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Chapter 0

Vorwort

Das Studienobjekt dieser Arbeit sind die Wärmeleitkoeffizienten verallgemeinerter Laplace-
operatoren ∆∆ auf einer Riemannschen Mannigfaltigkeit M , denen eine zentrale Rolle bei der
Bestimmung spektraler Invarianten der Operatoren ∆∆ zukommt. Verallgemeinerte Laplace-
operatoren sind elliptische Differentialoperatoren zweiter Ordnung auf Schnitten eines Vek-
torbündels EM über M , deren Hauptsymbol mit dem Hauptsymbol des klassischen Laplace-
operators ∆ := −

∑
∂2

∂x2
µ

übereinstimmt. Unter relativ schwachen Voraussetzungen an die

Mannigfaltigkeit M und den verallgemeinerten Laplaceoperator ∆∆ besitzt die Wärmelei-
tungsgleichung d

dt
ψt +∆∆ψt = 0 eine Fundamentallösung, eine Familie k∆∆

t , t > 0, von Schnit-
ten des Bündels Hom(EM,EM) über M ×M mit Faser Hom(ExM,EyM) im Punkt (x, y),
mit der Eigenschaft, dass für jeden Schnitt ψ ∈ Γ(EM) die Familie

ψt(y) := ( e−t∆∆ψ )(y) :=

∫
M

k∆∆
t (x, y)ψ(x) vol(x) t > 0

eine Lösung der Wärmeleitungsgleichung mit Anfangswert ψ0 := ψ ist. Der Ausgangspunkt
dieser Arbeit ist die asymptotische Entwicklung des Wärmeleitkernes k∆∆

t für kleine Zeiten

k∆∆
t (x, y ) ∼

t→0+

δx,y
√

4πt
dim M

∑
d≥0

td ad( y )

mit Koeffizienten ad ∈ Γ(End EM), d ≥ 0, deren Existenz von Minakshisundaram–Pleijel
[MP] bewiesen wurde und die eine entscheidende Rolle im lokalen Indexsatz spielt, dem
kritischen Schritt im Wärmeleitungsbeweis des allgemeinen Indexsatzes von Atiyah–Singer.

Das zentrale Ergebnis dieser Arbeit stellt eine geschlossene Formel für die Wärmeleitkoeffi-
zienten ad ∈ Γ(End EM) verallgemeinerter Laplaceoperatoren ∆∆ dar, die ausschließlich die
kovarianten Ableitungen des Riemannschen Krümmungstensors R und der Krümmung RE

des Bündels EM sowie — soweit vorhanden — des Potentials F ∈ Γ(End EM) involviert.
Darüberhinaus werden zwei von einander unabhängige, neue Beweise des lokalen Indexsatzes
ausgeführt. Der erste dieser beiden Beweise ist meines Erachtens nach einfacher als Beweise,
die die Getzlertransformation benutzen, der zweite beruht auf der geschlossenen Formel
für die Wärmeleitkoeffizienten. Beide Schlußweisen benutzen spezielle Eigenschaften von
getwisteten Diracoperatoren nur am Rande und sind damit auf eine grössere Klasse von
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Laplaceoperatoren anwendbar. Insbesondere wird die Â–Klasse der Mannigfaltigkeit M
in beiden Beweisen zu einem Spiegelbild des Zusammenhangslaplace ∇∗∇. Allerdings ist
das Cliffordbündel EM in diesem Bild der Spiegel, die Zukunft wird zeigen, ob es auch
andere Möglichkeiten gibt, den Zusammenhangslaplace in topologische oder geometrische
Invarianten der Mannigfaltigkeit M zu spiegeln.

Die für den lokalen Indexsatz entscheidende Information der Wärmeleitkoeffizienten ist
natürlich schon seit dem ersten Beweis des lokalen Indexsatzes durch Patodi [Pa] bekannt.
Insofern kann die nunmehr zum Ende gekommene Suche nach einer geschlossenen Formel für
die Wärmeleitkoeffizienten vielleicht eher als intellektuelles Problem erscheinen. Andererseits
bot die in den letzten 30 Jahren erfolglos betriebene Suche nach dieser Formel Anlaß zur
Annahme, dass sich dahinter ein tieferliegendes Problem der Differentialgeometrie verbirgt.
Tatsächlich stellt die in dieser Arbeit hergeleitete Formel für die Wärmeleitkoeffizienten nur
eine Konsequenz einer allgemeinen Jetformel dar, die es erlaubt, die kovarianten Ableitungen
eines Schnittes explizit aus ihren Symmetrisierungen zu rekonstruieren. Andere Anwendun-
gen dieser allgemeinen Jetformel ergeben sich von selbst, zum Beispiel wird in dieser Arbeit
eine Formel für den kanonischen bzw. Spencerzusammenhang auf Jetbündeln hergeleitet.

Viele Menschen haben mir bei der Erstellung dieser Arbeit direkt oder indirekt geholfen.
Insbesondere danke ich Prof. Brünning, der mir vor einigen Jahren die Frage nach einer
geschlossenen Formel für die Wärmeleitkoeffizienten stellte, und Prof. Polterovich, der diese
Frage zu mancherlei Gelegenheit mit mir erörterte.
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Chapter 1

Introduction

The Local Index Theorem for twisted Dirac operators is a fundamental relationship between
local analysis and topology on a compact Riemannian manifold M and relates the index of
a twisted Dirac operator which is an object par excellence of Global Analysis to the integral
of a locally defined differential form over M . Compared to the general Atiyah–Singer Index
Theorem for elliptic operators the strength of the Local Index Theorem resides in the explicit
local form form of the index density, and this property compensates the restricted class of
operators it applies to. Moreover the Local Index Theorem can be seen as the key step in
proving the general Atiyah–Singer Index Theorem using the invariance of the index under
homotopies of Fredholm operators [LM].

The squares of the twisted Dirac operators D considered in the Local Index Theorem are
rather special examples of generalized Laplace operators ∆∆, second order elliptic differential
operators acting on sections of a vector bundle EM over a Riemannian manifold M with
scalar, negative definite symbol. Associated to such a generalized Laplace operator ∆∆ is
the heat conduction equation d

dt
ψt + ∆∆ψt = 0 describing the evolution of an inital heat

distribution ψ0 ∈ Γ(EM) under Newton’s law of heat propagation governed by ∆∆. Under
mild assumptions on the manifold M and the operator ∆∆ the fundamental solution e−t∆∆ of
the heat conduction equation can be defined as an integral operator

( e−t∆∆ ψ )(y) :=

∫
M

k∆∆
t (x, y )ψ(x)vol(x)

with kernel k∆∆
t , which is a section of the vector bundle Hom(EM,EM) over M ×M with

fibre Hom(ExM,EyM) over the point (x, y) ∈ M ×M . Sparking the Local Index Theorem
is the observation of McKean–Singer that a twisted Dirac operator D acting on sections of
a Clifford bundle EM defines a spectral symmetry for the generalized Laplacian D2 forcing
the trace of the heat conduction operator e−tD2

to be constant in time. By definition the
limit of this trace at eternity t = ∞ is the index of the Dirac operator D considered while
the Local Index Theorem asserts that the limit at time t = 0 exists and is given by:

index D =

∫
M

lim
t−→0+

tr kD2

t ( y, y ) vol(y) =

∫
M

Â(M ) ch HomCl TM( $M, EM )

Besides the original proof due to Patodi [Pa] there are by now numerous other proofs of
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the Local Index Theorem including stochastic proofs based on Brownian motion [B] and a
particularly influential proof due to Getzler [Ge] [BGV].

Studying the special case of the Laplace–Beltrami operator ∆g of functions on a Rie-
mannian manifold M Minakshisundaram–Pleijel [MP] exhibited a particularly interesting
property of the heat kernels k∆∆

t of generalized Laplacians ∆∆ closely related to the existence
of the limit of the trace tr kD2

t (y, y) as t→ 0+ for squares of twisted Dirac operators. They
described the short time behaviour of the heat kernel k∆∆

t by an asymptotic expansion (2.9)

k∆∆
t (x, y ) ∼

t→0+

δx,y
√

4πt
dim M

∑
d≥0

td ad( y )

with ad ∈ Γ(End EM) and a0(y) = id. In their argument Minakshisundaram–Pleijel
extended the heat kernel coefficients ad to sections of Hom(EM,EM) over M ×M defined
on a neighborhood of the diagonal in M ×M in such a way that the extended coefficient
a0(x, y) : ExM −→ EyM is parallel transport along the unique shortest geodesic from x to y
while the extensions of the higher heat kernel coefficients ad+1, d ≥ 0, are defined recursively

( d + 1 + Nx ) ad+1 := − ( j
1
2 ∆∆∗x j

− 1
2 ) ad

where Nx is Euler’s number operator and j is the Jacobian determinant of the exponential
map in y considered as a function of x. For the convenience of the reader we will sketch the
rationale of this recursion formula in the next section, of course more details can be found
in textbooks [BGM] [BGV] [Gi].

