aEQl
for g €GL(a) and X = (X (a)).eq, € Rep(Q, ).

If X,Y € Rep(Q, ), then the set of isomorphisms of representation X — Y
can be identified with {g € GL(a) | g- X = Y}. It follows that, there is
a 1-1 correspondence between isomorphism classes of representation X with
dimension vector o and GL(«a)-orbits Ox. In particular, the stabilizer GL(a) x
of X in GL(«) is identified with the set Autgg(X) of automorphisms of X.

Lemma 5

dim Rep(Q, @) — dim Ox = dim Endgg(X) — ¢()
= dim Ext'(X, X).

PROOF. We have

dim Oy =dim GL(a) — GL(a)x (Dimension formula)
= dim GL(«) — dim Autgg (X).

Now dim GL(«) is non-empty and open in A®, so dense, so dim GL(a) = s.
Similarly Autcg(X) is non-empty and open in Endcg(X), so dim Auteg (X)
= dim Endgg (X).

It follows that

dim Rep(Q, ) = Y aya)@s@) — 2. ¢ + dim EndX
a€Q1 1€Qo
= dim EndX — ¢(«)
=dim Ext'(X,X)  (Ringel’s formula).
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4 Kleinian singularities and quiver varieties

4.1 McKay correspondence

Let I be a nontrivial finite subgroup of GL(2,C). Let

II‘I‘(F) = {Ro, Rl, RQ, ceey Rr}

denote the set of the isomorphism classes of the complex irreducible representa-
tions of I', Ry the trivial representation, and N is the natural two-dimensional
representation on C? obtained from the inclusion I' € GL(2, C). We decompose
R; ® N into irreducible representations

R;® N =R ®C*.
1=0

McKay’s observation may be formulated in the following way:[26]

Let T be a finite subgroup of SL(2,C). One attaches to T' a quiver Q(T') b
associating to each representation of I' a vertex and connecting the i-th vertex
with j-th vertex by a;; arrows.

If in the quiver Q(T) each double arrow e = e, i.e. two arrows in opposite
direction, is replaced by a simple line e — o, and the dimension d; of the corre-
sponding representation R; are inserted, then the resultmg graph A(T) is one
of the extended Dynkin diagram Ar,Dr, EG, E7, Eg, which occur respectively
for cyclic, binary dihedral, binary tetrahedral, binary octahedral, binary icosa-
hedral groups, with extended Cartan matriz C' = 21,1 — (a;j).

Example. Let C, be the cyclic group of order n which is generated by the
matrix a = diag(e,e '), where € is the n-th primitive root of 1. In this case
the group C, is commutative. Hence its irreducible representations are one-
dimensional and are determinded by

) k=0,1,...,n—1.

The natural two-dimensional representation on C? is isomorphic to By ® R,, 1.
Then (C2 ®Rk = Rk—}—l@kal, for k = 0,1,...,”— 1.
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Henceforth, we shall call the graph A(T") as above the McKay graph and call
the quiver Q(I') the McKay quiver of type A(I'). For example, the McKay

quiver of type D, is

o —
o —

R
-~
—_—
-+

1)
I
)
I

4.2 Kronheimer’s construction

A new approach to the deformation and resolution theory of Kleinian singular-
ities was given by P. B. Kronheimer [12]. His construction starts directly from
the finite group I' of SL(2,C) and uses hyper-Kéhler quotient constructions.
However he thought also about algebraic approach using McKay correspon-
dence. Cassens and Slodowy used this idea to reformulate his results in terms
of geometric invariant theory.

Let N denote the natural 2-dimensional and R the regular representation of
I'. Then consider a representation of I'

M :=End(R)® N
where End(R) = Hom¢ (R, R). The group I' acts on End(R) by conjugation
and acts on N as obvious. We denote by
M(T') = (End(R) ® N)"
the set of invariant elements under the action of I'.

Taking an orthonormal basis for N, we represent an element of End(R) ® N
as a pair (o, ) of the endomorphisms «, § € End(R).

Let H =R + RI + RJ + RK be the quaternions. We introduce a H-module
structure on M by giving a action of H on M as follows.

(o, B) = (icv, 1f)
J(a, ) = (=a",5%)
K(, ) = (—ia”,i6%)

where z* is the conjugation transpose to z
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Let U(R) denote the unitary subgroup of End(R) and let

U) ={g9€U(R)|gy=9,Vy €T}
The action of U(T") on M () is given by

(o, B) — (uau™ uBu™),u € U(D).

If we decompose R into irreducible representations

R= @Ri ® C%, ¢ =dimR;,
i=0
then we have U(I") ~ [[U(6;), where U(d;) is the unitary matrix group.
i=0

Since the subgroup G,, of scalar

T

G’m == {(AO]IJ(” )‘1]1(517 sy )\T]I(ST) € HU(61)|)\1 c U(l)}

=0
acts trivially we have an action of U(I')/G,, on M(I') which preserves H-
module structure.

Let p be the corresponding hyper-Kéhler moment map for this action. Its
explicit form is given by

p:MIT) —uH,
(aaﬁ) '_>NI(aaﬁ)®I+MJ(O‘7/B)®J+NK(C¥7§)®K

where
pr(e, ) = 5([lo, 0]+ [B, )
pi(e,B) = 5o, Bl + o7, B7])
pr(a, B) = 5(=[a, 8] + [o*, B),
and Hy = RI + RJ + RK denotes the pure quaternions, u is the Liealgebra of

U(T')/G,, which is identified with its dual space u* via the trace form (A,B)
— tr(AB). Let

=0 i=0
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denote the r-dimensional center of u*. Taking scalars, we can consider € as a
subspace of R".

Let
R, ={0eZ | 0Co<2}\{0}

r+1
Dy = {JT = (:ck) eR | Zl’kek = 0},f01‘ 0 e R+,
k=1

where C' = 21, 11— (a;;) is the extended Cartan matrix of type A(I') in McKay’s
observation.

If we choose an element

C=GCl +GJ + K e @ H,

then U(T') acts on the fibre p=!(¢). The real differential-geometric quotient
p1(¢)/U(T) is a hyper-Kahler quotient.

In general, ;1 '(¢)/U(T) has singularities. By the general theory of hyper-
Kihler quotient the set of smooth points of p~!(¢)/U(T) is a hyper-Kéhler
manifold.

Kronheimer’s work may be formulated as follows.

Theorem 6 [12] For all ( € € ® Hy, the quotient p=*(¢)/U(T) is a complex
analytic surface with at most isolated (Keinian) singularities. In particular

p(0)/U(T) ~ C*/T.

The complex r-parameter family

d: ' (C€®C)/UT) —¢xC (1)

realizes a semiuniversal deformation of C?/T.

For any fized generic (; € €, i.e. the (; not lying on any Dy, one obtains a
simultaneous resolution of the family (1) given by the following diagram

p~H(GI +€®C)/UT)
@

p (€ C)/U(T)

GI+€®C = ¢®C.
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REMARK. Kronheimer used McKay’s observation to interpret M (I') in
terms of representation of quivers as follows

M) = (End(R)® N)"
=(R*®@ R®N)"
= Hom(R,R® N)"

= Homp (R, R® N)

= Homp(@Ri &® (C(Si, Rj ® (Cai ® N)
=0 =0

J

= @ Homr(R;, R; ® N) ® Hom(C%, C%)

i,j=0
= éHom(C‘si ,C%)

i—j

= Rep(Q(), 9),
where Q(T) is the McKay quiver of type A(T).

Due to observation above, Kronheimer’s original results are reformulated in
terms of the geometric invariant theory by Cassens and Slodowy [7].

4.3 Notations and constructions

Let @ be the double quiver of Q = (Qq, Q1, s, 1), i.e. @ has the same vertices
as () but the arrows are given by {a,a* | a € @1}, where s(a*) = t(a) and t(a*)

= s(a).

Recall that, representations of @) of dimension vector o are given by elements
of the vector space

Rep(@,0) = ) Home( T, C0)

a€@Q

Representation of @) of dimension vector « are given by elements of the vector
space
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Rep(@, o) = Rep(Q, o) & Rep(Q, a),
where (Q°P is the opposite quiver to () with an arrow a* : 7 — ¢ for each arrow

a:1— ] € Q.

Let GL(«) be the group [] GL(«;,C). This group acts on the space of
a€Qo
representations Rep(Q, a) by conjugation:

(9 X(0)aeq, = (G1(a) - X (@) - 930 acqr,
Let G(a) = GL(2)/Gy,, where Gy, is the diagonal scalar subgroup of GL(«).
This group acts effectively on Rep(Q, a), i.e. G, acts trivially.

The Lie algebra of GL(«) is given by

End(a) = HMat@(ai,ai).

1€Qo
We may identify End(a) with its dual via the trace pairing:

End(or) — (End(«))*

1€Qo

Under the pairing the dual to Lie(G(«)) is identified with the trace zero ma-
trices in End(«):

Lie(G(a))* ~ End(at)o := {A € End(a) | > _tr(4;) = 0}.
1€Qo

The space of representations Rep(Q, ) can be identified with the cotangent
bundle T*Rep(Q, «) of Rep(Q, «). It has a symplectic form given by

w(X,Y) = %Ztr(X(a*)Y(a)) —tr(X(a)Y(a")).

a€Q1

The group G(a) acts on Rep(Q, o) preserving w with moment map

fia : Rep(Q; @) — End(a)o
given by
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(X(a), X(a"))aeqn = (Y X(@)X(a*) = Y X(a")X(a))ieqo-
a€Q1 a€Q
s(a)=t t(a)=:

The center Z, of Lie(G(«))* = End(«)y is

Zo =End(@)d = {(\MIa, Molay, - - -, Anla,) € End(@)s | 32 ai); = 0}
1€Qo0
={AeC®|a-\:= > o\ =0},

1€Qo

where n = | Qo |-

The preprojection algebra I1((Q) associated to a quiver @ is defined as

Q) =CQ/( Y aa" = Y b bicgo:
a€EQ1 beQn
s(a)=t t(b)=1

I1(Q)-modules correspond to representations (X;, X(a)) of the quiver @Q in
which the linear maps satisfy the relations

D X(a)X(a®) = Y X)X (b) =0,Vi € Q.
a€EQ1 beQ1
s(a)=1 t(b)=1

It is clearly that p7'(0) is identified with the space of representations of I1(Q)
of dimension vector «

#a (0) = Rep(II(Q), ).

4.4 Deformation of the Kleinian singularities

Let Q(T") be the McKay quiver of type A(T") and let 6 be the vector with §; =
dim R;, where the R; are the irreducible representations of the group I'. The
vector § is also the minimal imaginary root for the corresponding extended
Dynkin diagram (see Sect. 3.4).

For any z € Z; = {\ € C% | \-§ = 0} the reductive group G(6) acts on the
fiber u;'(2) since the G()-equivariance of y5. By general geometric invariant
theory [19] we can form an algebraic quotient u;'(Zs)// G(6). Let ® be the
morphism
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© s (Z5)]/G(O) — Zs

which is obtained from the universal property of the quotient

115 (Zs) P 1y ' (Zs5)/] G(5)

%

Ls.

We going to show that the morphism & is a deformation of the Kleinian sin-
gularity.

Lemma 6 [1, Lemma 4.2] Let Q) be a quiver and let X = (X(a))scq € Rep(Q,c)
be a representation of dimension «. Then there is an exact sequence

0 — Ext'(X, X)* = Rep(Q®, a) - End (o) & End(X)* — 0
where ¢ sends (X (a*)) € Rep(Q°) to

(> X(@X(a") ~ Y (X(a)X(a));

a€EQ1 a€Q1
s(a)=1 t(a)=1

and t sends (A;) to the linear map

End(X) —C
1€Qo

PROOF. There is an exact sequence

0 — End(X) — End(a) 5 Rep(Q, &) — Ext!(X, X) — 0
where the map f sends (A4;) to (A X (a) — X (a)Aya))aco-

Indeed, it is clear that the kernel of the map f is End(X), and by the Ringel
formula

dim End(X) — dim Ext'(X,X) =<oa,a >
= dim End(a) — dim Rep(Q, o).
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the cokernel has the same dimension as dim Ext!(X,X).

The required exact sequence is the dual of this one, using the trace pairing

Hom(C",C?) x Hom(C*,C") — C
(0, 9) — tr(ey)

to identify
Rep(Q?, a) ~ Rep(Q, a), End(«) ~ End(a)*. O

Lemma 7 [1, Lemma 8.3] For an extended Dynkin quiver Q and the minimal
imaginary root  the moment map

s - Rep(Q,6) — End(d)o.

s surjective and every irreducible component of every fiber has dimension 1 +
3= 62, Thus, us is flat.