The (extended) heat kernel coefficients ad, d ≥ 0, associated in this way to a generalized
Laplacian ∆∆ are objects of particular interest in analyzing spectral properties of ∆∆ as well
as in most proofs of the Local Index Theorem. The main result of the current article
is a closed formula for the infinite order jets of these coefficients along the diagonal in
M ×M in terms of the covariant derivatives of the curvature RE of the bundle EM , the
Riemannian curvature tensor R of M and the auxiliary potential F ∈ Γ(EM). In due
course we will find two logically independent new proofs of the Local Index Theorem. One
of these two proofs uses the closed formula for the heat kernel coefficients derived in this
article directly, while the other proof can possibly be seen as a variant of proofs using
Getzler’s transformation independent of Clifford algebra and valid for a strictly larger class
of operators. Seen differently however this latter proof explains immediately the remarkable
success of Getzler’s transformation and tells us exactly how the limit of the trace tr kD2

t (y, y)
of the heat kernel is achieved in the process of blowing up the point y ∈ M . In both
proofs the Â–class appears naturally as the mirror image of the connection Laplacian ∇∗∇
with the Clifford bundle EM acting as a mirror. In particular the arguments given should
easily generalize to families of twisted Dirac operators, it may be more difficult to treat the
equivariant case along this line of reasoning.

The central idea of the strategy pursued in calculating the heat kernel coefficients is to study
the relationship between iterated covariant derivatives and their symmetrizations. Iterated
covariant derivatives are defined inductively as differential operators on sections of a vector
bundle EM endowed with a connection ∇ over a manifold M with a torsion–free connection
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again denoted ∇ on its tangent bundle TM by setting ∇1
Xψ := ∇Xψ and

∇k
X1,...,Xk

ψ := ∇X1(∇k−1
X2,...,Xk

ψ ) −
k∑

µ=2

∇k−1
X2,...,∇X1

Xµ,...,Xk
ψ

for all k ≥ 2 and vector fields X1, . . . , Xk. Although more difficult to define their sym-
metrizations jetk

X1·...·Xk
ψ := 1

k!

∑
σ∈Sk

∇k
Xσ1,...,Xσk

ψ have a nice geometric interpretation in

terms of Taylor series, their values jetkψ(y) ∈ Sym kT ∗yM ⊗ EyM in a point y ∈M are the
homogeneous components of the Taylor series of ψ in the trivialization EyM×TyM −→ EM
of the bundle EM given by parallel transport along radial geodesics in normal coordinates
centered about y ∈ M . In particular the sections jetkψ ∈ Γ(SymT ∗M ⊗ EM) are alge-
braically independent in striking contrast to the (unsymmetrized) iterated covariant deriva-
tives, which have no straightforward geometric interpretation and involve highly redundant
information.

The interpretation of the symmetrized covariant derivatives as Taylor series strikes an im-
portant leitmotif in this article, the interaction between explicitly gauge–fixed constructions
and their purely covariant interpretations. In the gauge–fixed context introduced in Section
2 we fix a point y ∈ M and consider exponential coordinates expy : TyM −→ M centered
about y in order to trivialize the vector bundle EyM × TyM −→ EM by parallel transport
along radial geodesics. Some important constructions in this gauge–fixed context with inter-
esting covariant interpretations besides the Taylor series jetψ of sections ψ ∈ Γ(EM) are
the definition of the forward parallel transport Φ and the modified connection form ΩE in
Section 3.

With the jetkψ being the components of the Taylor series of ψ general nonsense in jet
theory tells us that it is possible to reconstruct the iterated covariant derivatives ∇kψ, k ≥ 0,
of a section ψ ∈ Γ(EM) in terms of their symmetrizations jetrψ, r = 0, . . . , k. All results of
this article are more or less direct corollaries of the general Jet Formula 4.2 making precisely
this reconstruction principle explicit. In a sense the general Jet Formula solves a universal
problem of differential geometry and besides its direct application to heat kernel coefficients
of generalized Laplacians studied in this article it will certainly be instrumental in proving
other results of similar complexity. With the general Jet Formula the fight against the Hydra
of more and more curvature terms cropping up is eventually won!

Instrumental in understanding the general Jet Formula is a considerably simpler special
case of the reconstruction principle valid for “almost” symmetrized covariant derivatives, the
special Jet Formula 3.1. A convenient reformulation (4.2) of this special Jet Formula reads

∇k+1
X,...,X,Y ψ = jetk+1

X·...·X·Y ψ +
k∑

r=2

(
k
r

)
jetk+1−r

X·...·X·Φr(X·...·X)Y ψ

+
k∑

r=1

(
k
r

)
ΩE

r (X · . . . ·X)Y jetk−r
X·...·Xψ

where the forward parallel transport Φ ∈ Γ(SymT ∗M⊗End TM) and the modified connec-
tion form ΩE ∈ Γ(SymT ∗M⊗End EM) are formal power series in the covariant derivatives
of the curvature tensor R and the curvature RE of the connections on TM and EM .
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Trying to exponentiate this formulation of the special Jet Formula in a suitable sense to
the general Jet Formula leads us quite naturally to consider special rooted forests. Rooted
forests have been used for a long time in the theory of operads [MSS] to study abstract
calculation flow charts. Rooted forests with colored vertices will serve similar purposes
throughout this article using various minor modifications of the basic notion of jet forests
introduced in Definition 4.1. Jet forests are rooted forests with a labelling of their leaves
and a coloring of their vertices by colors white and black and later on transparent and red
satisfying some additional constraints. Particularly important will be the budding condition:
the bud of every vertex V , the leaf of maximal label in the subtree rooted at V , is connected
directly to V . Moreover the colors black and later on red are only allowed for roots in a jet
forest, all leaves and all interior vertices are either white or later on transparent.

Thinking of rooted forests as abstract calculation flow charts the white and black vertices
correspond to two different multilinear operations given by the homogeneous components of
the power series Φ and ΩE respectively, while red and transparent vertices introduced later
on correspond similarly to multilinear operations given by the homogeneous components of
the infinite order jetF ∈ Γ(SymT ∗M ⊗End EM) of the auxiliary potential and the power
series Ω ∈ Γ(SymT ∗M ⊗ End TM) arising from ΩE by replacing the curvature RE of EM
by the curvature tensor R of TM . In this way every tree T ⊂ F with white or black root in
a jet forest F corresponds to a multilinear form Φ(T) or ΩE(T) on TM with values in TM
or End EM respectively, which is eventually a polynomial in the curvature RE of EM and
the curvature tensor R of TM . With this much of the notation introduced we can formulate
the general Jet Formula in the following way:

Lemma 4.2 (General Jet Formula)
For all vector fields X1, . . . , Xk, k ≥ 1, on an affine manifold M with torsion free connection
and all sections ψ of a vector bundle EM over M endowed with a connection ∇ we have

∇k
X1, ..., Xk

ψ =
∑

jet forest
|F|= k

∑
feedback

f

( −→∏
T⊂F black
f(T) =∞

ΩE(T)Xf (T)

)
jetψ

( ∏
T⊂F white

Φ(T)Xf (T)

)

where Xf (T) are the argument vector fields associated to the leaves of a tree T ⊂ F.

In order to limit the level of technicality in this introduction we refrain from saying what the
summation over feedback is about. Suffice it to say that a feedback map is a map from the
black trees in F to {1, . . . , k,∞} used to modify the argument vector fields to Xf

1 , . . . , X
f
k .

A direct application of the general Jet Formula provides the formula (4.8) for the canonical
or Spencer connection in the model of jet theory based on symmetrized covariant derivatives

∇k+1
Y,X,...,Xψ = jetk+1

X·...·X·Y ψ −
k∑

r=2

1

r

(
k

r

)
jetk+1−r

X·...·X·[(Φ−id)Φ∗]r(X·...·X)Y ψ

+
k∑

r=1

1

r

(
k

r + 1

)
jetk−r

X·...·X·[ΩΦ∗ ]r(X·...·X)Y Xψ

−
k∑

r=1

1

r

(
k

r

)
[ ΩE

Φ∗ ]r(X · . . . ·X)Y jetk−r
X·...·Xψ
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where Φ∗ ∈ Γ(SymT ∗M⊗End TM) is a formal power series reducing to the adjoint of Φ on a
Riemannian manifold M . Interestingly this formula seems to be considerably harder to prove
than the version of the special Jet Formula 3.1 formulated above and to our knowledge it has
not appeared in the literature before. In any case the argument given in Section 4 depends
crucially on the power of the general Jet Formula. In light of this closed formula for the
Spencer connection a prospective application of the general Jet Formula is the calculation of
the Fedosov connection [F] on the Weyl algebra SymT ∗M on a Poisson manifold M endowed
with a torsion–free Poisson connection allowing us to write down the Moyal–Vey product of
deformation quantization and the corresponding trace functional explicitly.

The relevance of the general Jet Formula 4.2 for calculating heat kernel coefficients of gen-
eralized Laplacians is most easily seen for the particularly interesting subclass of twisted
Laplacians introduced in Section 7, which contains most of the well–known Laplace oper-
ators in differential geometry. Twisted Laplace operators ∆∆� are characterized among all
generalized Laplacians by the form of the auxiliary potential F ∈ Γ(End EM) in the de-
composition ∆∆ = ∇∗∇ + F , for twisted Laplacians ∆∆� this potential is a curvature term
arising from a Weitzenböck formula. In other words twisted Laplacians can be written

∆∆�ψ := ∇∗∇ψ +
1

2

∑
µ<ν

(dXµ ∧ dXν) �RE
Xµ,Xν

ψ

with a suitable parallel map � : Λ2T ∗M −→ End EM and a local base {Xµ} of TM with
dual base {dXµ}. Introducing the application map app : End EM ⊗EM −→ EM and the
twisted trace tr� : T ∗M ⊗T ∗M −→ End EM defined by tr�(α⊗β) := 〈α, β〉idE − (α∧β)�
we can rewrite the definition of a twisted Laplacian ∆∆� := app ◦ (−tr� ⊗ idE) ◦ ∇2. In this
characterization of twisted Laplace operators both maps app and tr� are parallel so that it
is possible to express the powers ∆∆k

�, k ≥ 0, in terms of iterated covariant derivatives:

∆∆k
� ψ =

−→
app ◦(− tr� )k (∇2kψ )

This equation is the key idea of applying the general Jet Formula to the calculation of
the heat kernel of twisted Laplacians ∆∆�, because it allows us to express the total symbol
of all ∆∆k

� explicitly in the trivialization EyM × TyM −→ EM of the vector bundle EM
using parallel transport along radial geodesics in normal coordinates centered about y ∈M .
According to Theorem 2.4 however knowing the total symbol of the formal power series e−t∆∆

of differential operators in this particular trivialization of the bundle EM is equivalent to
knowing the infinite order jet of the heat kernel coefficients along the diagonal in M ×M .

In order to describe the resulting closed formula for the heat kernel coefficients of a
twisted Laplace operator ∆∆� we introduce a minor variant of jet forests called Laplace forests
in Definition 7.3. Associated to the trees T in a Laplace forests F are multilinear forms
Φ(T) ∈ Γ(

⊗|T|T ∗M⊗TM) and ΩE(T) ∈ Γ(
⊗|T|T ∗M⊗End EM), which can be assembled

into a multilinear form associated to the Laplace forest F itself⊗
T⊂F black

ΩE(T) ⊗
∏

T⊂F white

Φ(T)] ∈ Γ(
⊗|F|T ∗M ⊗

⊗
T⊂F black

End EM ⊗ Sym #White FT ∗M )

using the labelling of the leaves in F, where White F denotes the set of white trees in F.
Eventually we need to reduce this multilinear form to a section of End EM ⊗ Sym T ∗M
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depending not only on the Laplace forest F but also on the choice of a subset L ⊂ Leaf F

of marked leaves. In a first step we apply a linear operator mL, which multiplies the form
factors in

⊗
T ∗M associated to the leaves in L to the polynomial factor Sym #White FT ∗M .

The remaining form factors in
⊗

T ∗M are contracted in pairs to endomorphisms on EM
in a second step using powers of the twisted trace tr�. Eventually we multiply the original
endomorphisms ΩE(T) and the endomorphisms arising from the twisted trace together in
a delicately chosen order encoded in a sorted multiplication operator m∗. The sections of
End EM ⊗ Sym #White F+#LT ∗M associated in this way to a Laplace forest F with marked
leaves L form the basic building blocks of the heat kernel coefficients:

Theorem 7.5 (Heat Kernel Coefficients of Twisted Laplacians)
The generating series

∑
d≥0 t

dad of the heat kernel coefficients of a twisted Laplacian satisfies:

j
1
2 a(t)

= et∆

 ∑
F Laplace forest
L marked leaves

t
|F|−#L

2
−#White F

2#White F ( |F|+#L
2

)!
m∗ ◦ tr

|F|−#L
2

� ◦mL

( ⊗
T⊂F black

ΩE(T) ⊗
∏

T⊂F white

Φ(T)]

) 
where ∆ is the formal Laplace operator on SymT ∗M defined by the Riemannian metric.

Evidently this formula is a closed formula for the heat kernel coefficients involving only the
covariant derivatives of the Riemannian curvature tensor R of M and the curvature RE of
the bundle EM . Instead of thinking of Theorem 7.5 as a closed formula for the heat kernel
coefficients of twisted Laplacians in terms of the iterated covariant derivatives of curvature
however it seems more natural to use the homogeneous components of the power series Φ
and ΩE as well as Ω directly, which do not suffer from the illness of containing redundant
information. It is particularly intriguing that the extension of this formula to twisted Laplace
operators ∆∆�,F = ∆∆� + F with auxiliary potential F ∈ Γ(EM) given in Theorem 7.8 is
almost identical to the formula in the untwisted case up to the appearance of red roots,
whose associated multilinear operations depend only on jetF ∈ Γ(SymT ∗M ⊗ End EM).

Let us now make a few more detailed comments on the different sections and the results
proved in this article. In Section 2 we recall the notion of a generalized Laplacian ∆∆ acting
on sections of a vector bundle EM and discuss the decomposition ∆∆ = ∇∗∇+F into the con-
nection Laplacian for an associated connection on EM and the potential F ∈ Γ(End EM).
Having sketched the argument of Minakshisundaram–Pleijel leading to the recursive defi-
nition (2.8) of the extended heat kernel coefficients ad, d ≥ 0, we turn to an alternative
characterization of these coefficients in the second half of Section 2, which is a modified and
reedited version of the unpublished preprint [W]. The unique solution of the Intertwining
Property 2.1 thought of as an equation for the unknown infinite order jet of the generating
series a(t) :=

∑
d≥0 t

dad for the heat kernel coefficients is derived in Theorem 2.4 and reads

jet j
1
2a(t) = et∆ (2t)−N e−t| · |2 ev[ e−t∆∆ ]]

in terms of the total symbol ev[ e−t∆∆ ]] of the generating series e−t∆∆ :=
∑

k≥0
tk

k!
∆∆k of the

powers of the Laplace operator ∆∆ in the trivialization TyM×EyM −→ EM given by parallel
transport along radial geodesics in normal coordinates centered about y ∈M .
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In Section 3 we discuss the special Jet Formula 3.1 and its consequences. In particular
we will identify the Taylor series jetψ ∈ SymT ∗yM ⊗ EyM of a section ψ ∈ Γ(EM)
in the origina 0 ∈ TyM with respect to the trivialization EyM × TyM −→ EM given by
parallel transport along radial geodesics with the value of the symmetrized iterated covariant
derivatives jetψ ∈ Γ(SymT ∗M ⊗ EM) of ψ in y ∈ M . Moreover the special Jet Formula
provides a covariant interpretation of the backward parallel transport Φ−1 and the connection
form ωE defined originally in the gauge–fixed context and thus allows us to calculate their
Taylor series in 0 ∈ TyM in Theorem 3.2 covariantly as formal power series in the covariant
derivatives of the Riemannian curvature tensor R of M and the curvature RE of EM . In
consequence we can identify the forward parallel transport Φ and the modified connection
form ΩE := ωE

Φ with such formal power series, too.

In order to extend the special Jet Formula 3.1 to the more powerful general Jet Formula
4.2 we introduce jet forests in Section 4, describe the rules turning a tree T in a jet forest
F into a multilinear form Φ(T) or ΩE(T) in detail and use the inductive nature on the set
of jet forests to prove the general Jet Formula. As a direct application we derive the closed
formula (4.8) for the canonical or Spencer connection.

Resuming the gauge–fixed context in Section 5 we replace the heat kernel coefficients
ad ∈ C∞(TyM,End EyM) for a trivial vector bundle EyM × TyM over a euclidian vector
space by universal heat kernel coefficients ad ∈ SymT ∗yM⊗UholEy M, d ≥ 0, associated to the
underlying principal connection, which map to the infinite order Taylor series of the actual
heat kernel coefficients under the representation homomorphism UholEy M −→ End EyM .
With this replacement we can introduce an idea instrumental to both proofs of the Local
Index Theorem presented in this article, the use of filtrations as algebraic analogues of
Getzler’s transformation. More precisely the natural filtration on the universal enveloping
algebra UholEy M can be extended to a filtration

Fr( SymT ∗yM ⊗ UholEy M ) :=
⊕
l≥0

Sym lT ∗yM ⊗ U≤b l+r
2
cholEy M

on the space SymT ∗yM ⊗ UholEy M of universal heat kernel coefficients with the remarkable

property that the operator j
1
2∇∗∇j− 1

2 is filtered degree 2. Twisting the definition of the fil-
tration slightly for a Clifford bundle the same is true for the operator −j 1

2 D2 j−
1
2 and we con-

clude ad ∈ F2d(SymT ∗yM⊗UholEy M) from the recursion formula (2.8) of Minakshisundaram–

Pleijel starting with the value a0 = 1 in F0(SymT ∗yM ⊗ UholEy M). In light of the simple
Lemma 5.7 about the character of the spinor representation this result implies the regularity
of the trace of the heat kernel of squares of twisted Dirac operators. In the subsequent Sec-
tion 6 we calculate in Theorem 6.2 the symbol class of the universal heat kernel coefficients
using an ansatz motivated by Mehler’s formula and recall the standard argument leading to
the Local Index Theorem.

Presumably the most interesting and perhaps most difficult section for the reader will
be Section 7, in which we calculate the formulas for the infinite order jets of the heat
kernel coefficients of twisted Laplacians and twisted Laplacians with potential along the
diagonal. Pursuing the strategy described above we use the general Jet Formula to interprete
the total symbol ev[ e−t∆∆� ]] of the powers of a twisted Laplace operator ∆∆� defined in the
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gauge–fixed context of Section 2 covariantly and apply Theorem 2.4 to calculate the heat
kernel coefficients. Most of the subsequent work in this section is spent on eliminating the
summation over feedback maps by reordering the factors in a product over endomorphismus
or more succinctly in defining the sorted multiplication m∗. With Lemma 7.7 it is possible
to extend the strategy to twisted Laplacians with potential resulting in Theorem 7.8.

In the final Section 8 we prove the Local Index Theorem without reference to Mehler’s
formula and take the opportunity to discuss Theorems 7.5 and 7.8 in greater detail. In
particular we study some interesting aspects of the abstract summation over Laplace forests
using a filtration extending the filtration on the space of universal heat kernel coefficients
discussed in Section 5. Eventually we restrict the summation in Theorem 7.5 to a small
subclass of Laplace forests carrying the index information and show that for these forests
the sum turns into the expected exponential. The hyperbolic tangens emerges in the process
of summation by the combinatorial identity (8.2).