1€EQo

PROOF. One knows the following result (see [1], Lemma 4.4)

If Q is an extended Dynkin quiver and [ is the imaginary root, then there is a
representation of @) of dimension vector B whose endomorphism algebra is C.
Furthermore the representations with endomorphism algebra C form a dense

open subset in Rep(Q, 8),and its complement is the union of only finitely many
GL(B )-orbits.

Suppose X € Rep(Q,d) has endomorphism algebra End(X) = C. By the
Ringel formula and < 6,6 > = 0 we have

dim End(X) = dim Ext'(X, X) = 1.
Then the map (see Lemma 6)

¢ : Rep(Q”,6) — End(9)

has 1-dimensional cokernel. Thus the map ¢ has image End(d)y; for, in any
case, its image is contained in this subspace.

For any A € End(d)y we have c™!(A) # (). Let X* =(X(a*)) be an element of
¢ '(A). Then we have

po(X, X) = ¢(X7) = A.
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It follows that pugs is surjective.

Thus, every irreducible component of every fiber has dimension at least

dim Rep(Q, §) — dim End(d)o = 1 + 2612
1€Qo

Now for any A € End(d)o, we consider the projection

72 py (A) — Rep(@Q, ).
Then the fiber 7;*(A) =~ ¢7*(A).

The representations with endomorphism algebra C form a dense open set B
C Rep(Q, 6). The fibers of the map 7 '(B) — B all have dimension 1, so

dim 7 }(B) =1+dim B =1+ dim Rep(Q, )
=1+ > &6 =1+ > 6%
ai—jEQ1 1€EQo

On the other hand, the complement Rep(Q), o) \ B consists of a finite number
of G(6)-orbits 01,0y, ...,0. If X; € O;, then
dim7~!(0;) = dimO; + dim End(X;)

Since dim End(X;) = dim Aut(X;) and the stabilizer of X is identified with
Aut(X;) we have

dim 771 (0;) = Z(SZZ
i€Qo

Thus, dim p; '(4) =1 + 3 o?. Tt follows that u is flat. O

1€Qo
Lemma 8 [1, Lemma 8.6] The morphism ® : u;'(Z)//G(8) — Zs is flat.

PROOF. By Lemma 7 the morphism p;'(Z;) — Z; is flat since it is the
pullback of p.

Let Clu;' (Z5)//G(8)] = Clu; ' (Z5)]9®) and C[Zs] be the coordinate rings of
15 (Z5)/ /G (8) and Zs.

Since the group G(d) is linear reductive the ring Cluy'(Z;)]9©®) is a direct

summand of C[u; ' (Zs)]. Since Clu; ' (Zs)] is flat over C[Zs] it follows that
the ring Cu,; ' (Z5)]%“ is also flat over C[Z;]. Equivalently, the morphism
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®:p;'(Z)]]G(8) — Zs is flat. O

Lemma 9 The algebraic quotient uy'(0)//G(6) is isomorphic to C*/T.

PROOF. If X = (X;, X(a)) € Rep(Q,6) and p = aias...a,, is a path in CQ

that starts and ends at the same vertex, then the function tr, given by
trp(X) = tr(X (am) - - - X (a2) X (a1))

is invariant under the action of G(§). By [4] the algebra C[Rep(Q,4)]¢®)
is generated by the trace functions tr,. By Cassen’s calculation [7] for the

extended Dynkin quivers A,,,D,,, Es, E7, Eg one obtains
Clu;" (Z5))°9 = Clu, o]".
O

Theorem 7 The flat morphism @ : u;'(Z5)]//G(8) — Zs is a deformation
of the Kleinian singularity C?/T.

PROOF. According to the definition of deformation (see Sect. 2.1) the result
follows from Lemmas 8§, 9. O

Example. Let I' = C,;1 be the cyclic group of order n + 1 then the McKay

quiver Q(T") of type A, has the following form :

Since 6 = (1,1,...,1) we have

Rep(Q(T),0) = {(ao, a1, ..., an, by, b1,...,b,) € C" @ C**'}

and
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G(6) =Cmt/Ccr ~C}
Zs = Lie(G(6))* = {(po, . - ., pn) € C**1 | ;)uz- =0}
1 ' (Z5) = Rep(Q(D),9).

The action of G(6) on Rep(Q(T), ) is given by

(titytag, tatT ay, . . . tot, tan, Loty o, tity Phy, - - - taty tby)
The fundamental invariants for this action are
2 :aibi, i:0,1,2,...,n

T = Qpay---ap

Yy :boblbn

These invariants satisfy relations

TY = ZpR1 """ Zp-

Thus Rep(Q(T'),8)//GL(6) is given as the hypersurface

{(ZO’le .. .,Zn’x,y) E Cn+3 | :Ey fry Zozl .. .zn}

If we introduce new coordinates on Rep(Q(I'),d)//GL(d) by putting

1 n
z= E 25 t, =z — 2z,
n+1 P 2 2 2

then we obtain the standard form of the semiuniversal deformation of the
Kleinian singularity S = {zy = 2"*'} of type A, (see Theorem 3, Sect. 2.1).

:U'(;I(Z)//G(é) = {(xﬁy: Zath s ,tn) € C3 X Z ‘ Ty = H?:O(Z - tz)}
y/ = {(to,t1,...,t,) € C**H | 30 t; =0}
4.5 Simultaneous resolution

Let V denote an affine algebraic variety over C. We will consider two types of
quotient of V' by a reductive algebraic group G.

Let C[V'] be the coordinate ring of the affine algebraic variety V. Then V//G
is defined as the variety whose coordinate ring is the invariant part of C[V]:
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V/]G:= Specm((C[V])G.

By the geometric invariant theory [19], this is an affine algebraic variety. It is
also known that the geometric points of V//G are closed G-orbits.

Definition. A point v € V is called semistable if there exists f € C[V]¢
such that f(v) # 0.

A point v € V is called stable if there exists f € C[V']¢ such that f(v) # 0, the

isotropy group G, = {g € G|gv = v} is finite, and the orbit G-v = {gv,v € V'}
is closed in the affine open subset V; ={w € V|f(w) # 0}.

A point v € V is called unstable if it is not stable. By the geometric invariant
theory, in the case V is a G-module, v € V' is unstable if and only if 0 € G - v
(the closure of the orbit of v).

Let x : G — C* denote a multiplicaticative character of G (an element of

additively written group X*(G) = Hom(G, C*). Then we consider the graded
ring

CV]9* := DLV ]ym
i=0
where C[V'],,, denotes the subspace of G-semi-invariants with respect to x™

ClV]ym :={f € C[V] | f(gv) = x(9)™ f(v),Yg € G,Vv € V'}.
Let

V//XG := Projm C[V]%*

be the homogeneous maximal spectrum of C[V']%X.

Definition. The natural projective morphism

V/XG — V//G.
is called the x-linear modification of V//G.

A point v € V is called x-semistable if there exists f € C[V ]y, with m > 0
such that f(v) # 0. Let us denote by VX% the set of x- semistable points.

A point v € V' is called x-stable if there exists f € C[V ], with m > 0 such
that f(v) # 0; the isotropy group G, = {g € G|gv = v} is finite; and the orbit
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G-v = {gv,v € V'} is closed in the affine open subset V; ={w € V' | f(w) # 0}.
We write VX=° for the set of x-stable points.

We lift the G-action to the trivial line bundle L =V x C by

g-(z,2) = (92 x(9)2)-
Then the set of G-invariant section of L™ can be identified with C[V],,, .
Thus, the set VX~%% is the set of the semi-stable points in the sense of Mum-
ford [19]. Hence, there exist for the action on VX~ a algebraic quotient
Vx5 / /G that is a quasi-projective variety (see [19], theorem 1.10). In this
way, V//XG can be described as the algebraic quotient VX% //G.

Let @ = (Qo, @1, s,t) be a quiver and let G(a) = [[ GL(a;, C)/G,, be the al-
a€Qo
gebraic group acting on the space of representations Rep(Q, «) by conjugation.

We note that the characters of G(«) are given by

xo:Gla) — C*
(9i)ieqo > IT [det(g:)]*,
1€Qo
for § € Z9 with > 6;a; = 0. Such a vector @ is considered as function
1€Qo
§:72% — 7
1€Qo

Using the Hilbert-Mumford criterion [19] the notion of x,-stability (resp. xg-
semistability) can be translated into language of the representation of the
quiver.

Lemma 10 ([11], 3.2) Let X € Rep(Q, @) be a representation of quiver @ of
dimension §. Then X is xy-stable (resp. xp-semistable) with respect to the
action of G(a) on Rep(Q, ) if and only if

0(dimN) <0 (resp. 6(dimN) <0)

for all non-trivial proper subrepresentations N of X.

Definition. We say that a character y, is generic if §(5) = 0 but 0(3) # 0
forall 0 < B < a.

Lemma 11 If the character xg is generic then the notions xg-stability and
Xg-semistability coincide.

51



PROOF. Let X € Rep(Q, ) be xp-semistable but not ys-stable. Then there
is a proper subrepresentation X' of X such that #(dim X’) = 0. This gives the
contradiction to the definition of genericity for yy. O

Let Q(I') be the McKay quiver of type A(') and § be the minimal imaginary
root as before (see Sect. 4.4). For any character y, we have the following
diagram by applying a linear modification to Kronheimer’s construstion:

ws (Zs)] ¥ G(6) Mo 15 (Zs)//G(5)
, ®

A = A

Theorem 8 [17| For generic xy diagram above is a simultaneous resolution
of the morphism ®. In particular, u;'(0)//X¢G(8) is a minimal resolution of
Kleinian singularity C?/T.

PROOF. 1) Since the character y, is generic, we have by Lemma 11
s (Z5)] /G (8) = pg'(Zs)*=*°//G(0))

=5 (Zs)*//G(9)).
We note that if X € u;'(Z;)*"* then End(X) = C. Thus G(J) acts on
s (Zs)X~* with trivial isotropy group, i.e. it acts freely. By ([17], Lemma 3)
ps is smooth in X. Thus retriction of ys to uy ' (Zs5)X* is smooth. Since Zs is
smooth it follows that p;'(Z;)X~* is also smooth. Therefore u;'(Z;)//X¢G(6)
is smooth. Finally, the smoothness of the map

Wy (Z5)] [ G(8) — Zs
follows from the following commutative diagram

s (Zs)x ws (Zs)] ¥ G(9)
\\ ) /

2) All the fibers u;'(2)//X*G(8) are minimal resolution of the singular fibers
s ' (2)//G(8). This follows from an interpretation of the p;'(2)//X*G(8) as
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symplectic quotient of the symplectic manifold u; ' (Z;)X~* by the freely acting
group G(6). We will show that the resolution is minimal, that is the canonical
bundle of u;'(2)//X¢G(0) is trivial. By [39], Lemma 5.4, the tangent space
of u;'(2)//X¢G(5) has a symplectic structure. This implies that the canonical
bundle is trivial, since the cotangent bundle is isomorphic to the tangent bun-
dle via the symplectic structure. O

REMARK. The strategy for above proof does not give an analysis of excep-
tional component. In [5] Cassens has tried to describe the exceptional set of
the resolution ;' (2)//XG(8) — p;'(2)//G(5). Unfortunately, it was not
clear.

Example. Let I' = C, 41 be the cyclic group of order n + 1 then the McKay
quiver Q(T') is of type A, (see the example in Sect. 4.4). Let us choose a
character of G(6) as follows

x:G() — C
(to,tl, e ,tn) — tantl .. tn
Let
Xi =apar---q;
}/; :bi+1bi+2"'bn Z.ZO,].,Q,...,TL—]_.
Then X; and Y; satisfy the following relations

Zo21 -+ Y = Xy
Zig1%iq2 2 Xy =Yz 1=0,1,...,n—1
XY = Xiziy1- - %Y}, (1 < 7).

The action G(J) on the space

{Xo, X1, X1, Yo, Vi, .. Yo}

is given by

(tlt(]_lXO, tQtalea s atntaanfla tltali/z), tQtalifl: s ,tntalynfl)

There are 2" y-semi-invariants which have the form X,Y5
where

Ac{o,1,....,.n—1},A={0,1,....,.n—1}\ A4

and
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XA:XiO--- YA:Y;OY;k,lfA:{’Lo,,’Lk}

There are only the following (n+1) y-semi-invariants which are independent
from Cly;" (Z5))°®

%

fo = XoXi--- X5
fl = XOXl e Xn—ZYn—l

fojo =Xo--- X110 Y,
fn :YE)leYnfl
We have

w5 ' (Z5)//¥G(8) = Projm(Cluz " (Z5)]9D[fo, f1, - -, fal)
C w5 (Z5)]/G(8) x Pt x - -« x PL.