Numerous people have supported my work on heat kernel coefficients during the years. In
particular I vividly remember a discussion with Prof. Brüning in June 1999 arousing my
interest in the intellectual problem of calculating heat kernel coefficients. Moreover I would
like to thank Prof. Polterovich for many interesting hours of discussion on this topic and
Prof. Ballmann for constant encouragement and support.
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Chapter 2

Characterizations of Heat Kernel
Coefficients

Essentially there are two different ways to calculate the extended heat kernel coefficients
of a generalized Laplacian acting on sections of a vector bundle EM over a manifold
M . Besides the straightforward approach using the original recursion formula (2.8) of
Minakshisundaram–Pleijel for the extended coefficients ad, d ≥ 0, in turn it is also possible
to use an interesting intertwining property of the generating power series a(t) :=

∑
d≥0 t

dad

for these coefficients formulated in Theorem 2.1. The first method leads more or less directly
to a proof of the Local Index Theorem whereas the second method will give us an explicit
formula for all heat kernel coefficients for a large class of generalized Laplacians called twisted
Laplacians. We will discuss both methods in some detail in this section taking [BGM] [BGV]
as general references to the topics covered.

Consider a connection ∇ on a vector bundle EM over a Riemannian manifold M with metric
g. The Levi–Civita connection on the tangent bundle TM associated to g allows us to define
the iterated covariant derivative ∇2

X,Y := ∇X∇Y − ∇∇XY as a differential operator on
sections of EM and straightforward calculation proves the operator identity

∇2
X,Y ◦ f = f ◦ ∇2

X,Y + Xf ◦ ∇Y + Y f ◦ ∇X + Hess f(X, Y ) (2.1)

valid for all f ∈ C∞(M) where Hess f(X, Y ) := XY f − ∇XY f is the Hessian of f and
functions are thought of as multiplication operators on sections. The connection Laplacian
is the negative trace −trg∇2 := −

∑
∇2

Xµ,Xµ
of the iterated covariant derivative ∇2 over a

local orthonormal base {Xµ}. Inspecting (2.1) we readily find its principal symbol:

σ−trg∇2( dyf, dyf̃ ) := 1
2
[ [ −trg∇2 f ], f̃ ]

∣∣∣
EyM

= − g( dyf, dyf̃ ) idEyM

Similarly a generalized Laplacian ∆∆ is a second order differential operator acting on sections
of EM with scalar, negative definite principal symbol

σ∆∆( dyf, dyf̃ ) := 1
2
[ [ ∆∆, f ], f̃ ]

∣∣∣
EyM

= − g( dyf, dyf̃ ) idEyM (2.2)

for all f, f̃ ∈ C∞(M) and y ∈ M for some positive definite symmetric bilinear form g
on T ∗yM . Being positive definite g defines a scalar product on TyM as well and thus a
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Riemannian metric on M and its Levi–Civita connection ∇ on the tangent bundle TM .
Taking the operator identity (2.1) as a clue we can even associate a connection

∇gradgf := 1
2
( (∆gf) − [ ∆∆, f ] )

on EM to a generalized Laplacian ∆∆, where ∆gf := −trgHess f is the Laplace–Beltrami
operator on functions. In fact the right hand side is easily seen to be a derivation (sic!) in f
and thus its value at a point only depends on the gradient of f , whereas the Leibniz rule for
this connection is a reformulation of the definition (2.2) of the symbol. Given the Riemannian
metric g on M and the connection ∇ on EM associated to a generalized Laplacian ∆∆ the
difference F := ∆∆ + trg∇2 is a fortiori a differential operator of order zero or equivalently a
section F ∈ Γ(End EM) of the endomorphism bundle of EM called the potential, so that
the generalized Laplacian we started with can be written in the form ∆∆ = −trg∇2 + F .
Using this presentation and the operator identity (2.1) we verify the commutator relation

ef ◦∆∆ ◦ e−f = ∆∆ + 2∇gradg f + divg gradg f − g( df, df ) (2.3)

for f ∈ C∞(M), which can actually be taken as a characterization for generalized Laplacians
equivalent to the original definition. A formal consequence of this characterization is that the
formally adjoint operator ∆∆∗ of a generalized Laplacian ∆∆ onEM is the generalized Laplacian
acting on sections of E∗M defined by the same symbol metric and the dual connection. It
is slightly more work to check that the potential of the generalized Laplacian ∆∆∗ is the
adjoint F∗ of the potential F of ∆∆ or equivalently that the formal adjoint of −trg∇2 is
simply −trg∇∗2 with the dual connection ∇∗ on E∗M . Starting with the formal adjoint
−(∇∗

X + divgX ) of the covariant derivative ∇X along some vector field X ∈ Γ(TM) and
using the relation divg(divgX Y ) = Y divgX + divgXdivgY we easily arrive at(

∇2
X,Y

)∗
= ( ∇∗

Y + divgY ) ( ∇∗
X + divgX ) +

(
∇∗
∇XY + divg(∇XY )

)
(2.4)

= ∇∗2
Y,X + ∇∗

(∇XY +divgX Y )+ (∇Y X + divgY X ) + divg(∇XY + divgX Y )

but only the first summand on the right survives taking the trace over a local orthonormal
base {Xµ} due to the classical identity

∑
∇XµXµ = −

∑
divgXµXµ. Of course the distinc-

tion between the vector bundle EM and its dual E∗M is artificial in most if not all interesting
situations, because there exists a parallel isomorphism ] : EM −→ E∗M arising say from a
parallel metric or a parallel symplectic form. The formally adjoint operator of the connection
∇ can thus be thought of as a differential operator ∇∗ : Γ(T ∗M ⊗ EM) −→ Γ(EM) and
the Laplacian ∇∗∇ is defined and agrees with −trg∇2.

Let us now describe the considerations made by Minakshisundaram–Pleijel culminating in
the construction of the extended heat kernel coefficients ad, d ≥ 0, in somewhat more detail.
Consider the heat conduction equation d

dt
ψt +∆∆ψt = 0 associated to a generalized Laplacian

∆∆ on M , which describes the time evolution of an initial heat distribution ψ0 ∈ Γ(EM)
under Newton’s law of heat propagation governed by ∆∆. Under mild assumptions on the
generalized Laplacian ∆∆ and the manifoldM the heat conduction equation has a well–defined
fundamental solution in terms of an integral operator

( e−t∆∆ ψ )(y) :=

∫
M

k∆∆
t (x, y )ψ(x)vol(x)
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whose kernel k∆∆
t is called the heat kernel associated to ∆∆. In other words the heat kernel

k∆∆
t is a family of sections of the vector bundle Hom(EM,EM) over M × M with fiber

Hom(ExM,EyM) over (x, y) defined for positive times t > 0, such that k∆∆
t (·, y) converges

to δy(·) in the sense of distributions as time goes to zero and d
dt
k∆∆

t + ∆∆y k
∆∆
t = 0, where ∆∆y

denotes ∆∆ acting on the target variable y. Whenever defined the integral operator e−t∆∆ will
commute with ∆∆ or equivalently ∆∆yk

∆∆
t = ∆∆∗xk

∆∆
t , where ∆∆∗x denotes the operator formally

adjoint to ∆∆ acting on the source variable x. Hence the heat kernel satisfies the dual heat
conduction equation as well, which is more convenient to use once we fix the target y ∈ M :

d

dt
k∆∆

t + ∆∆∗x k
∆∆
t = 0 (2.5)

Following Minakshisundaram–Pleijel we will from now on restrict ourselves to the special
case of a generalized Laplacian ∆∆ acting on sections of a trivial vector bundle E × T over
a euclidian vector space T such that the symbol metric g agrees with the scalar product
〈 , 〉 of T in the origin and the exponential map exp0 : T0T ∼= T −→ T is the identity.
In addition we will assume that parallel transport for the connection ∇ on E × T along
the radial geodesics t 7−→ tX is the identity E × {0} −→ E × {X}. The general case of
a generalized Laplacian ∆∆ acting on sections of a vector bundle EM over a Riemannian
manifold M can essentially be reduced to this special case by fixing the target y ∈ M and
setting T := TyM and E := EyM while pulling back all the geometric data to the tangent
space. Evidently the volume forms vol and volg = j(X)vol of the flat scalar product 〈 , 〉
and the symbol metric g respectively will differ by the determinant j(X) of the Jacobian of
the exponential map exp0 in X ∈ T .