Let Uy, Uy, ..., U, be the open subsets of C> x P! x --- x P! defined by

Up ={Yp # 0}
Up :{prl#oay;oséo}’p:15"'an_1
Un :{Xn717é0}

In U,, we let

(Y : X;) = (Ziy1-+2p—10,:1) for 0<i<p-—1
(Y; : X3) =(1:2pp1 - 2Tps1) for p<i<n—1
(Yp1:Xp1) =(0,:1)

(Y, : Xp) = (1 :Tpt1)

z = Tp+1%p+1 Zn

) = 0pZ0 """ Zp-1

“p = OpTp+1

_ _1 N\ _
By parameter change z = -5 Yo% and t; = z — z; we have
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(Y;: Xi) =0pH5;1+1(;—tU:1) for 0<i<p-—1
(Y;: X;) =171 [[=pa(z — 1) for p<i<n-1
(Ypo1:X,01) =(0,:1)

(Yp : Xp) =(1: Tp+7})

z = Tp+1 H1/1:p+1(z - tl/)

Yy =0, [[2o(z — 1)

z—1, = 0pTpt1-

Finally, put x = ¢Z + ¥ and y = iZ — § then we obtain all equations in Kas’s

construction (see the example in Sect. 2.3).
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5 Nilpotent and stable representations of quivers

5.1 Nilpotent representations

In this section we use the notations as in Sect. 4.3.

Definition. Anelement X = (X;, X(a)) € Rep(Q, @) is called to be nilpotent
if there exists an integer N > 2 such that the composition

X(aiy) X (aiy_,) - X(ai,) X (ai,)
is equal to zero for any sequence of arrows a;,,a;,,...,a;, € (1 such that
t(ail) = s(aiz)’t(aiz) = S(ais)’ SRR t(aiN—l) = S(aiN)'

Let us define a subvariety Rep(II(Q), @)ni of Rep(II(Q), ) by

Rep(T1(Q), @)nit :== {X € Rep(II(Q), ) | X is nilpotent}.
This variety is introduced by Lusztig [13].

Theorem 9 ([13], Theorem 8.7)
Rep(T1(Q), @) na has pure dimension equal to %dimRep(@, Q).

Let € denote an orientation of the quiver Q (i.e. asubset 2 C @, such that
QPUQ =Qq, QPNQ =, where Q% consists of reversed arrows a* : j — ¢
for all arrows a : i — 7 in Q). Let

Ca ={(X(a)),eq, € Rep(Q,a) | X(a) =0 for all a ¢ Q}

If Q is a Dynkin quiver or an extended Dynkin quiver and €2 is an orien-
tation of Q (non-cyclic for the case Aﬂ), then Cq is an irreducible compo-
nent of Rep(I1(Q), &)ni- In the case of type A, all irreducible components of
Rep(II(Q), a)niy are of this form. However, in all other cases there are more
components of Rep(I1(Q), &), which are different from the Cq. Hille [8] gave a
formula determining the number of irreducible components of Rep(I1(Q), &)npi-
In particular, this formula allows us to determine explicitly the number of irre-
ducible components of Rep(II(Q(T")), 6)ui for the McKay quivers Q(T') of type

A(T) except the case A(T") = F.

5.1.1 The standard diagram for the Lusztig’s nilpotent variety

We consider the following diagram [8]
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XRep(Ao, Ofs(w)) <i Rep(H(Q): CV) ﬁ_a) EXQ Rep(&la (as(u)a at(u)))
w u 1
1P

X Rep(Frng)-1, %)),
€00 P(F(g)-1, %))

where the first product is over all cycles in Q.

Let w = aj,a;, - - - a;, is a such cycle, then we define

r

T(X) = (M (X))w = (X(ai,) - - - X (a3,) X (as,))w-
We define

m(X) = (mu(X))uequs

where the map 72 sends a representation X to its restriction on the quiver A;
with arrows v and u*.

Finally, the map 7P sends the representation X to the representation of the
free associative algebra with n(q) — 1 generators, where

n(q) = t{u € Qy | s(u) = q}.
The representation X is maped to the vector space X, with the linear map
X (u*)X (u) (for u € Q; and (u*)* = u). Because the linear map X (u*)X (u)
statisfies exactly one linear relation (the relation of preprojection algebra IT1(Q),
see Sect. 4.3) 7P(X) is a representation of F,(4) 1.

If we restrict the maps 7, 7¢, 7? to Lusztig’s nilpotent variety Rep(I1(Q), &)ni,
then the images are again nilpotent. So we obtain the diagram

xRep (Ao, s(w))nit = Rep(T1(Q), ) > X Rep(Ar, (0w, )i
w ucl1
7

x Re Fn —1, ) )nil-
€00 p( (@1 ¢))nil

5.1.2 Nilpotent classes

Let n be a natural number. We write a partition of n in non-increasing order,
that is a sequence of positive integers
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A=A N), Y hi=mn,
=1

where the \; non-increasing

AM>X > >N >0.
If (A1, Ag, ..., As) is a partition of n, then we write A - n.

Each partition (A1, Ag,...,A;) of n corresponds to a conjugacy class of nilpo-
tent n X n-matrices. If A is such a matrix, then A is equivalent to a matrix
in Jordan normal form, where the Jordan blocks have lengths Ai, Ao, ..., As.
Then the zero-partition is the partition A = (1,1,...,1), it corresponds to
the zero-matrix . The regular partition is the partition A = (n), it corre-
sponds to the regular nilpotent class, and the subregular partition is the
partition A = (n — 1,1), it corresponds to the subregular nilpotent class. We
denote C(\) the class of nilpotent matrices corresponding to the partition A.

Each partition (A1, Ag, ..., ;) of n corresponds to a Young diagram, that is
an array of n boxes, arranged in s rows with A; boxes in the ¢-th row, so that
the left most boxes of each rown form a column.

Definition. Let A, u be two partitions. Then we define

0 if | A —p|>1 for somei

NAA, p) == {Hiil(ﬂ{i (N=a=pm}+1) else

Example. Let
A=10(4,3,2,2,2,2,1) = (4,2,2,2,1,1,1,1)
we = (4,3,2,2,1,1,1) a=(2,2,2,1,1) 8= (4,3,2).

Then NA(A, 1) = 2.3 =6, NA(\, ug) = 2.3.2.2 =24, NA(\, ) = 0 (because
| A1 — a1 |=2), NA(X, B) =0 (because | Ay — B4 |= 2).

Let A be partitions of a fixed natural number d. Then we define the following
variety

Rep(Fp; A%, ..., A") i= {(Ao, ..., Ap) | Fby s A € B, NC(X), > A; = 0},

=0

This variety consists of all (n + 1)-tuples of nilpotent matrices which are si-
multaneously triagonalizable, whose sum is zero and lying in given nilpotent
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classes. Note that the relation corresponds to the relation ) a*a = ) aa* in
the preprojective algebra.

Definition. For n + 1 partitions \°, - - - , A" of the natural number d we define
NP(X% -+, A") as the number of irreducible components of Rep(#;,; A%, + -+, ")
of dimension 3 >""  dim C(\').

In general it is not easy to count the irreducible components of the variety
Rep(F,,; A%, --- , A"). However in some special cases the number NP are easy
to caculate.

Lemma 12 Let d be a natural number and let \°, ..., A\") be partitions of d.
Then

1)
0 for X0#(1,1,...,1)

0y __
NP()\)_{l for XN=(1,1,...,1)

2)
0 for M0#£M\

NP\, A\ =
(A%A) {1 for A0 =\!

3)
NP((1,1,..., )AL, ..., A") = NP(AL, ..., A).

PROOF. 1) Since the equality . A; = 0 it follows Ay = 0. Thus A° must be

=0
(1,1,...,1). 2) Since Ay + A; = 0 we have to A = A\, 3) Since 4y = 0 the
equality > A; = 0 is equvalent to > A; = 0. The result follows. O
i=0 i=1

5.1.3 The irreducible components of the nilpotent variety

We say that a representation of Rep(II(Q), ) is locally nilpotent if its
image under the morphism 7P is nilpotent. Then we define a subvariety
Rep(I(Q), @) y-ni of Rep(I1(Q), ) by

Rep(II(Q), &) wonit := {X € Rep(II(Q), ) | X is locally nilpotent}.

We shall denote NC(Q, «) the number of elements of irreducible components
of Rep(II(®), @)ni1) and write NC(Q, «),, for the number of irreducible com-
ponents of Rep(I1(Q), &)y of dimension dim Rep(Q, o).
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Theorem 10 [8] The variety Rep(II(Q), &) w-nii has dimension Y Ouu)Ci(u)-
ueEQ1
The number of irreducible components of Rep(TII(Q), @) w.nii of dimension

D Qy(u)Quy(u) @5 equal to
uEQ1

= STTI NP | s0) = g) [] NAQ@s, oy,

A g€Qo uEQ1

where the sum is over all tuples of partitions A = (N | u € Q,) with
/\S(u)’u F Ozs(u).

Theorem 11 [8] 1) Let @ be an extended Dynkin quiver and let & be the
minimal imaginary root with respect to (). Then

P for Q= 1§n
25d(n—4) for Q=D

1805 for Q= ,lvEﬁ

52410 for Q =E;
here d is the function N — N satisfying

d(27) =2-5"f(2i+1) + 5 f(2)
d(2i+1) =7-5f(2i+1)+4-5'f(2),

n >4

C@,0)w =

I’

where f denotes the Fibonacci-sequence, i.e.

f(0) =0
f(1) =1
fe+1) =f@)+f-1).
2) If Q is a star (e.g. of type IEG, IE7, IES, fD4), then
C(Q,6) = NC(Q, 0)w.
3) If Q 1is not star (i.e. of type A, Dy, n> 4), then

_ [NC(Q,8), -2 for Q=A,
c@.9) = {NC(Q,a)w—l for Q=D

Example. We check the formula in the above theorem for the McKay quivers
of type D, and Ds. The result is given in the tables below.
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2—-1]2-1]2-1]2-1|¢| JINA |}
@ | @ | @ | @ [1]1111=1]1
@ | @ | @ | (@) ]4] 1112=21]38
@ | 2 | @] (L) ]6] 1.1.22=4 |24
1,1) | (1,1) | 1,1) | (1,1) | 1]2.222=16| 16
49
The calculation of NC(Dy, §),, = 49
2-1|2-1| 2-2 |2-1]2-1]4% [[NA D
2 1@ | @=-0 | @ | @ [1|1li211=2] 2
W) | @ | @-=2 | @ | 2 [4]21211=4 | 16
@ | @ | -2 | @ | @ |2|11111=1 2
W) | @ | @=@ |@w)] 2 [4]21221=8 | 32
(2) 2) | (LY)=(2) | (L) | (2) [4] 11121 =2 8
)| @ |any-,n| @ | @ [1]11311=3] 3
Q) | @) | aD-@) | @ | @ |2]22111=4| 8
1,0 | (1L,1) | aD=11) | @) | 2 |2|22311=12]| 2
1,1 | (L) | D=2 | (L) | (2) [4] 221.21=8 | 32
(1,1) | (1,1) | 1,1)=(1,1) | (1,1) | (1,1) | 1]2.2.3.22 =48 | 48
175

The calculation of NC(Ds, 8), = 175

5.2 Stable representations of quivers

Let Q = (Qo, @1, s,t) be a quiver. We define the space of weights H(d) with
respect to the dimension vector d € N¥° by

H(d) := {0 € Z% | 6(d) = ) _ 6;d; = 0}.

Definition. Let X = (X;, X(a)) € Rep(Q,d) be a representation of dimen-
sion vector d and 6§ € H(d) be a weight with respect to a dimension vector d.
The representation X is #-stable if for all proper non-zero subrepresentation
N of X we have 6(dimN) < 0. It is said to be f-semistable if for each sub-
representation N we have 6(dim/N) < 0.

A representation X is stable (resp. semistable) if there exists a weight 6, so
that X is f-stable (resp. #-semistable). We denote

Rep(Q,d)*™ := {X € Rep(Q, d) | X is stable}
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the stable part of Rep(Q, d).

Let 6 and ¢’ be two weights in H(d), we say that 0 is d-equivalent to 6’ if for
any X of Rep(Q,d), X is f-stable if and only if X is #’-stable and for any X
of Rep(Q, d) X is f-semistable if and only if X is 6’-semistable.

We can also define the wall system with respect to dimension vector d. That
is the minimal set of hyperplanes {W;};c; in H(d), where I is a finite index set,
with the following property: whenever two weights 6 and 6’ in H(d) lie on the
same open side of each of these hyperplanes W;, then they are d-equivalent.

5.3 Relation between the exceptional set and the nilpotent variety
Rep(Il(Q), 0)nit

Lemma 13 An element 0 # X = (X, X(@))icgoaco: € Rep(Q, ) is unstable
under the action of G(«) if and only if it is nilpotent.

PROOF. Assume that X = (X;, X(a))icgo.acq, € Rep(Q, ) is unstable. Then

0 € G(o) - X. By Hilbert’s criterion, there is a l-parameter subgroup A :
C* — G(a) such that

11_1)%)\(15) - X =0. (1)
For each k € )y we make the A-weight decomposition of Xy

X, = Pxy,

meZ
where X7 :={v € X | A(t) - v = t™v}.

Let

XM= Pxp.

m>n

Then we have a filtration of X.

Let ¢; be the inclusion of X} into @ X[, and let ; be the projection of @ X
) meZ mez
to Xj.

For a € @ the linear map

X(a) = DX — DX

meZ meEZ
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has the form

X(a) = (meX(a)ei)ik = (X(a)it )ik,
where X (a);x are the maps

X(a)zk B X;(a) — théa).

. X(a) .
@ Xs(a) @ Xt(a)
meZ meZ
Li \ Tk
Xi X(a)ik Xk

t(a)

We have

; X(a),k k
Xi(a) Xifa)
AHe) \ A(t)
k—1
Xi t X(a)zk &

By existing of the limit %ing A(t) - X(a) it must have
%

X(a)k =0 for all £ <.
Thus X (a) gives a map XS(ZZ) — X t((T:z )), for all n. Therefore the subspaces

X ,5") determine subrepresentations X™ of X. These subrepresentations form a
filtration of X:

0=XMc..cx®Wcxtc. . .cxM=x
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for N > 0 and M < 0.
This may be rewritten as

0 =xM c..cx®cxtl o cx™M = x,,

s(a) s(a) = “"s(a) = = “s(a)
X(a
(N) (n) (n=1) (M) _
0 Xt(a) c...C Xt(a) - Xs(t) c...C Xt(a) = Xi(a)-
From (1) and (2) it follows that
) N—-1
limAD) - X(0) = @ (X, X(ah)
N-1
= Xn/ X =0.
n=M

Hence it must have

X2 /Xg(j)l =0 or XJ, /X;g;;)l =0

. n _ yn+l n _ ynrtl _
e Xn,=XmH=0 or Xj,=XrH=0

foralln=M,...,(N —1) and a € Q.

n _ n+1 __
If X7, =Xy =0, then
X (a)(Xiey) = X(a) (X)) € Xy
If  Xj, = X;5' =0, then

X (a)(Xf() € X(a)(X7,) € X5 il

Thus we have always

X(a)(Xia) € Xi -

t(a)
Now, for any sequence ai,as,...,ay in @1 such that t(a;) = s(az),t(as) =
s(as),-.-,t(an_1) = s(ayn) we see that
X(al)(Xsl(al)) g Xt2(a1) = Xs2(az)
.X(a/N) ".X(a/l)(Xs(al)) :Xt]{aN) = O.



Thus, the representation X = (X;, X(a)) is nilpotent.

Conversely, assume X = (X;, X(a)) is nilpotent. If p = a; - - - a,, is a path in
CQ that starts and ends at the same vertex, then the function tr, given by

trp(X) = trp (X (am) - - - X (a2) X (1))

is invariant under the action of G(«). By Le Bruyn and Procesi([4]) the alge-
bra C[Rep(Q, a)]¥® is generated by the trace functions tr,.

Since X is nilpotent, tr, X = 0 for all cyclic paths p in CQ. Thus, all invariants
vanish at X and therefore it is unstable. Il

Now, let Q(T") be the McKay quiver of type A(") and & be the minimal imag-
inary root as before. Let 6 be a weight in H(J). We denote

Rep(II(Q(T)), 6)? := {X € Rep(II(Q(I)), §) | X is #-stable}
the f-stable part of Rep(II(Q(I")), d).

For generic weight # the minimal resolution 7 of the Kleinian singularity C* /T
can be put in the following commutative diagram

Rep(I(Q(I")), 3)° —£2 Rep(IL(Q(I")), 6)°/ /G (9)

™

Rep(I(Q(T)), 6) 2~ Rep(I(Q(I')), 0)//G(6) ~C/T

where the maps p and py are the quotient morphisms.

The following theorem plays an important part in our work.

Theorem 12 The exceptional set of the minimal resolution m is given by

7H(0) = po(Rep(IL(Q(T)), 6)7a)-

PROQF. It is known that the zero-fiber consists of the unstable elements. By
Lemma 13 the unstable elements of Rep(IT(Q(T")),d) are nilpotent. Thus we
have

Rep(TL(Q(T)), 8)ait = p~*(0).

65



So by commutativity of the diagram above it follows

7710) = po(Rep(IL(Q(T)), 6)5;)-
O

The theorem shows that to describe the exceptional set 7~ 1(0) of the resolu-
tion 7 we need to consider the nilpotent variety Rep(T[(Q(T)), 6)%,,.
Definition. Let X and Y be two varieties of the same dimension. We say that
X meets Y if and only if codim(XNY) = 1.

Let X be a reducible variety which has pure dimension n. We define the in-
tersection diagram I'(X) with respect to X as follows: Associate to each
irreducible component X; € Irr(X) a vertex ¢ € I'(X). Vertices i and j are con-
nected by an edge if the component X; meets the component X;.

It is known that the exceptional set of the minimal resolution of the Kleinian
singularities of type A,, D,, or E, is the union of the complex projective
lines and its intersection diagram is the Dynkin diagram of the same type (see
Theorem 5, Sect. 2.2 ). In the next section, we show how this can be observed
in terms of representations of quivers.
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6 The nilpotent variety Rep(II1(A,—1),0)nn

6.1 Notations and definitions

Let Q(T) = (QO,Ql, s,t) be the McKay quiver of type A, | with n > 2. We
assume that Q, = Z/n = {1,2,...,n}, and that Q, consist of the arrows

o1 +1—=1 1€ Qo

af i =i+l i€ Q.
Since 6 = (1,1,...,1) we have
Rep(Il(Ay1),0) = {(as,0)i € ©C | aia} = a;3; Vi, j € Qo)

Let Q be the subset of )1 consisting of all arrows o, 7 € Q,- It corresponds
to the following cyclic orientation of Q(I'):

2 (6%)] 3 (6% 4
® « ® <« [ ]
31
/ ‘\044
Q = 1le 5
\ /045
an
® °
n 6

The nilpotent variety Rep(II(A,_1),8)as has 2" — 2 irreducible components
(see Theorem 11, 5.1). Let I be a subset of €2 such that @ # I # Q, and let

Cr == Cl({(a;,a}); € @C2|a =0ifoy €l;a;,=0if o ¢ I})

Then C is a vector space of dimension n. It is a irreducible component of

Rep(TI(A,, 1), 8)ni1- All irreducible components of Rep(I1(A, 1), 8)u are of
this form:

Irr(Rep(H( ) ni1) U Cy.
g0
142

We say that C; is a component of type k if | I | = k. In the next sections
we shall write C';, ;,,.. 4,1 for C’{ail,%,,_,,aik}.
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6.2 The action of the Weyl group on H(J)

In this part we define the equivalence for two weights 6 and ¢’ in H(J) as folows.
We say that 6 and 6’ are J-equivalent if for any X € Rep(II(A,_1),6)m, X is
-stable if and only if X is #'-stable and for any X € Rep(II(A,—1),0)pn, X is
f-semistable if and only if X is #'-semistable. We shall investigate the action
of the symmetric group S, on H(6), the §-equivalence classes and the system
of walls associated to the equivalence above.

Lemma 14 Let 0 be a weight in H(S) and let Cy, 4, 45,1 be a component of

type k of the nilpotent variety Rep(II(A,_1), 8)ni. Then Cy 4,y 15 0-stable
iof only iof for each s =1,2,...,k the following condition holds:

30, <0 Vie{l,. .. i3\ {in+1,... 05+ 1}

=5

SO +30, <0 Vi€ {is+1,...,nd\{in+1,... 0 +1D.
=1 I=j

PROOQF. For each s = 1,2,...,k the dimension vectors of possible indecom-
posable proper non-trivial subrepresentations of Cy;, 4, ..;,} are:

for j e {1,2...i}\{ir+ 1, ia+1,...,4 + 1}
j—1
1,1,...,1,0,0,...,0,1,1,...,1),
N’

is

forje{is+2,is+3,...,n \{i1+ 1,00+ 1,... 0+ 1}.
Then the assertion follows from definition of #-stability. O

Lemma 15 Let 0 be a weight in H(S) and let Cy, 45,4, be a component of

type k of the nilpotent variety Rep(H(,&n_l), ) nit- Then Cliys,...ip} 08 O-stable
if only if for each s =1,2,...,k the following condition holds:

ZHl < ZH; (*)
1=1 =1
forallm € {1,2,3,...,n}\ {i1,..., i}
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PROOF. For each s =1,2,...,k the condition (*) can be written in the form
0= 0,<0, ¥Yme{1,2,3,...,n}\ {i,...,ix}
1=1 1=1

S0, <0 Yme{L,2...,0 3\ {i,.... 0}
— ( =mil
— Z 0[<0 Vme{is,...,n}\{il,...,ik}.

I=1s+1

n
Since Y _6; = 0 the inequalities above are equivalent to
=1

36, <0 Vm e {1,2..., i3\ {ir, ..., ik}
I=m+1

S+ S <0 Vm e {iy,...,n}\ {ir,..., i}
=1 l=m+1

By setting j = m + 1, we can write the inequalities above as

li01<0 Vie{2,...,is+ 13\ {i1+1,...,0 + 1}
=J
;fjlel+§j_ol<0 Vie{is+1,...,n}pU{1}\{ir+1,...,5 + 1}
= =j
or
li&l<0 Vie{1,2,...is+1}\{ir +1,...,ix + 1}
=J
;253101+§:~01<0 Vie{is+1,...,n}\{i1+1,...,0+ 1}
= =j
Hence, our lemma follows from Lemma 14. O

Let ¢’ be the non-trivial proper subdimension vector of §. We define a hyper-
plane by

W (5') == {0 € H(5) | 0(5") = 0}.

It is clear that W (") = W (6 — ¢'). Thus, without loss of generality we need
only to consider subdimension vectors of 6 which have the form
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6 ;=0(0,...,0,1,...,1,0,...,0), 1<i<j<n.
’ ——

%

We shall write W; ; for the hyperplane W (¢; ;). The following lemma is obvious:

Lemma 16 The assignment W, j — (i, j) gives a bijection between the set
of hyperplanes {W; j}i<icj<n and the set of transpositions of the symmetric
group Sy,.

Given any pair (i,7) of distinct integers in {1,2,...,n}, the corresponding
transpositions of S,, act on H(d) as the reflections with respect to the hyper-
planes

i J
Wij={(01,02,...,0,) €H©) | Y 0= 6},
I=1 =1
dividing H(4) into n! cones which will be called chambers.

If we choose a so-called fundamental chamber, for example

@(1) = {0 € H(é) | iol < i&l <. o< i&l = 0},

then the others chambers may be labeled by the elements of S,:

o(1) o(2) o(n)
O(c) =={0€HE) | > <D <...<> 0}
=1 =1 =1

The group S, acts on the set of chambers by

v-0O(0) :=0O(yo), 7,0 €S,.

We shall describe the action of symmetric group S,, on the space of weights
H(6), the d-equivalence classes and the wall system in the following theorem:

Theorem 13 1) The symmetric group S, acts on the space of weights H(d) by
reflections with respect to the hyperplanes W ; dividing H(S) in n! chambers:

(2 a(n)

a(1) )
O(0):={0€H(©) | > <) bi<...<> 0}, 0€Sy
=1 =1 =1
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The resulting action of S, on the set of these n! chambers is simply transitive.

2) For each generic § € ©(o) there are ezactly (n-1) 0-stable components of
the nilpotent variety Rep(I1(A, 1), d)nn which are

Clo) 0@, o@y ¢=12,...,n—1

3) For each generic § € ©(co) the corresponding d-equivalence class of 6 is the
chamber (o).

4) The set of hyperplanes {W; ;j}1<icj<n forms the wall system in H(J).

PROOF. 1) We have to show that ©(c) N ©(y) = @ for distinct elements
0,7 € S,. Indeed, in the contrary case, there exists § € ©(o) NO(vy) satisfying

) a(2) a(n)
0l<20l<---< 26’1
1 =1 =1

(o

—~

o~
Il

(1) v(2)

v(n)
0, < 291 <. < ZG,
=1 =1

\ =1

We assume that the integer i to be maximal with the property o (i) # (7).
Then there exist two integers j, k > ¢ such that o(k) = (i) and v(j) = o(i).