Thinking of sections of the trivial vector bundle E × T as functions on T with values
in E we can define the flat Laplacian ∆ = −

∑
∂2

∂x2
µ

with an orthonormal base x1, . . . , xn

in addition to the generalized Laplacian ∆∆. A closed formula for the heat kernel of the flat
Laplacian has been known since the seminal work of Fourier on the propagation of heat

k∆
t (X, 0 ) :=

1
√

4πt
dim T

e−
|X|2
4t idE

so it is prudent to take it as a clue on the general case and make an ansatz of the form

k∆∆
t (X, 0 ) :=

1
√

4πt
dim T

e−
|X|2
4t j−

1
2 (X ) a( t, X ) (2.6)

for the heat kernel k∆∆
t with a ∈ C∞(R+×T,EndE). Recalling that the exponential map is a

radial isometry we observe that the metric and flat gradient of the distance squared coincide
gradg| · |2 = 2N = grad| · |2 with twice the Euler field N :=

∑
xµ

∂
∂xµ

, which has length

squared | · |2 with respect to both the scalar product 〈 , 〉 and the metric g. However the
metric divergence divgN = N(log j)+divN of the Euler field will differ from its divergence

divN = dim T and the factor j−
1
2 is included in the ansatz in order to cancel the additional

term N(log j). With parallel transport along radial geodesics being the identity or ∇N = N
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en nuce with a slight abuse of notation the commutation relation (2.3) becomes:

∆∆∗X k
∆∆
t (X, 0) =

1
√

4πt
dim T

e−
|X|2
4t

[
∆∆∗ +

1

t
∇N +

1

2t
divg N − | · |2

4t2

]
j−

1
2 (X) a(t,X)

=
1

√
4πt

dim T
e−

|X|2
4t j−

1
2 (X)

[
(j

1
2 ∆∆∗j−

1
2 ) +

N

t
+

dim T

2t
− | · |2

4t2

]
a(t,X)

Using this result turns the dual heat equation (2.5) for k∆∆
t into the equation

d

dt
a +

N

t
a = − ( j

1
2 ∆∆∗ j−

1
2 ) a (2.7)

for the unknown function a ∈ C∞(R+×T,EndE). Although this equation does not look like
a simplification the important point is that the Dirac like singularity of k∆∆

t as time goes to

zero is due to the factor t−
dim T

2 of the heat kernel of the flat Laplacian ∆ whereas the function
a may stay finite at t = 0. In fact the fundamental idea of Minakshisundaram–Pleijel was
to treat the transformed equation (2.7) as a recursion formula

( d + 1 + N ) ad+1 = − ( j
1
2 ∆∆∗ j−

1
2 ) ad (2.8)

for the would–be Taylor expansion a(t,X) ∼
∑

d≥0 t
d ad(X) of the family a at time t = 0

with sections ad ∈ C∞(T,EndE) subject to the initial condition a0(X) = id. Interestingly
this initial condition is the only (sic!) choice consistent with both the recursion formula and
the fact a0(0) = id already known to Weyl, although this condition simply does not make
sense globally unless the bundle EM is trivial.

Despite the fact that the recursion formula (2.8) is ill–motivated unless we know a priori
that the function a ∈ C∞(R+ × T,EndE) has a well defined Taylor series at t = 0 we can
head on and solve the recursion formula (2.8), which in essence is an ordinary differential
equation, to all orders d ≥ 0. Representing the formal power series a(t,X) =

∑
tdad(X)

we get this way by some C∞–function ã(t,X) we get an integral kernel k̃∆∆
t close enough to

the real heat kernel k∆∆
t to serve as a parametrix, the initial value for a standard iteration

procedure to approximate the real heat kernel k∆∆
t to arbitrary precision. Known estimates

on the convergence of this iteration procedure [BGV] then prove that the values ad(0) are
the coefficients in the asymptotic expansion

k∆∆
t (X, 0 ) ∼

t→0+

δ0(X)
√

4πt
dim T

∑
d≥0

td ad(0) (2.9)

we looked for. In order to settle this discussion for the general case of a Laplacian ∆∆ acting
on sections of a vector bundle EM over M , too, we need to pull back all the geometric data
via the exponential map and parallel transport to T := TyM and E := EyM . Clearly under
this identification the value ad(0) of the d–th heat kernel coefficient in the origin becomes
the coefficient ad(y) in the asymptotic expansion mentioned in the introduction.

In the second part of this section we want to discuss a completely different interpretation
of the extended heat kernel coefficients ad, d ≥ 0, which is definitely less constructive but
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can be used to give a closed formula for the Taylor series of all these coefficients in the
origin in terms of the powers ∆∆k, k ≥ 1, of the generalized Laplacian ∆∆. In this alternative
characterization the heat kernel coefficients show up intertwining in a sense the generalized
Laplacian ∆∆ with the flat Laplacian ∆. In particular it will become apparent that it is just
about as complicated to write down a closed formula for the heat kernel coefficients ad or
their values ad(0) in the origin as it is to calculate the powers ∆∆k at a given point. This
observation provides ample justification to consider the class of twisted Laplacians ∆∆� in
more detail whose powers can be calculated in principle using the general Jet Formula 4.2.

Consider as before the case of a generalized Laplace operator ∆∆ acting on sections of a
trivial vector bundle E × T over a euclidian vector space T with scalar product 〈 , 〉 and a
auxiliary Riemannian metric g such that the metric g agrees with 〈 , 〉 in the origin while its
exponential map exp0 : T0T ∼= T −→ T there is the identity. In addition we will assume
that parallel transport for the non–trivial connection ∇ on E × T along radial geodesics
t 7−→ tX is the identity E×{0} −→ E×{X}. Let ev : C∞(T,E) −→ E, ψ 7−→ ψ(0) be the
evaluation at the origin and let j ∈ C∞T denote the Jacobian determinant volg =: j vol

of the exponential map exp0 at X ∈ T equivalently j := det
1
2 g is the square root of the

determinant of the symbol metric g with respect to the flat scalar product 〈 , 〉. By the
remarks following [BGV, Theorem 2.30] there exists an asymptotic expansion

ev
[
e−t∆∆ψ

]
∼

t→0+

∑
k≥0

(−t)k

k!
ev
[

∆∆kψ
]

for the heat operator applied to sections ψ ∈ C∞(T,E) of compact support, which com-
plements the asymptotic expansion (2.9) of its integral kernel k∆∆

t . Using both asymptotic

expansions and observing that the factor 1√
4πt

dim T exp− |X|2
4t

is the heat kernel of the flat

Laplacian ∆ acting on sections of E×T as well we find for a smooth section ψ ∈ C∞(T,E)
with support in a sufficiently small compact neighborhood of the origin:∫

T

k∆∆
t (X)ψ(X) volg(X) ∼

t→0+

∑
k≥0

(−t)k

k!
ev
[
∆∆kψ

]
∼

t→0+

∫
T

1
√

4πt
dim T

e−
|X|2
4t j−

1
2 (X)

∑
d≥0

td ad(X)ψ(X) volg(X)

∼
t→0+

∑
d≥0

td
∫

T

1
√

4πt
dim T

e−
|X|2
4t ( j

1
2 (X) ad(X)ψ(X) ) vol(X)

∼
t→0+

∑
d≥0

td
∑
l≥0

(−t)l

l!
ev
[
∆l( j

1
2 ad ψ )

]
Note that the asymptotic expansion of the heat kernel k∆∆

t is locally uniform in X ∈ T
according to [BGV, Theorem 2.30] and hence we may integrate it over the compact support
of ψ to obtain an asymptotic expansion of the integral. Existence of asymptotic expansions
implies uniqueness and so we need only sort out the different powers of t to prove the
Intertwining Property of the heat kernel coefficients in the form:
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Theorem 2.1 (Intertwining Property of Heat Kernel Coefficients [W])
Let ∆∆ be a generalized Laplacian acting on sections of the trivial vector bundle E × T ,
such that the exponential map for its symbol metric g and the parallel transport along ra-
dial geodesics for its connection ∇ are the identities T −→ T and E × {0} −→ E × {X}
respectively. The coefficients ad, d ≥ 0, of the asymptotic expansion of the heat kernel k∆∆

t

intertwine the powers of ∆∆ and ∆ in the following sense:

(−1)k

k!
ev
[

∆∆k ψ
]

=
k∑

l=0

(−1)l

l!
ev
[

∆l ( j
1
2 ak−l ψ )

]
Philosophically the Intertwining Property 2.1 provides a precise geometric interpretation

for the coefficients ad, d ≥ 0, of the heat kernel expansion in terms of ∆∆ and the flat model
operator ∆ for generalized Laplacians. Similar considerations should apply to other model
operators arising e. g. in Heisenberg calculus or in other parabolic calculi. A convenient
reformulation of the intertwining property can be given with the help of the generating series
a(t) :=

∑
tdad of the heat kernel coefficients ad, d ≥ 0, and the formal power series e−t∆∆ and

e−t∆ of differential operators acting on sections of E × T , namely the Intertwining Property
is just another way to write down the equality ev[e−t∆∆ψ] = ev[e−t∆(j

1
2a(t)ψ)] of formal

power series in t. Of course only the infinite order jet of the functions ad ∈ C∞(T,End E)
in the origin can ever be sensed by evaluating formal power series of differential operators
on ad. Strikingly however it will turn out in Theorem 2.4 below that the infinite order jet
of the generating series a(t) in the origin is the unique solution to the Intertwining Property
thought of as a set of equations in (the jets of) the unknowns ad, d ≥ 0.

At this point we digress a little bit on a very interesting property of the flat Laplacian ∆
acting on functions C∞T on a euclidian vector space T . More general we can consider the
flat Laplacian ∆ acting on sections C∞(T,E) of the trivial E–bundle E × T over T , but
the auxiliary vector space E never enters into the argument directly and so we will stick to
the case E = R in order to simplify notation. Along with the flat Laplacian ∆ comes the
operator | · |2 of multiplication by the square of the distance to the origin, in orthogonal
coordinates {xµ} on T these two operators can be written:

∆ := −
∑

µ

∂2

∂x2
µ

| · |2 :=
∑

µ

x2
µ .