Hence we have the contradiction:

(o(i) V(%)

a(k)
ZG, < Zﬁl = ZG,
=1 =1 =1

S
(@) () a(i)
Z@l < 201 = ZHl
\ [=1 =1 =1

2) For 0 € ©(0) and k € {1,2,...,n — 1} the component Ciy(1),0(2),....0(k)} 1S
stable by Lemma 15.

Now suppose there exists a component Cy;, ;,....i,} Which is f-stable for 0 €
©(o). We show that

Clirsiz,oin}) = Clo(1),0(2),00(k)}-

Indeed, in the contrary case, there exists a positive integer ¢ < k such that
o(i) & {i1,2,...,1k}. Since Cfy ...} is O-stable we have by Lemma 15:
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o(i+1)

is o (%) a(n)
do<d <> b<...<> ,Vs=1,.. k
=1 =1 =1

=1
Because ¢ < k there exists an integer ¢ € {1,2,...,n} such that ¢ > i and
o(t) =i, for some r € {1,2,...,k}. This gives the contradiction:

o(i a(t) in

)
<> 0=> 0
=1 =1

=1

3) We have to show that #' is §-equivalent to @ for all 8" € ©(o). Indeed, if 6
and #' were not d-equivalent, then there exists a dimension vector

2

8;=0(0,...,0,1,...,1,0,...,0), 1<i<j<n
2 H/—/

i

with 6(5],)8'(] ;) < 0.

Hence we have the contradiction to the definition of ©(0):

Q=D 0~ 6 <o.

=1
Conversely, if the weight 6 is equivalent to the weight 6, then §' € O(0).
Indeed, in the contrary case, there exitsts a component C; such that Cj is
f-stable but not ¢'-stable. Since Cf is f-stable it contains a f-stable represen-
tation X € Rep(IT(A,_1),d)n1- Because § ~ 6’ the representation X is also
#'-stable. This gives a contradiction to that C; is not #'-stable.

4) If two generic weights § and 6’ in H(6) lie on the same side of each of these
hyperplanes W; ;, then they must belong to ©(c) for some o € S,,. So by 3)
they are equivalent. O
Let us illustrate the action for the small values of n.

Case n = 3. There are three transpositions in S3 which are

s1=(1,2),s2=1(2,3) and (1,3) = s18251 = S25182.

The three transpositions act by reflections with respect to three lines dividing
H(6) in six chambers as in Figure 1.
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Case n = 4. We shall illustrate the action of S, on the 2-sphere S? =
S3NH(J) C R, represented via stereographic projection as R? U {co}. There
are six transpositions in Sy, including

S1 = (1,2),82 = (2,3),83 = (3,4)

The transpositions of S, act as reflections with respect to six great circles of
S2, three of them being lines in the stereographic projection as in figure 2
(namely s; = (1,2), (2,4) = s98359 = 898352, (1,4) = $189835251). These six
great circles divide S? into 24 chambers, which are spherical triangles.

Figure 1
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Figure 2
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6.3 The intersection diagram of the variety Rep(H(&n_l), 0)nil

We denote ['(A, 1) be the intersection diagram of the nilpotent variety
Rep(IT(A,_1),)ni (see definitions in Sect. 5.3).

Lemma 17 Let C; and C; be two irreducible components of the nilpotent
variety Rep(Il(A, 1), 0)ni. Then C; meets Cy if and only if the following
condition holds:

(IcJand|J\I|=1)or(JCTlTand|I\J|=1)

PROOF. Let @ be the quiver e = o --- @ = @ and let X and Y be the varieties
of representations of () given by

0 1 Tp 0
X=C2C=2C---C23C2C
d

a Y1 Yk

b T1 Ty c
Y=C=C=C---C=C=C

0 Y1 Yk 0

We have codim(X NY) = 2 because X NY = {0}.

If I ¢ Jand J ¢ I, then there exists a subquiver

e e -0 e

such that restrictions of C; and C; to this subquiver are the varieties of rep-
resentations X and Y as above. So codim(C; N Cy) > 2.

We use similar arguments for the case : | J\ I [> 2.

Now suppose that I C J and J =1 U {k}. Then we have

cinCy; ={(a,a*)|a; =0 VielUJ, a;=0 Vj¢InJ}
={(a,a*) |af =0 VieIU{k} a;=0 Vjé¢lI}.
Thus dim (C; N Cy) = n — 1. This gives codim (C;NCy) = 1. O

The intersection diagram I'(A,,_1) relates to the intersection diagram of reso-
lution of the Kleinian singularity of type A,_; by the following theorem:
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Theorem 14 For each permutation o € S, the map ¢, given by

cpa:i—%...o—n;l — T[(A,-1)
k
. — @o(k) := Clo(1),0(2),0(k)}

gives an embedding of the Dynkin diagram A,y into the intersection diagram

[(A,—1).

2) For each 6 € O(o) the intersection diagram of the resolution

Rep(T1(Ay—1),6)"//G(6) — Rep(IL(An-1),)//G(5)
is the Dynkin diagram A,_;.

PROOF. 1) From Lemma 17 it follows that the component C{y1)0(2),... 0(i)}
meets the component Cys(1),5(2),...,0(j)} if and only if the verex 7 and the vertex
j are adjacent in A,_;. Therefore ¢, is an embedding of the Dynkin diagram
A, into the intersection diagram I'(A,, ;).

2) We note that the assignment ¢, — ©(0) gives a bijection between the set
of embeddings {¢,,0 € S,} and the set of equivalence classes {O(0),0 € S, }.
By Theorem 12, Section 5.3, the claim follows. U

REMARK. Let 7 : § — 2 /T be the resolution of a singularity of type
A, and C = @101- be its exceptional set (see Theorem 5, Sect. 2.2). It is

known that, for sufficiently small X D C there is a smooth curve Cy which
intersects C'; transversally in one point without meeting any of the other curves
C;. Similarly, there is such a curve C,; intersecting C;, transversally in one
point which does not intersect any of the curves Cy, ..., C,. Thus we have the
so-called extended intersection diagram

Co (o) Cy Cn  Chiy

O— e —@e---06— ® — O
Let Rep(H(&n,l,(S)W_nﬂ be the subvariety consitsting of all locally nilpotent
representations of Rep(I1(A,_1,0). We denote I'(A,_;),, the intersection dia-
gram of the variety Rep(II(A,_1, 6 )y-nit. It is obtained from I'(A,_;) by adding
two vertices corresponding to the components Cy and Cn. Then we have a
similar statement as the above theorem.

Theorem 15 1) For each permutation o € S,, the map ©° given by
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n—1 n

@g:g—i—z---o— e —O0 — F(l&n_l)w
k#0,n — 0o (k) = Clo(1),0(2),.0(k)}
0 — Cg
n — Cq,
gives an embedding of the diagram
A io—e—a---e—"8 -5

into the intersection diagram T'(An_1 ).
2) For each 6 € O(o) the extended intersection diagram of the resolution

Rep(I(A),_1),8)"//G(5) — Rep(IL(A),_1),6)//G(6)
is the diagram AS .

Now, we take a n-dimensional cube H". This cube has 2" vertices. Then the
intersection diagram I'(A,_; ), of the variety Rep(IT(A,_1), §)w-ni is described
as follows:

Theorem 16 The intersection diagram T°(A,_1)wni s the skeleton of a
n-dimensinal cube H™. Its vertices are the vertices of the cube H™ and its
edges are the edges of the cube H™.

PROOF. We suppose that H® = [—1,1]". Then H"™ has the set of vertices
H} = {Lil, +1,...,4+1). We note that the set of irreducible components in

Rep(IT(A); 1, 0)wni is in 1-1 correspondence with H given by

Cr +— M;

where M denotes a vertex in Hj whose i-th coordinate is equal 1 if o; € 1,
and is equal —1, if o; ¢ I.

Let C; and C; be the components in Rep(IT(A),_1,0)wni- Without loss of
generality we assume that / C J. By Lemma 17 the component C; meets
the component Cj if and only if there exists k£ € {1,2,...,n — 1} such that
J = I'U{k}. This means the coresponding vertices M; and M; have the same
1-th coordinates, for ¢ # k£ and have the k-th coordinates with different signs.
In other word, M; and M; belong to an edge of the cube H". U
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We will illustrate the intersection diagram I'°(As) of Rep(II(As), ) w-ni s in
Figure 3 below.

Co

The intersection diagram ['°(As)

Figure 3
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7 The nilpotent variety Rep(H(ﬁ;), ) nil

Let us fix the following notations for representations of quivers used in this
section.

0
—— = C — C

B

A
— = C — C

0

A ither A = 0 or B =
o = C — (2 ether =0orB=0

B

A
— = C — C

B
P = (C2£(C2 AB =BA =0,

B rank(A)< 1, rank(B)< 1
— = <i’_ C?

0
— = C .0—_’ C?

B

_ e A o AB,BA € C((2),

= = C=2=c

B rank(A) = 2, rank(B) =1
< - @A @ ABBAEC(2),

B rank(B) = 2, rank(A) =1
- A e ABeC(2),

B BA =0
W = A e BAeC(),

B AB=0

79



7.1 The nilpotent variety Rep(H(]ﬁ;), ) nil

Let Q) = (Qy,Qy, 5,1) be the McKay quiver of type D,. We assume that
@, =40,1,2,3,4} and that @), consists of the arrows

a;: 1 —0
af: 0, i=1,2,34.

(3

Since 6 = (2,1,1,1,1) we have

—~ 4
Rep(H(D4)75) = {(aiaa;‘)i € @CQ ©® c ‘ a’:;ai = O:Z = ]-7 2: 374
i=1
4
> a;af = 0}.
i=1

Let Q be the subset of @, consisting of all arrows «;, @ = 1,2,3,4. This
corresponds to the following orientation of Q((I').

2

(85
(03] a3

(7]

According to Theorem 11, Sect. 5.1, the nilpotent variety Rep(H(]ﬁ;), )it has
49 irreducible components. We shall describe these components in detail.

1) The components of type 1. Let I be a subset of 2 and let
C; = Cl({(a;,a); € Rep(Il(Dy),8) | af=0 for o €I,
aj=0 for «o; ¢1})

For example, if I = {1, a3} then
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C; = Cl({(a1,0,a3,0,0,a3,0,a}) € Rep(II(Dy)})

1 a3

Then C7 is a vector space of dimension 8 and is an irreducible component of

Rep(I1(Dy), §)n. We say that Cy is the component of type 1. It is clear
that there are 16 components of type 1.

2) The components of type 2. Let J; be a subset of Q with | J; |= 2 and
let Jy be a subset of Q\ J;. We define

Ciys = Cl{(as,a2); € Rep(II(Dy),8) | af =0 for «; € Jo,
a; = 0 for Q; ¢ J1 U JQ})
For example, if J; = {a1, a3} and Jy = {a3, a4} then
C{al,a2},{a3,a4} = Cl({(ala az, a3, a4, GT, aga 0: 0) | G;GQ = 0 = aIal}a

asal + a;a; = 0})
[ ]

We shall call Cj, ;, as above the component of type 2. There are 24 com-
ponents of type 2.

3) The components of type 3. Let J; be a subset of Q with | J; | = 3 and
let Jy be a subset of Q \ J;. We define
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Ciy.0 = Cl({(as,a?); € Rep(Il(Dy),8) | a; =0 for ;€ Jy,
a; = 0 for Q; §é J1 UJQ})

For example, if J; = {aq,a3,a4} and Jo = {ay} then

_ * * % * I Y %
C{Ofl,ﬂ!g,ﬂul},{az} - Cl({(a’17 a’27 a37 a47 a’l’ 0’ a’3) a4) | a/3a/3 — 0 — a/lal — a4a4,
ara} + azal + asay = 0})

Such a component Cj, j, is called the component of type 3. There are 8 com-
ponents of type 3.

4) Ghost component. Let

Ce = Cl({(a1, as, a3, a4, a},0,a},a}) | afa; =0 = ajas = ajas = ajaq,
ar1af + agal + azal + asa; = 0})

The component Cg is not stable because C'¢ has two subrepresentations whose
dimension vectors are:

8 = (1,0,0,0,0) and & = (1,1,1,1,1).

Such a non-stable component will be called the ghost component.
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7.2 The intersection diagram of Rep(H(]ﬁ;), ) nil

In the lemmas below we need following matrices

a = (CLl ag) Cc = (Cl CQ) € = (61 62)

=) = () - (2):

Lemma 18 Let X and Y be the varieties of representations of the quiver

QRQ: eZe
given by
i) 2 C&cQ
X = C?C Y = <
beC? a€C?

Then codim(X NY) = 2.
PROOF. Since dim X = dim ¥ = 2 and X N Y = {0} it follows that
codim(X NY) = 2. O

Lemma 19 Let X and Y be the varieties of representations of the quiver

1
QRQ: o= e o
given by
( C ( C
ctld ctld
b e 0 e
=2C = C=Cc=2cC
X = ¢ (Ca(C O(C Y = - -
ba,dc € C((2)) fe,dc € C((2))
ab=cd =0 ef=cd=0
L ba+dc=0 | fe+dc=0

Then codim(X NY) =2
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PROOF. Hence (ba)? = tr(ba)ba = tr(ab)ba the matrix ba is automatically
nilpotent whenever ab = 0. Thus the conditions of the representation X can
be written as

( b1a1 + d161 =0
b1a2 + d162 =0
bgal -+ d201 =0
b2a2 + dQCQ =0
b1a1 + bgag =0

\dlcl + d202 =0.

We see that a;co = ascq, for if not b=d = 0.

Similarly, we have also  byds = bad;. Thus

a as bia; a1 biay
X = 2 22 _at f1%t%
{((al’ ag), (bl, a2b1)7 (Cla a Cl)a ( e ) 4y €1 )a (61, 62)7 0)}
A similar argument gives
€2 fier e fiex el
X:{((aba?)?ov(cl’_cl)a(_ y )7(61562)7(f1:__f1))}
€1 C1 €y C1 €9

Sodim X = dim Y = 6. Hence

a e a
XnY = {((a17a2)7 (01; —201): (61; 62))| 2= _2}
aq €1 aq
Thus dim (X NY) = 4. This gives codim (X NY) = 2. d
Lemma 20 Let X and Y be the varieties of representations of the quiver
e 2 e e
given by
b c
cC=C=cC
a d c
X =< ba,dc € C((2)) Y= C=2C=C

ab=cd=0 a 0
ba+dc=0

Then codim(X NY) =1
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PROOQF. The representation X can be written as (see the proof of Lemma 19)

a a bia1 a;bia
X = {((al,%)a(bh——albﬂ, (c1, =), (———, == )
2

a C1 ’ az C
Sodim X =dim Y = 4. Hence

a2

XNy = {((al, as), (c1, a—01))}
1
Thus dim (X NY') = 3. This gives codim (X NY) = 1. O

Lemma 21 Let X and Y be the varieties of representations of the quiver

[}
T
RQ: o2 e e
given by
( C
d
bCT\l/e (C
cC=Cc=cC 0
X:< a f Y: OCT\LB
ba, dc, fe € C((2)) cCeCc=cC
ab=cd=ef =0 ¢ 0
[ ba+dc+ fe=0

Then codim(X NY) = 2.

PROOF. The condition of the representation X can be written as follows

fblal + d101 + f161 =0

b10,2 + d102 + f1€2 =0

bzal + dgCl + f2€1 =0

bg&z + dQCQ + f2€2 =0
b1a1 + b2a2 =0
d101 + d262 =0

L fier+ fae2 =0

We going to show that a;co = aycq. Indeed, for if in the contrary case we have

/\\

b, = ZTica=zacr  po _ Tzcotmicr _ _ &1 Ticr—Trc1
1 a1c2—a2C1 2 a1C2—a2C1 T2 a1€2—az2c1

d, = 4T2—a®1 g _ —G1T1—0GxT3 _ _ T1 G1T2—0T)
1 aica—azc1 2 aic2—azc1 T2 aice—azc1’

where
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Ty = _flel = f2€2, Ty 1= —f1€2,333 = _f2€1'

Since bia; + byas = 0 it follows that

($102 — 1‘201)(a1$2 — agl‘l) =0.

Hence b = 0 or d = 0, a contradiction.

A similar argument shows that

— a2 — ai _ ai
G2 =, by = Tl dy = —gdl
ey =%e f= _biaitdia fo = a1 biaitdicr
2 a1 1 1 e1 as el :

Thus dim X = dim Y = 6. Next,

a a
XY = {((a1, 02, (e1, =en), (en, )}
aq aq
So codim(X NY) = 4. It implies that codim(X NY) = 2. O

Lemma 22 Let X and Y be the the varieties of representations of the quiver

[ J
1)
RQ: o2 e e
given by
( C ( C
ctld ctd
b e b e
oz C=C=cC
X = ¢ C - C ; C Y = ¢ ; F
ba,dc € C((2)) ba, dc, fe € C((2))
ab=cd =0 ab=cd=ef =0
\ ba+dc=0 [ ba+dc+ fe=0

Then codim(X NY) = 1.
PROOF. We have (see the proofs of Lemmas 19, 21)

as biar aq biay

X={((al,c@),(bl,—j—;m),(cl,—cl),(—— BT (er,e2),0)}

ai C1 ’az 4]
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Y = {((a'la a’2)7 (bla _Z_;bl)a (Cla Z_fcl), (db _Z_;dl)a (ela Z_iel)a

(blulzdlcl ’ _Z_;blalzdlcl ))}

Hence

a2 bia; a; biay a2

X N Y = {((al,ag), (bl, —Z—;bl), (Cl, —Cl), (—— ——), (61, —61),)}.

a1 &1 ’(12 C1 a1

Thus dim (X NY) = 5. Since dim X = dim Y = 6 it follows that codimension
of (XNY) is equal 1. O

Theorem 17 1) Two irreducible components of the variety Rep(I1(Dy), 8) ni
of the same type do not meet.

2) Two irreducible components of the variety Rep(H(HN]L;), na of type 1 and 3
do not meet.

3) A component Cr of type 1 meets a component Cy, j, of type 2 if and only if

J2 =1IN ({ala 0, (3, a4} \ JI)

4) A component Cy, j, of type 2 meets a component Cy, 1, of type 3 if and only
if

Ji CL and Ly =JyN ({a1, 00, 03,4} \ L)

PROOQF. 1) a) Suppose C; and C} are the different components of type 1.
Then there exists a subquiver () = e = e such that restriction of C7 and C
to this subquiver are the varieties of representations X and Y as in Lemma
18. So codim(Cr N C}) > 2, and thus C does not meet C7.

b) Suppose Cy, 5, and C J1,0; are the different components of type 2. We use
arguments similar as in a). There are 3 cases:

If |J; N Ji| = 2 we apply Lemma 18.
If |J; N Jj| =1 we apply Lemma 19.

If |J; N J{| = 0 we apply Lemma 20.

87



¢) Suppose Cr, , and Cpy,1y are the different components of type 3. There
are 2 cases:

If |Ly N Ly| = 3 we apply Lemma 18.

If |Ly N Ly| = 2 we apply Lemma 19.
2) It follows from Lemma 21.
3) If Jy # I N ({a1, a9, a3,a4} \ J1), then we use similar arguments as in 1).
Since Lemma 18 it follows that codim(Cr N Cy, 5,) > 2. For the converse, by

applying Lemma 20, we have codim(C; N Cy, j,) 1.

4) If J; ¢ Ly, without loss of generallity, we suppose that

( C ( (C
e T4 ¢ T O
c=e=C cee=C
a f a f
X=q ot Y=9
C C
ba, dc, fe € C((2)) fe,gh € C((2))
ab=cd=¢ef =0 ef =hg=20
| ba+dc+ fe=0 | fe+gh=0

We have (see the proofs of Lemmas 22 and Lemma 19 ):

X = {((ala a2)7 (bb _Z_;bl)a (Cla Z_icl)a (db _Z_;dl): (61: Z_?el)?

(b1a1+d101 , —aLbhatdie )7 (hh h2)7 O) }

€1 a2 €1

Y = {((a1,a2), 0,(c1,¢2),0, (e1,e2),

(fla %Zlfl)a (hla z_fhl)a (_fjll—fl o4 — fllz—fl))}

) ey
Hence a a e
XNY = {((al,a'Q)a (cla _Cl), (615 _el)a (h'l, _hl)a )}
aq aq €1

Thus dim (X NY') = 6. Since dim X = dim Y = 8 it follows that codim (X NY)
= 2.
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If J; C Ly and Ly # JoN ({1, ag, as, as} \ Ji), then from Lemma 18 it follows
codim (Cy, 5) > 2.

For the converse we apply Lemma 22. O

To describe the intersection diagram F(]]54) of the variety Rep(H(ﬁ4), §)3tab e
take a 4-dimemsional hypercube H*. It has

16 vertices,
24 facets of dimension 2,
8 facets of dimension 3.

We write O}, i = 1,...,16, for the vertices of H*; write O, i = j,..., 24, for
the centers of the 2-facets and write O2, ¢ = 1,...,8, for the centers of the

3-facets. Then the intersection diagram I'(D;) of Rep(I1(Dy), §)%t2® is described
as follows.

Theorem 18 The intersection diagram F(H~])4) has 48 vertices. They are ar-
ranged in H* as follows.

The 16 vertices corresponding to the components of type 1 are the vertices
O} of H*. The 24 vertices corresponding to the components of type 2 are the
centers OJZ- of the 2-facets of H*. The 8 vertices corresponding to the compo-
nents of type 3 are the centers OF of the 3-facets of H*.

Vertices O; and O3 are connected by an edge if the vertex O] belongs to a
2-facet whose center is OJZ-.

Vertices OF and O} are connected by an edge if the 2-facet whose center is O
belongs to a 3-facet whose center is O3.

PROOF. We assume that H* = [—1,1]*. Then the coordinates of the points
0;, 03, O} has the forms:

O; : (£1,41,41,+1)
2.

0; : (£1,41,0,0)

03 (£1,0,0,0)

We associate to the irreducible components of Rep(II(Dy),48)%2 the set of

nil
points O, 0]2-, O3 in H* by the following assignment:
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A component Ct of type 1 corresponds to a point M} in H*, where M} denotes
a point in R* whose i-th coordinate is 1 if a; € I, and is —1 if o; ¢ I. Thus,
M7} is a vertex of H*.

A component C, j, of type 2 corresponds to a point M7 ; in H*, where M3

denotes a point in R* whose i-th coordinate is 0 if o; € Jy, is 1 if o; € Jo, and
is —1if a; ¢ Jo. Thus, M3, ; is the center of a 2-facet of H*.

A component Cp, 1, of type 3 corresponds to a point M}’th2 in H*, where
M%I,Lz denotes a point in R* whose i-th coordinate is 0 if o; € Ly, is 1 if
a; € Ly, and is —1 if a; ¢ Ly. Thus, M3, ; is the center of a 3-facet of H*

By Theorem 17 the component C; of type 1 meets the component Cj, ;, of
type 2 if and only if

J2 =1IN ({ala Qg, O3, a4} \ Jl)

This means the i-coordinates of the corresponding points M; and Mgl, 7, are
the same for two different values of i € {1,2,3,4}, i.e. the points M} and
M3 ,, have the distance v/2. In other words M} belongs to an 2-facet whose
center is M3 ;.

We use a similar argument for the other cases. U

The intersection diagram I'(D;) of Rep(I1(Dy, 6))tP is illustrated as in Figure
4 below. Here the 16 vertices of H* are marked by a thick dot e, the 24 centers
of the 2-facettes are marked by a star x and the 8 centers of 3-facettes with

seven centers marked by o and one center at infinity.
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*
[} [ ]
*
* /o/ *
*x
*—o+/— /o/ : *—o/*
ox */
*
° °
* *
|
[ ] X o/ ) i

The intersection diagram F(ll3>4)
Figure 4
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7.3 The action of the Weyl group on the intersection diagram I'(D,)
We consider the Dynkin quiver Q of type Dj:

2

The reflections rg, 71, 72,73, 74 : Z9° — Z2° which generate the Weyl group
are given by (see Sect. 3.6):

TO(th tla t2: t3a t4) ( tO + tl + t? + t3 + t4: tla tZa t3a t4)a
ri(to,t1, ta, 3, ts) = (to,to — t1, 2,13, 14),
ra(to, t1,t2, 83, ta) = (to, 1, %0 — b2, 13, 1),
T3(t t1, 19,13, 4) (toatlatQJtO t37t4)7
T4(t0,t1,t2,t3,t4) (to,tl,tg,t3,t0—t4).
The reflections rg, r1, 2, 73, 74 act as reflections on the set of dimension vectors.
They induce an action on the set of irreducible components of the variety

Rep(H(]ﬁM s 5)nil:

ri : Irr(Rep(IT(Dy), 6)ain)) — Irr(Rep(TI(Dy), 6)nit))
We shall describe this action in the following lemma.