A simple calculation shows that the commutator [ ∆, | · |2 ] = (−4)(N + dim T
2

) of these two
operators is essentially Euler’s number operator N =

∑
xµ

∂
∂xµ

shifted by half the dimension

of T . All three operators ∆, |·|2 and N restrict to operators on the subspace Sym T ∗ ⊂ C∞T
of polynomials on T , moreover N acts as multiplication by k on Sym kT ∗. Consequently the
operators X := 1

2
| · |2 and Y := 1

2
∆ close with H := N + dim T

2
to an algebra of operators on

Sym T ∗ isomorphic to sl2. Iterated commutators in sl2–representations can quite generally
be evaluated using the factorial polynomials [λ]k := λ(λ − 1) . . . (λ − k + 1) or binomial
coefficients

(
λ
k

)
:= 1

k!
[λ]k. The standard relation Y k Xkψ = k![−λ]kψ in this context is valid

for lowest weight vectors ψ of weight λ with Y ψ = 0 and Hψ = λψ and becomes for the
constant polynomial 1 the classical formula:

∆k | · |2k = 4k k! [−dim T
2

]k (2.10)
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Slightly more useful for our purposes is the following derived identity:

Lemma 2.2 For all smooth functions ψ ∈ C∞T and all k, l ≥ 0:

ev

[
(−1)k+l

(k + l)!
∆k+l (

1

k!
| · |2k ψ )

]
= (−4)k

(
−dim T

2
− l

k

)
ev

[
(−1)l

l!
∆l ψ

]
Proof: Only a finite number of partial derivates of ψ in the origin 0 are actually involved
in this identity and hence we may assume that ψ is a polynomial without loss of generality.
Moreover only the homogeneous component of ψ of degree 2l contributes to left and right
hand side, which are both evidently SOT–invariant linear functionals in ψ ∈ Sym 2lT ∗.
However there is but one SOT–invariant linear functional on Sym 2lT ∗ up to scale, so that
it is sufficient to check the identity in question, which can be rewritten as

ev
[
∆k+l ( | · |2k ψ )

]
=

4k+l (k + l)! [−dim T
2

]k+l

4l l! [−dim T
2

]l
ev
[
∆l ψ

]
on the single polynomial ψ := | · |2l, for which it is true by the classical formula (2.10). �

Returning to the general case of a Laplacian ∆∆ acting on sections of the trivial vector
bundle E × T we recall that the generating series a(t) for the coefficients in the asymptotic
expansion of the heat kernel intertwines the formal power series e−t∆∆ and e−t∆ of differential
operators. Using this Intertwining Property 2.1 together with Lemma 2.2 we calculate:

ev

[
(−1)d+k

(d+ k)!
∆∆d+k (

1

k!
| · |2k ψ )

]
=

d+k∑
l=0

ev

[
(−1)l

l!
∆l (

1

k!
| · |2k j

1
2 ad+k−l ψ )

]

=
d∑

l=0

ev

[
(−1)k+l

(k + l)!
∆k+l (

1

k!
| · |2k j

1
2 ad−l ψ )

]

= (−4)k

d∑
l=0

(
−dim T

2
− l

k

)
ev

[
(−1)l

l!
∆l ( j

1
2 ad−l ψ )

]
Combining this equation with the binomial inversion formula

r∑
k=0

(
r + dim T

2

r − k

)(
−dim T

2
− l

k

)
=

(
r − l

r

)
= δl, 0

valid as soon as r ≥ l ≥ 0 we eventually arrive at the following inversion formula for the
heat kernel coefficients ad, d ≥ 0, of a generalized Laplacian ∆∆:

Theorem 2.3 (Polterovich’s Inversion Formula [Po])
Consider a generalized Laplacian ∆∆ acting on sections of a trivial vector bundle E × T
over a euclidian vector space T such that the exponential map for the symbol metric is the
identity T −→ T while parallel transport along radial geodesics is the natural identification
E × {0} −→ E × {X}. Thinking of the distance | · | from the origin as a function on T
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and noting j
1
2 (0) = 1 we can compute the action of the endomorphism ad(0) ∈ EndE on

ψ(0) ∈ E extended arbitrarily to a section ψ ∈ C∞(T,E) by means of the inversion formula:

ev [ ad ψ ] =
r∑

k=0

(−1

4
)k

(
r + dim T

2

r − k

)
ev

[
(−1)d+k

(d+ k)!
∆∆d+k (

1

k!
| · |2k ψ )

]
r ≥ d

Our normalization of the coefficients ad, d ≥ 0, drops the factor (4π)−
dim T

2 arising from
the value of the euclidian heat kernel for the flat Laplacian ∆ on T at the origin to have
the Intertwining Property 2.1 in as simple a form as possible. In the original formulation of
Polterovich this factor is part of ad and of course in every conceivable application this factor
has to be reinserted by hand.

In conclusion the Intertwining Property 2.1 alone is sufficient to determine the value of the
coefficients ad, d ≥ 0, of the heat kernel expansion at the origin. Before we proceed to show
that in fact the jets of infinite order of the coefficients ad in the origin are determined by
the Intertwining Property we want to make a few general remarks concerning our guiding
philosphy in the calculations to come. We want to avoid formulas involving compositions of
differential operators, because such formulas are hardly if ever of any use in explicit calcula-
tions. In favourable situations it may still be possible to calculate the values evDk, k ≥ 1,
of powers of a differential operator D in the origin without knowing the partial derivatives
of their coefficients. Note that the usual arguments of symbol calculus become meaningless
if we have no control over the partial derivatives of the differential operators in a singular
point like the origin.

In general the value of a differential operator D acting on sections of a vector bundle
EM at a point y will be an element of Hom( Jet∞y EM,EyM). For a trivial bundle E × T
over a vector space T however we may identify the Jet∞0 (E × T ) with the formal power
series completion of Sym T ∗ ⊗ E and hence Hom( Jet∞0 (E × T ), E ) with Sym T ⊗ EndE
using Taylor’s theorem in the usual way. The scalar product of the euclidian vector space T
extends to a scalar product on Sym T ∗ defined via Gram’s permanent and characterized by
〈eα, eβ〉Sym T ∗ = e〈α,β〉 for all α, β ∈ T ∗ with a slight abuse of notation. Alternatively we
may choose orthonormal coordinates {xµ} on T and write down the scalar product directly

〈ψ, ψ̃〉Sym T ∗ :=
∑
r≥0

1

r!

∑
µ1,...,µr

ev

[
∂r

∂xµ1 . . . ∂xµr

ψ

]
ev

[
∂r

∂xµ1 . . . ∂xµr

ψ̃

]
=

(
(ev ⊗ ev) ◦ e〈∇,∇〉 ) (ψ ⊗ ψ̃ )

where 〈∇,∇〉 is the bidifferential operator ψ⊗ ψ̃ 7−→
∑

µ
∂

∂xµ
ψ⊗ ∂

∂xµ
ψ̃. Written in this form

it is clear that the scalar product extends to the formal power series completion of SymT ∗

or even to smooth functions provided that the defining sum converges. The musical isomor-
phism ] : SymT −→ SymT ∗ associated to this scalar product is the algebra homomorphism
extending the musical isomorphism of T and extends to the formal power series completion of
SymT , too. Together with the evaluation map for differential operators it provides us with
a unique polynomial ev[D ]] in SymT ∗ ⊗ EndE satisfying ev[Dψ ] = 〈 ev[D ]], ψ 〉Sym T ∗

for every section ψ ∈ C∞(T,E) of E × T . In the formulas below the scalar product 〈 , 〉
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on SymT ∗ will enter through the bidifferential operator 〈∇,∇〉, which in turn makes its
appearance via Green’s identity for the Laplacian ∆ and the multiplication map m reading

( ∆ ◦ m ) (ψ ⊗ ψ̃ ) = (m ◦ ( ∆⊗ id − 2〈∇,∇〉 + id⊗∆ ) ) (ψ ⊗ ψ̃ )

which features three commuting operators ∆⊗ id, id⊗∆ and 〈∇,∇〉. Hence we are free to
put these operators in arbitrary order upon exponentiation. With this in mind we find

ev
[
e−t∆ ( j

1
2 a(t)ψ )

]
= ( ev ◦ e−t∆ ◦ m ) ( j

1
2 a(t)⊗ ψ )

=
(
(ev ⊗ ev) ◦ e2t〈∇,∇〉 ) ( e−t∆( j

1
2 a(t) )⊗ e−t∆ψ )

= 〈 (2t)N e−t∆ ( j
1
2 a(t) ), e−t∆ ψ 〉Sym T ∗

= 〈 et|·|2 (2t)N e−t∆ ( j
1
2 a(t) ), ψ 〉Sym T ∗

because the operator et| · |2 is adjoint to e−t∆ with respect to the scalar product 〈 , 〉. On
the other hand the very definition of the symbol map ] for differential operators reads
ev
[
e−t∆∆ψ

]
= 〈 ev[ e−t∆∆ ]], ψ 〉Sym T ∗ and as ψ can be chosen arbitrarily we conclude:

ev[ e−t∆∆ ]] = et| · |2 (2t)N e−t∆( j
1
2a(t) ) (2.11)

Evidently the operators et| · |2 and e−t∆ are invertible with inverses e−t| · |2 and et∆ respectively,
so that we can solve equation (2.11) for the infinite order jet of j

1
2a(t) in the origin:

Theorem 2.4 (Explicit Formula for Heat Kernel Coefficients [W])

The infinite order jet( j
1
2 a(t) ) ∈ SymT ∗M ⊗ EndEM [[ t ]] of the generating series a(t) for

the heat kernel coefficients of a generalized Laplacian ∆∆ acting on sections of a vector bundle
EM over a manifold M is characterized by its Intertwining Property 2.1. More precisely the

jet of any solution a(t) to the equation ev
[
e−t∆∆ψ

]
= ev

[
e−t∆(j

1
2a(t)ψ)

]
is given by:

jet j
1
2a(t) = et∆ (2t)−N e−t| · |2 ev[ e−t∆∆ ]]

Needless to say the polynomial e−t|·|2 is the total symbol of the differential operator
et∆. Thus it is possible to replace e−t|·|2 ev[ e−t∆∆ ]] by ev[ e−t∆∆et∆ ]] but not by ev[ et∆e−t∆∆ ]],
because the latter would involve partial derivatives of the coefficients of e−t∆∆ in the origin.
Nevertheless we cheated a little bit, because while certainly injective the operator (2t)N is
definitely not surjective. It is quite remarkable in itself that the value of the differential
operator e−t∆∆et∆ in the origin lies in the image of (2t)N by equation (2.11), because its
coefficients for the different powers tk, k ≥ 0, of t must be differential operators of order less
than or equal to k in the origin to have this true!