Lemma 23 1) The action of the reflections 1y, for k=1,2,3,4.

Let Cr be a component of type 1 and let Cy, j, be a component of type 2 or of
type 3. Then

CI\{ak} Zf o €1
Tk(CI) =
Croga,y of arn g1

le,Jz Zf a € J1
m(Cr,n) = Criiayy if ok € J
CJl,JQU{ak} Zf Ok ¢ JQ-
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2) The action of the reflection ry.

Let Ct be a component of type 1, Cy, j, be a component of type 2, and C, 1,
be a compnent of type 3. Then

rCQ\I,I Zf |I |: 1

Cr if |[I|=2
To(C]) = <
CMJ U\JW:3

( Cr if |Jo]=1

r0(Cr,0) = § Corm,n 4f | J2|=0

\CQ\JI,Q Zf | J2 ‘: 2

CLl Zf | LQ ‘: 0
70(CLy,L,) =
CLz if | L, ‘: 1

PROOF. It follows from Table 1 of the dimension vectors of indecomposable
subrepresentations of Rep(IT1(Dy, §)ni. We calculate for some cases:

) 0 0 1 0 0 1 1 0 1
—.+ 010110010011} 010|121]021|121]120
0 0 0 0 0 1 0 1 1 1
L ro
T 1 0 1 0 0 1 1 0 1
~.—>|111,100,0004001 000111011111 ]110
N 1 0 0 0 1 0 1 1 1
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94

0 0 1 1
—-.—= (0001001000} 010}|011}j011|011 111|021
4 1 1 1 1
dro
N 0 0 1
—-.=(1010(011{010|010(011}]011]021|010(011
™ 1 0 1
4 0 0 0 0 1 0
—-.21010|011 0101011021121
N 0 0 1 1 1 1
d 7o
1 1 0 0 0 1 0
Z2.—» 1117001000011 011111
J 1 0 1 1 1 1
T 1 1 1 1 1 1
—-.=2(1000(010(011|010]011]|021
™ 0 0 0 1 1 1
{ro
0 1 1 1 1 1 1
—-.2(010]000|011|010]|021|011
™ 0 0 0 1 1 1
+ 0 0 0 0 1 0
—-.2]1010|011 0101011021121
™ 0 0 1 1 1 1
I
J 0 0 0 0 0 0
~—.=2 (110|111 |110|111]100|121
™ 0 0 0 1 0 1




Components

Dimension of indecomposable subrepresentations

7 0 0 1 0 0 1 1 0 1
e 010|110[010|011|010|121|/021 /121|120
4 0 0 0 0 1 0 1 1 1
1 0 0 0 0 0 1 1 0 1
e 000[010[010|011|110|010|021 (121|120
! 1 0 1 1 1 1 1 1 1
] 0 0 0 0 1 0 0 1 1
o 100010110 110|110 |111|121|120|121
4 0 0 0 1 0 0 1 1 0
+ 1 0 1 1 1 1 1 1 1
e 000[010|010|110|011]010|120|121]021
4 0 0 0 0 0 1 1 0 1
! 0 0 0 1 0 0 1 1 0
S 001{010|011|011|011|111|121]021|121
4 0 0 0 0 1 0 0 1 1
+ 1 0 1 0 1 1 1 1 1
e 000[100|010|110|110|110|111]121[120
4 0 0 0 0 0 1 0 0 1
1 0 1 0 1 1 1 1 1 1
SN 001|000|011|010|011|111|011[021|121
1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 0 1 0
SN 001(000|010|011|011]011|111]021]121
! 0 1 1 0 1 1 1 1 1
1 0 0 0 0 0 0 1 0 1
.o 000[100[110[010|110|111|110|121[120
! 1 0 0 1 1 1 1 1 1
1 1 0 1 0 1 1 1 1 1
S 000[000[010[010|010|011|110|021|120
! 0 1 0 1 1 1 1 1 1
1 0 0 0 0 0 1 0 1 0
“. 001(100|011|110 111|111 |111|121|121
1 0 0 0 0 0 0 1 0 1
1 0 1 0 0 1 1 1 1 1
“. 001{000|100|111|011|110|111|111]121
4 0 0 0 0 0 0 0 1 0
1 0 0 1 1 0 1 1 1 1
S0 000|[001|000|010|011|011|011|111|021
! 1 0 0 1 1 0 1 1 1
! 0 0 0 0 0 0 0 1 0
“. 100[000[001|111|110|011|111|111[121
! 0 1 0 0 1 1 1 1 1
1 1 0 0 1 1 0 1 1 1
e 000[100|000|010|110|110|110|111[120
! 0 0 1 1 0 1 1 1 1
1 0 1 0 0 1 1 0 1 1
—.o 001|000[100|000|111|110|111[011|111
! 0 0 0 1 0 1 1 1 1




Components | Dimension of indecomposable subrepresentations
™ 0 0 0 1 1 1
2. 001011 111|011 |111 121
0 0 0 0 0 0 0
0 0 0 1 0 1 1
—S.= 000010010011 |011 021
d 1 1 1 1 1 1
d 0 0 0 0 0 0
.= 100110 (111|110 |111 121
T 0 0 0 1 1 1
0 1 1 1 1 1 1
2. 000010010110 (|110 120
™ 0 0 1 0 1 1
T 0 0 0 1 1 1
o 100(110(110|110|110 120
N 0 0 1 0 1 1
0 1 1 1 1 1 1
2.2 0001010110011 111 121
0 0 0 0 0 0 0
T 0 0 0 1 1 1
2.« 000010110010 (110 120
d 1 1 1 1 1 1
T 0 0 1 0 1 1
—.= 100110110111 |111 121
0 0 0 0 0 0 0
0 1 1 1 1 1 1
—.2 000010011 (010|011 021
N 0 0 0 1 1 1
J 0 0 0 0 0 0
2. 001011011 111|111 121
T 0 0 1 0 1 1
™ 0 0 0 1 1 1
. 001|011 |011(011|011 121
™ 0 0 1 0 1 1
d 0 0 0 0 0 0
2. 0001010110011 111 121
! 1 1 1 1 1 1
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Components | Dimension of indecomposable subrepresentations
™ 0 0 0 0 1 1
2. 000001011 (111|011 111
4 1 0 1 1 1 1
™ 0 0 0 1 0 1
.= 100000110110 |111 111
i) 0 1 1 1 1 1
T 1 0 1 1 1 1
.= 000100110 111|110 111
e 0 0 0 0 1 1
0 0 1 1 1 1 1
2. 0011000011 (011 (111 111
™ 0 0 0 1 0 1
e 0 0 0 1 0 1
—. 100(001 (111|111 |111 111
™ 0 0 0 0 1 1
T 1 0 1 1 1 1
2.2 000000010011 (|110 111
J 0 1 1 1 1 1
™ 0 0 1 1 1 1
2. 010110010110 (|120 121
T 0 0 0 0 1 0
N 0 1 0 1 1 1
—.&= 010010011 (011|121 021
0 0 0 0 0 0 1
4 0 0 0 0 1 0
—.&= 010(011|010(011|021 121
T 0 0 1 1 1 1
l 0 0 0 0 0 1
2. 010010110110 |121 120
0 0 1 0 1 1 1
T 0 1 0 1 1 1
= 010(010(010(010|021 120
T 0 0 1 1 1 1
l 0 0 0 0 0 1
2.2 0101011110111 |121 121
0 0 0 0 0 1 0
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Components

Dimension of indecomposable subrepresentations

11 0 0 1 0 1 1 0 1 1
2.2 o1o|o011]010|110|011|110]111|111]121
4 0 0 0 0 0 0 0 0 0
11 0 0 0 1 0 1 1 1 1
S.2 010/010[011]010|011]011|010|011[021
4 0 1 0 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0
2.2 010|110]010|011|110|011|111|111]121
1) 0 0 1 0 1 1 0 1 1
11 0 1 0 0 1 0 1 1 1
2.« 010/010|110]010|110|110|010|110[120
1 0 0 0 1 0 1 1 1 1
11 0 0 1 0 0 1 0 1 1
2.2 000/010[010|011 110|011 |111|110|111
! 1 1 1 1 1 1 1 1 1
11 0 0 0 0 1 0 1 1 1
—.2 100110111110 110|111]110]111|111
4 0 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1
2.2 000/010[010|110]011|110|111|011|111
0 0 0 1 0 0 1 0 1 1
11 0 0 0 1 0 1 1 0 1
2.5 001|o011]111|011|011|111]011|111]111
1 0 0 0 0 1 0 1 1 1
11 0 1 0 0 0 1 1 0 0
2.2 010[010[011]010[110[110|011|011[110
11 0 0 0 1 0 0 0 1 1
1 0 1 1 1 0 1
oto|111]110|111]011|111]111
1 0 1 0 1 1 1

The dimension vectors of indecomposable subpresentations of
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7.4 The nilpotent variety Rep(H(]ﬁ;), ) nil

Let Q) = (Qy,Qy, 5,1) be the McKay quiver of type ]T)Z We assume that
Q, =11,2,3,4,6} and that @), consists of the arrows

ap: 1 =3 aj: 3—1
ay: 23 ay: 3—2
a3 3—4 a3 4—3
oy 4—=5 aj: 5—4
as: 4—6 ai: 6—4.

H

1
(6% b *
20% s a’g\oﬁ

Since 6 = (1,1,2,2,1,1) we have

Rep(II(Ds),8) = {(ay,a})i| (as,a}) € CCdC*i=1,2,4,5
(az,a3) € C* @ C*
aja; = 0,a5a9 = 0,a4a; = 0,a5a; =0
azaz — a1a] — aga5 =0
ajas + atas — azal = 0}.

Let € be the subset of Ql consisting of all arrows «;,7 = 1,2,3,4,5. The
nilpotent variety Rep(II(D)s,d)nn has 174 irreducible components. We shall
describe these components in detail.

1) The components of type 1.

Let J; = {as, ok, ay | kK < 3 <} be a subset consisting of 3 elements of Q2 and
let Jy be a subset of Q \ J;. We define

C5. 5 = Cl({(ai, af); € Rep(II(D5),d) | aj =0 for a; € Jy,
ajZOfOI"O!j¢J1UJ2
rank ag = 2, rank a3 =1,
asa, ajas € C((2))})

99



C3p, = Cl({(as,0); € Rep(I(D5),8) | a = 0 for ; € Jy,
CLjZOfOI"O!j¢J1UJ2
rank a3 = 1, rank a3 = 2,
azaz, azaz € C((2))})-

Then C’fl, 5, and CJ>1, 5, are the irreducible components of the variety

Rep(II(D)s, d)nu. They are called the components of type 1. There are 32
components of type 1.

2) The components of type 2.
2a) Let I be a subset of 2. We define

C; = Cl({(as,a’); € Rep(II(D5),8) | al =0 for o € I,
aj =0 for a; ¢ I}
2b) Let J; = {as3, ax} be a subset consisting of 2 elements of €2, and let J, be
a subset of 2\ J;. We define

C’{>Ot3,o%,:_;>k}’J2 := Cl({(as, a}); € Rep(II(D5),d) | af =0 for o; € Jo,
G,jZOfOI‘CEj¢J1UJ2
azaz =0, azaz € C((2))}),

C{<(13,ak,3<k},<]2 := Cl({(a;, a}); € Rep(II(D5),0) | af =0 for o; € Ja,
a,j:0foraj§éJ1UJ2
azal € C((2)), atas = 0}).

2¢) Let J; = {as, ok, ay, an } be a subset consisting of 4 elements of € and let
Jo be a subset of Q \ J;. We define

Ci.p, = Cl({(a,07); € Rep(TI(D5),8) | a = 0 for ; € Jy,
aj:0f0raj¢J1UJ2
rank ag = 2, rank a3 =1,
asas, asaz € C((2))}),

C;.,, = Cl({(a;,a); € Rep(II(Ds),8) | a =0 for s € Jy,
aj:OforozjgéJlUJz
rank as = 1, rank a3 = 2,
azas, azaz € C((2))})-
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There are 32 components in the case 2a), 32 components in the case 2b), and
16 components in the case 2c¢). We call them the components of type 2.

3) The components of type 3.

3a) Let J; = {oy, oy k,1 # 3;| k — 1 |= 1} be a subset consisting of 2 elements
of Q and let J, be a subset of Q \ J;. We define

Cr.p, =Cl({(a;,a}); € Rep(II(D5),6) | af =0 for o € Js,
a; =0 for a; ¢ J1 U Jo}).

3b) Let J; = {a3} be a subset of 2 and let J; be a subset of Q\ J;. We define

Cragtn = Cl({(ai, a}); € Rep(I(D5),8) | a = 0 for a; € Jy,
aj =0 for a; ¢ {as} U J2}).

3c) Let J; = {as, ax, ay, an } be a subset consisting of 4 elements of € and let
Ja be a subset of Q \ J;. We define

= Cl({(as,a;);i € Rep(II(Ds),?) |
a; =0 for o; € Jy,
aj =0fora; ¢ J;UJy
033 = 0, ajas € C((2))}),

>
{as,ap,01,0m;k,1>3},J2

Cfas,ak,al,am;k,l<3},h = Cl({(ai,a}); € Rep(II(D5),9) |
a; =0 for o; € Jy,
aj =0fora; ¢ J; U Jy
asal € C((2)), atas = 0}).

There are 16 components in the case 3a), 16 components in the case 3b), and
8 components in the case 3c). We call them the components of type 3.

4) The components of type 4.

4a) Let J; = {as, ag,aq;| kK — 1 |= 1} be a subset consisting of 3 elements of 2
and let J, be a subset of Q2 \ J;. We define

Cr. = Cl({(a;,a?); € Rep(II(Ds),8) | af =0 for a; € Jo,
a; = 0 for Q; §é Jl U JQ})
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4b) Let J; = {a1, e, a4, a5} be a subset consisting of 4 elements of 2 and let
Jo be a subset of Q \ J;. We define

Ch.p = Cl({(as,a}); € Rep(II(Ds),8) | a; =0 for o; € Jo,
a; =0 for a; ¢ J1 U Jo}).

There are 8 components in the case 4a) and 2 components in the case 4b). We
call them the components of type 4.

5) The components of type G.

G1) Let J; = {as, o, oy, } be a subset consisting of 3 elements of Q and let J,
be a subset of '\ J;. We define

C{>a3,ak,al,;k,l<3},J2 = Cl({(ai, z) € Rep(II(Ds), 9) |
af =0 for o; € Js,
aj:OforajgéJlUb
asay =0, ajas € C((2))}),

Cfag,ak,al,am;k,l>3},J2 = Cl({(aZ: z) € Rep(H(D5)76) |
a; =0 for o; € Jo,
a]':OfOI"O[]'¢J1UJ2
asal € C((2)), ataz = 0}).

G2) We define

Cs = Cl({(a;,a}); € Rep(H(]T)g), §) | rank az =2, rank af =1,
aza3, azaz € C((2))})

Cg = Cl({(a;, a}); € Rep(II(Ds),8) | rank as = 1, rank ay = 2,
azas, azas € C((2))}).

G3) We define

Cq = Cl({(ai; a7); € Rep(II(Ds),0) | asaz € C((2)), azas = 0 })

Cg = Cl({(ai, a); € Rep(II(Ds),8) | asa3 = 0 aas € C((2))})-
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There are 8 components in the case G1), 2 components in the case G2), and 2
components in the case G3).

Lemma 24 The components of type G are the ghost component, i.e. they are
not stable.

PROOF. The components C7 Cs and Cg of type G have two

. _{a35ak3a17am;kal>3}ﬂ]2’
subrepresentations whose dimension vectors are:

8, = (0,0,0,1,0,0) and &, = (1,1,1,2,1, 1).
Thus, they are not stable because 6(67)6(d5) < 0 for all § € H(J). O

Lemma 25 The local intersection of the irreducible components of the variety
Rep(TI(D)s, §)na is given in Table 3.

PROOF. We calculate, for example, the codimension of X NY with

= -
X= S Y= _< S
We have o~ o~
( C ( C
atlb atlb
A c A c
Cc=Cc=cC c=Cc=cC
B d B d
X =< BAe€C((2) Y =« BA,AB € C((2))
AB =0 rank(A) = 2;rank(B) =1
ba,dc € C((2)) ba,dc € C((2))
ab=cd =0 ab=cd=0
L ba+dc=0 L ba + dc = AB
Let

Since AB = 0 and BA € C((2)) we have

_ Ay Ap (B B\ . .
A_(A2 A2u> B—<B2 Bz/\) with By + Bou = 0.

Since ab = 0; ba 4+ dc = 0; ba, dc € C((2)) we have
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( b1a1 + d161 =0
b1a2 + d162 =0
b2a1 + d261 =0
b2a2 + dQCQ =0
b1a1 + b2a2 =0

\dlcl + dzCQ =0.

The equalities above give (see the proof in Lemma 19, Sect. 7.2)

a1

a2 bia; aj biay

b1 :——b1 Cyp = —C d1 = —— dgz———.
D) ay C1 Gz C1

Thus X is the set of complex matrices:

A A B, B\ a

(h25) (5 53) oo 0 -2

(a1 2c1) (—2n @ba) with B+ Byu=0.
So dim X = 9.

Since AB, BA € C((2)), rank(A) = 2 and rank(B) = 1 we have

— Al A3 _ Bl Bl)\ . _
A_(A2 A4) B—(32 ng\) with Wi+ WoA =0.

where W1 = AlBl + A3B2 and WZ = AQBl + A4BZ.

Since ab = 0; ba, dc € C((2)) and ba + dc = AB we have

( b1a1 + d101 = W1
b1a2 + d162 = Wl/\
b2a1 + d201 = WQ
b2a2 + dQCQ = WQ)\
b1a1 + b2a2 =0

\ d101 + dzCQ = 0.

It follows that (see the proof in Lemma 21, Sect. 7.2)

a1C2 = a2C1 bidy = bod,

The equalities above give

o = )\&1 bg = —Xbl Co = )\Cl,
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_ W1 — b1a1

d
! C1 A C1

Thus Y is the set of complex matrices:

(j; ji) (g; g;i) (e Aa)) (b —1b)
(o Ac) (~Vahar _1Waba) o wigh W, 4 Woh =0,
So dim Y =09.

Hence X NY is the set of matrices
A A 1% B1 Bl)\
(A; A;M) (B2 B2)\> (a1 )\CL]_) (bl —ibl)

(Cl )\01) (—M %blal) with B1 + BQ,LL = 0.

c1 c1

So dim(X NY') = 8. This gives codim (X NY) = 1.
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Types

3¢

4a,

4b

G1

G2

G3

i

EIN/ N/ N/ N/ \NJ \/J
N N NN
EL /N /N /N /N /N /A
Bl s & & & =
EIN/ N/ N/ N/ NI N/
N N N
ELJN /N /N I\ /N /A

The 174 irreducible components of Rep(II(D)s, 0)nil

Table 2
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codim

(XNY)

\NINN INZANAN TN NN N/ N\

g NN N N N N ] ] ]

/ |/ / / /

N/ N/ N NN N TN/N/N TN/ N

g Nt A Nttt N N N

/Y / / /

=) N e e e e N S S
S

NAY AN AV ANEANRAVIAY/RAV/AV

= o NN N M A A AN

/|y / |/ VAR

N AY AN AY ARV AY AVIAVIAV;

Lot N AL N NN N N NN

/ |/ / |/ / 1/ |/

The local intersection

Table 3
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Theorem 19 1) Two irreducible components of the variety Rep(I1(Ds ), §)stab
of the same type do not meet.

2) Two irreducible components of the variety Rep(H(]ﬁ%), 8)stab of type i and j
with | i — j |# 1 do not meet.

3) The intersection of the components of type 1 and 2 is as follows.

3.1) A component CJ<1,J2 of type 1 meets a component Cr of type 2a if and only
if

az €1 and Jo =1N(Q\ Jy).
A component C’ih of type 1 meets a component Cy of type 2a if and only if
a3 ¢ I and Jo=1N(Q\ Jy).

38.2) A component C3, ;, or C7 ; of type 1 meets a component CF, ;. of type
2a if and only if

L1 C Jl and J2 :Lgﬂ (Q\Jl)

3.3) A component CJ<1,J2 of type 1 meets a component CL<1’L2 of type 2b if and
only if

Jl C L1 and LQ = J2 N (Q \ Ll)
A component CJ<17J2 of type 1 does not meet any component Cfi,h of type 2c.

4) The intersection of the components of type 2 and 3 is as follows.

4.1) The components of type 2a and 3¢ do not meet. This is also true for the
components of type 2b and 3a, and for the components of type 2¢ and 3b.

4.2) A component Cy of type 2a meets a component Cy, j, of type 3a if and
only if

Jo=1IN(Q\ J1).

4.3) A component C; of type 2a meets a component Claz},5, of type 8b if and
only if

Jo =10 (Q\ {as)).
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4.4) A component CJ<1’J2 or Ci,Jz of type 2b meets a component Cfayy,1, Of
type 3b if and only if

Jo =Ly N (Q\ ).

4.5) A component C7, ;, of type 2b meets a component C7, ;. of type 3c if and
only if

J1 C L1 and L2 = JQﬂ(Q\Ll)

A component CJ<1,J2 of type 2b does not meet any component C’L>1,L2 of type 3c.

4.6) A component C3, ; (resp. C7, ;,) of type 2c meets a component Cr, 1, of
type 3a if and only if

a3z € Ly (resp. a3 ¢ Lg) and Jo = Ly (Q2\ Jh).

4.6) A component C, ; or C7 ;. of type 2c meets a component CF, |, of type
3c if and only if

J1 = L1 and JQ = LQ.
5) The intersection of the components of type 3 and 4 is as follows.

5.1) A component Cy, ;, of type 3a meets a component Cr, 1, of type 4a if and
only if

Jl C L1 and L2 = JQﬂ(Q\Ll)

5.2) A component Ciqay,5, of type 8b meets a component Cp, 1, of type 4a if
and only if

L2 == Jgﬂ (Q\Ll)

5.3) A component CJ<1’J2 or CJ>1’J2 of type 3c meets a component Cr, 1, of type
4a if and only if

LiCJiand Jo =Ly N (Q\Jl)
A component of type 4b does not meet any component of type 3b and Sc.

PROOF. All statements follow from Table 3 of local intersection in Lemma
25. We check a few cases. For example :
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1) The two components

- A e ~ s
< — ~ — —
C{a17a3aa4};{a5} - / \ C{a3}7{a41a5} - / -~ \

of type 1 and 3b do not meet because there exists a subquiver

Q=00 e e

such that restriction of these components to the quiver () are the varieties of
representations

A
Y = \4/ v — \z/

From Table 3 we have codim(X NY) = 2.

2) Let
< _ ~ _ —
C{al,ag,a4},{a5} - — ~ C{ag,a4,a5} - — — ~

be the two components of type 1 and 2a. We have

codim (CF,, oo 2u1fas) N Clas,ases}) = codim (X NY)
where X and Y are the varieties of representations
~ ™~ 7
X = o = - Y = =

From Table 3 we have codim(X NY) = 1. So the component C’{ih%m}’{as}
meets the component Cla; 04,05} -
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REMARK. Each component of type 2 meets 4 components of type 1 (Figure
5), each component of type 3 meets 6 components of type 2 (Figure 6), and
each component of type 4 meets 8 components of type 3 (Figure 7). Hence, to
describe the intersection diagram F(]ﬁ%) of the irreducible components of the
variety Rep(I1(Ds), 8)5%" we take a 5-dimemsional hypercube H®. It has

nil

32 vertices

80 edges

80 facets of dimension 2
40 facets of dimension 3
10 facets of dimension 4.

Then the intersection diagram I'(Ds) is described as follows.

Theorem 20 . The intersection diagram F(]ﬁ)g)) has 162 vertices. They are
arranged in the 5-dimensional cube H® as follows.

The 32 vertices corresponding to the components of type 1 are the vertices O},
i=1,...,32, of H>. The 80 vertices corresponding to the components of type
2 are the centers OF, j = 1,...,80, of the 2-facets of H®. The 40 vertices
corresponding to the components of type 3 are the centers OF, k = 1,...,40,
of the 3-facets of H®. The 10 vertices corresponding to the components of type
4 are the centers Of, h=1,...,10, of the 4-facets of H®.

Vertices O} and O are connected by an edge if the verter Of belongs to a
2-facet whose center is OJQ-.

Vertices O} and OF are connected by an edge if the 2-facet whose center is OF
belongs to a 3-facet whose center is O}.

Vertices Oy and O} are connected by an edge if the 3-facet whose center is O3
belongs to a 4-facet whose center is Oj.

CONJECTURE. One may hope that the following statements might be true:

1) The number of stable components of Rep(IL(D,,), §)nil is
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()

k=0
k#1

where (z) 27~k ig the number of k-facettes in a n-dimensional cube H".

2) One can describe the intersection diagram I'(D,) by induction on n the
intersection diagram I'(Djs).
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A component of type 2 meets
4 components of type 1

Figure 5
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A component of type 3 meets
6 components of type 2
Figure 6
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A component of type 4 meets 8 components of type 3

Figure 7
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