Coming to a full circle one can show by direct if tedious calculation that the unique solu-
tion to the Intertwining Property 2.1 derived in Theorem 2.4 satisfies the recursion formula
(2.8) of Minakshisundaram–Pleijel we started with. It was in fact this very calculation which
made us realize a couple of interesting subtleties of this recursion formula. For example the
operator j

1
2 ∆∆j−

1
2 is formally selfadjoint with respect to the flat volume form provided ∆∆ is

formally selfadjoint and thus points out fascinating symmetries in the rather complicated
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explicit coefficients of ∆∆ in the exponential trivialization we used. Perhaps more important
is the point that in the recursion formula (2.8) the coefficients of j

1
2 ∆∆j−

1
2 are to act by

multiplication with their adjoint from the right on the endomorphism valued function a. We
will provide a direct argument for this behaviour at the time we solve the recursion formula
up to terms of lower order in Section 6 in order to prove the Local Index Theorem.
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Chapter 3

Iterated Covariant Derivatives and
Taylor Series

Iterated covariant derivatives∇k are differential operators of order k ≥ 0 acting on sections of
a vector bundle EM endowed with a connection∇ over an affine manifoldM . Understanding
these differential operators in detail is of particular importance in differential geometry.
Considered as a model of the jet operator however the iterated covariant derivatives ∇k

contain redundant information and so people are inclined to take their symmetrizations in
order to get a model of jet theory suitable for introducing concepts from representation
theory of the holonomy groups HolE and Hol of the connection on EM and the affine
connection on TM . On the other hand it is known that precisely this redundant information
comes in myriad seemingly unrelated curvature terms which make prominent appearance in
Weitzenböck type formulas. In this section we will define iterated covariant derivatives and
prove the special Jet Formula 3.1 which provides a covariant interpretation for the Taylor
series of the connection form ωE and the backward parallel transport Φ−1 in the origin of
normal coordinates. A more powerful generalization of this formula taming all the different
curvature terms is formulated and proved in the next section.

Recall that an affine manifold M is a manifold endowed with a connection ∇ on its tangent
bundle TM . Consider a vector bundle EM over an affine manifold M endowed with its own
connection for convenience again denoted by∇. The iterated covariant derivatives∇k, k ≥ 0,
are defined as differential operators of order k from sections of EM to

⊗kT ∗M ⊗ EM via:

Γ(EM)
∇−→ Γ(T ∗M ⊗ EM)

∇−→ Γ(
⊗2T ∗M ⊗ EM)

∇−→ . . .
∇−→ Γ(

⊗kT ∗M ⊗ EM)

Alternatively we may set ∇0ψ := ψ and define ∇k recursively for all k ≥ 1 by

∇k
X1,...,Xk

ψ := ∇X1(∇k−1
X2,...,Xk

ψ ) −
k∑

µ=2

∇k−1
X2,...,∇X1

Xµ,...,Xk
ψ

for all vector fields X1, . . . , Xk. A formal consequence of either definition is the coassocia-
tivity identity ∇k+l = ∇k ◦∇l of differential operators acting on sections of EM with values
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in
⊗k+lT ∗M ⊗ EM . The iterated covariant derivatives satisfy Leibniz’ rule

∇k
X1, ..., Xk

(B(ψ1 ⊗ ψ2)) =
k∑

r=0

∑
µ1<...<µr

B(∇r
Xµ1 , ..., Xµr

ψ1 ⊗∇k−r

X1, ..., X̂µ1 , ..., X̂µr , ..., Xk
ψ2 )

for all parallel bilinear mapsB : E1M⊗E2M −→ EM and its generalizations for multilinear
maps. Coassociativity and Leibniz rule conspire in the fundamental curvature identity

∇k+l+2
X1,...,Xk,A,B,Y1,...,Yl

− ∇k+l+2
X1,...,Xk,B,A,Y1,...,Yl

=
k∑

r=0

∑
µ1<...<µr

(
(∇r

Xµ1 ,...,Xµr
RE )A,B ∇k+l−r

X1,...,X̂µ1 ,...,X̂µr ,...,Xk,Y1,...,Yl
(3.1)

−
l∑

ν=1

∇k+l−r

X1,...,X̂µ1 ,...,X̂µr ,...,Xk,Y1,...,(∇r
Xµ1 ,...,Xµr

R )A,BYν ,...,Yl

)

whenever the connection on TM is torsion free, where RE and R are the curvature tensors
of the connections on EM and TM respectively. Without the assumption of torsion freeness
additional terms depending on the torsion need to be added of course, otherwise there is
no essential difference in the arguments presented below. Although we will only make very
limited use of this curvature identity it seems to be the key to a better understanding of all
the calculations in this and the next Section 4.

In order to keep in line with our general philosophy and to simplify notation we will
essentially reduce to the case where the affine manifold T is a vector space and the vector
bundle E×T is trivial such that the exponential map for the affine connection on the tangent
bundle of T in the origin exp0 : T0T ∼= T −→ T is the identity while the parallel transport
along radial geodesics t 7−→ tX, X ∈ T, for the connection on E×T is given by the identity
E × {0} −→ E × {tX}. Fixing a point y in a manifold M we can always reduce locally
to this case by choosing T := TyM and E := EyM while pulling back all the geometric
data to the tangent space via the exponential map in y. Of course the geometric data may
cease to be well–defined off a neighborhood of the origin, for simplicity we will nevertheless
assume it is.

Reducing to this special case amounts to fixing a gauge for the action of the diffeomor-
phism group of M and the group of automorphisms of the vector bundle EM . Therefore
it shouldn’t be too surprising that this setup allows for special constructions, which are
not evidently covariant, although we will see in a moment that they have a neat covariant
interpretation. In particular we can define the forward and backward parallel transport

Φ(X ) : T0T ∼= T −→ TXT ∼= T Φ−1(X ) : TXT ∼= T −→ T0T ∼= T

as functions on T with values in EndT via parallel transport of tangent vectors along the
radial geodesic t 7−→ tX through X ∈ T . Moreover we can define the connection form ωE

for the connection ∇ on E × T as a function on T with values in T ∗ ⊗ EndE by

(∇Y ψ )(X ) = (
∂

∂Y
ψ )(X ) + ωE(X )Y ψ(X )
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for every section ψ and every constant vector field Y . The reason we restrict to constant
vector fields here is that the notation ∂

∂Y
tends to become ambiguous for general vector fields

in expressions like ∂2

∂Y ∂Ỹ
. We will try to get away using only constant vector fields as the

alternative of introducing a special notation for the trivial connection on E×T seems worse.
In general the connection form ωE of some connection ∇ on E × T takes values in the

holonomy algebra holE ⊂ EndE in the origin whenever parallel transport for ∇ is the
identity along all radial geodesics t 7−→ tX. Omitting the details of this argument we
add that in fact the holonomy algebra holE of a connection ωE defined on a star–shaped
neighborhood of the origin is generated by the values of ωE in this neighhorhood. For an
analytic connection these statements are easily verified by looking at the infinite order Taylor
series of ωE in the origin given explicitly below.

In case the vector bundle is the tangent bundle T × T the trivialization given by parallel
transport along radial geodesics clearly differs from the standard trivialization of the tangent
bundle of T and it is exactly this difference which is reflected in the parallel transport Φ.
Instead of defining a connection form ω with values in the holonomy algebra hol of the affine
connection it is more natural to use the standard trivialization in the case of the tangent
bundle of T leading to the Christoffel symbols Γ ∈ C∞(T, T ∗ ⊗ EndT ) characterized by:

(∇YZ )(X ) = (
∂

∂Y
Z )(X ) + Γ(X )Y Z(X )

Relating the trivialization given by parallel transport along radial geodesics to the standard
trivialization via backward parallel transport Φ−1 one easily derives the following relation

Γ(X )Y = Φ(X ) (
∂

∂Y
Φ−1 )(X ) + Φ(X )ω(X )Y Φ−1(X )

which allows us to find the Taylor series of Γ in the origin once we know the Taylor series of
the Levi–Civita connection ω and the parallel transport Φ−1. Let us start calculating these
Taylor series with a genuinely covariant interpretation of Φ−1 and the connection form ωE:

Lemma 3.1 (Special Jet Formula)
Let M be an affine manifold with a torsion free connection ∇ and EM a vector bundle over
M endowed with a connection again denoted by ∇ so that the iterated covariant derivatives
∇k are defined. There exist unique formal power series Φ−1 ∈ Γ(SymT ∗M ⊗ EndTM) and
ωE ∈ Γ(SymT ∗M⊗T ∗M⊗EndEM) such that for all vector fields X, Y we have an equality

d

dt

∣∣∣∣
0

∑
k≥0

1

k!
∇k

X+tY,...,X+tY =
∑
k≥0

1

k!
∇k+1

X,X,...,X,Φ−1(X)Y − ωE(X)Y

∑
k≥0

1

k!
∇k

X,...,X

between formal power series of differential operators on sections of EM . Moreover the values
of Φ−1 and ωE at a point y ∈ M are the Taylor series of the backward parallel transport
Φ−1(X) : TXTyM −→ T0TyM and the connection form ωE for the trivialization of EM
given by parallel transport along radial geodesics in normal coordinates centered about y.

Proof: Of course the geometric interpretation proves existence and uniqueness of these
power series once we have shown that the Taylor series of Φ−1 and ωE make this identity
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true. For this purpose we pull back the geometric data to a neighborhood of 0 ∈ TyM via
the exponential map and thus reduce to the special case of a non–trivial connection on a
trivial vector bundle EyM ×TyM over the vector space TyM discussed before. With parallel
transport along radial geodesics being the identity we have for every section ψ of EyM×TyM

d

dt
ψ( tX ) = (∇Xψ )( tX )

along the radial geodesic t 7−→ tX. Continuing this way we find an asymptotic expansion

ψ(X) ∼
X→0

∑
k≥0

1

k!

dk

dtk

∣∣∣∣
0

ψ( tX ) =
∑
k≥0

1

k!
(∇k

X,...,Xψ )( 0 ) (3.2)

using that t 7−→ tX is a geodesic curve. In the same vein the forward parallel transport
Φ(X) : T0TyM −→ TXTyM allows us to associate a vector field Φ(X)Y to every Y ∈ TyM
which is parallel along every radial geodesic t 7−→ tX. Arguing as before we conclude:

(∇Φ(X)Y ψ )(X ) ∼
X→0

∑
k≥0

1

k!

dk

dtk

∣∣∣∣
0

(∇Φ(tX)Y ψ )( tX ) =
∑
k≥0

1

k!
(∇k+1

X,...,X,Y ψ )( 0 )

If we replace Φ(X) by its Taylor series and reinterprete this asymptotic expansion as a formal
power series we can invert the series Φ and find the asymptotic expansion of ∇Y ψ for the
constant vector field on TyM associated to Y :

(∇Y ψ )(X ) ∼
X→0

∑
k≥0

1

k!
(∇k+1

X,...,X,Φ−1(X)Y ψ )( 0 )

On the other hand we know that for constant vector fields we have the asymptotic expansion

(∇Y ψ )(X ) =
d

dt

∣∣∣∣
0

ψ(X + tY ) + ωE(X )Y ψ(X )

∼
X→0

d

dt

∣∣∣∣
0

∑
k≥0

1

k!
(∇k

X+tY,...,X+tY ψ )( 0 ) + ωE(X)Y

∑
k≥0

1

k!
(∇k

X,...,Xψ )( 0 )

where ωE has to be reinterpreted as a Taylor series in 0 in the second line. �

With this lemma at hand it is possible to calculate the Taylor series for Φ−1 and ωE as well
as for Φ to arbitrary order in a completely covariant fashion. In fact the simple calculation

d

dt

∣∣∣∣
0

1
6
∇3

X+tY,X+tY,X+tY = 1
2
∇3

X,X,Y − 1
2
RE

X,Y∇X + 1
6
∇RX,Y X − 1

3
(∇XR

E )X,Y

already provides the Taylor expansions of Φ−1 and ωE up to third order

Φ−1(X )Y = Y + 1
6
RX,YX + O(X3 )

ωE(X )Y = 1
2
RE

X,Y + 1
3
(∇XR

E )X,Y + O(X3 )
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with the classical consequences:

j(X )Y = det Φ−1(X ) = 1 − 1
6
Ric(X, X ) + O(X3 )

g(X )(Y, Z ) = 〈Φ−1(X)Y,Φ−1(X)Z〉 = 〈Y, Z〉 + 1
3
〈RX,YX,Z〉 + O(X3 )

In order to derive the complete Taylor series for both Φ−1 and ωE we generalize the term
d
dt

∣∣
0
∇k

X+tY,...,X+tY we are eventually interested in by looking at a telescope sum of the form

k−1∑
µ=0

(
µ+K

K

)
∇k

X,...,X︸ ︷︷ ︸
µ

,Y,X,...,X︸ ︷︷ ︸
k−1−µ

=
(

k+K
K+1

)
∇k

X,...,X,Y−
k−2∑
µ=0

(
µ+K+1

K+1

)(
∇k

X,...,X︸ ︷︷ ︸
µ

,X,Y,X,...,X︸ ︷︷ ︸
k−2−µ

−∇k
X,...,X︸ ︷︷ ︸

µ

,Y,X,X,...,X︸ ︷︷ ︸
k−2−µ

)
for given K ≥ 0. Using the general curvature identity (3.1) in order to expand the right
hand side and sorting out terms we readily arrive at the key relation

k−1∑
µ=0

(
µ+K

K

)
∇k

X,...,X︸ ︷︷ ︸
µ

,Y,X,...,X︸ ︷︷ ︸
k−1−µ

=
(

k+K
K+1

)
∇k

X,...,X,Y

−
k−2∑
ν=0

(
ν+K+1

ν

) (
k+K

ν+K+2

)
(∇ν

X,...,XR
E)X,Y ∇k−2−ν

X,...,X

+
k−3∑
ν=0

(
ν+K+1

ν

) k−3−ν∑
ρ=0

(
ρ+ν+K+2

ν+K+2

)
∇k−2−ν

X,...,X︸ ︷︷ ︸
ρ

,(∇ν
X,...,XR)X,Y X, X,...,X︸ ︷︷ ︸

k−3−ν−ρ

valid for all k, K ≥ 0. The disturbing third summand is of exactly the same form as the
left hand side and hence we can keep on expanding this term recursively. Starting with
K = 0 and turning this crank once or twice to see what happens the reader will have no
difficulties to guess the Taylor series for Φ−1 and ωE in the origin as formal power series in
the curvature tensors R and RE and their covariant derivatives. Rather surprisingly after
this laborious calculation the resulting Taylor series turn out to be governed by remarkably
simple differential equations:

Theorem 3.2 (Taylor Series of Backward Parallel Transport)
The infinite Taylor series of the backward parallel transport Φ−1 and the connection form ωE

in the origin of normal coordinates are the unique solutions of the differential equations 1

N (N + 1 ) Φ−1 = RΦ−1 (N + 1 )ωE = ρE
Φ−1

subject to the initial condition Φ−1(X) = id + O(X2) with parameters R and ρE given by:

R(X )Y :=
∑
k≥0

1

k!
(∇k

X,...,XR )X,YX ρE(X )Y :=
∑
k≥0

1

k!
(∇k

X,...,XR
E )X,Y

1Theorem 3.2 has presumably appeared a couple of times in different formulations in the mathematical
literature. In particular the author is aware of an article proving Theorem 3.2 in the language of differential
forms, but could not track down this reference.
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Intriguingly the proof of this theorem sketched above works backwards deducing the
differential equations obeyed by Φ−1 and ωE from the explicit form of their solutions in
terms of formal power series. Of course this is a rather roundabout way to prove a result as
important as this and it would be interesting to know whether there is a direct argument to
the same end. In any case it is advantageous to use the differential equations instead of the
Taylor series for Φ−1 and ωE, not only is it easier to remember the differential equations,
but it is sometimes possible to solve the equations explicitly in a different way. Say on a
symmetric space the power series R is particularly simple R(X)Y = (adX)2Y suggesting
an ansatz Φ−1(X) = φ−1(adX) for Φ−1 with some power series φ−1(z), which turns the
differential equation above into the equation

z
d

dz
( z

d

dz
+ 1 )φ−1(z) = z2 φ−1(z)

with unique solution φ−1(z) = sinh z
z

subject to the initial condition φ−1(z) = 1 + O(z2).
Similarly the power series ρE(X)Y = −[X, Y ]? encodes the infinitesimal representation ?
of the isotropy subalgebra on the fiber E of a homogeneous vector bundle on a symmetric
space and under the ansatz ωE(X)Y = −w(adX)Y ? we get the differential equation

( z
d

dz
+ 1 )w(z) = z φ−1(z) = sinh z

with the unique solution w(z) = cosh z−1
z

. In particular the backward parallel transport on a
symmetric space Φ−1(X) = sinh adX

adX
is symmetric with respect to the flat scalar product 〈 , 〉,

whereas it will differ from its adjoint Φ−∗(X) by terms of rather unexpectedly high order

Φ−∗(X ) = Φ−1(X ) + 1
360

[ RX,·X, (∇XR )X,·X ] + O(X6 )

on a general Riemannian manifold M . The primary obstruction [RX,·X, (∇XR)X,·X ] can
be thought of as a section of Sym 5T ∗M⊗Λ2TM . What manifolds besides symmetric spaces
have this section vanishing everywhere?

Remark 3.3 (Gauß Lemma)
A characteristic property of Riemannian geometry called the Gauß Lemma is that the expo-
nential map is a radial isometry in the sense g(X)(X, Y ) = 〈X, Y 〉 for all X in its domain.
Noting the identities Φ−1(X)X = X and ωE(X)X = 0, which express the gauge fixing
conditions in terms of formal power series, we can rewrite the Gauß Lemma in the form:

〈X, Y 〉 = g(X )(X, Y ) = 〈X,Φ−1(X )Y 〉

Eventually replacing Y by Φ(X)Y we find 〈X,Φ(X)Y 〉 = 〈X, Y 〉, which is readily verified
without alluding to the Gauß Lemma using 〈(∇k

X,...,XR)X,ZX,X〉 = 0 for all k ≥ 0.

Even without writing down the formal power series solution for the Taylor series of Φ−1

and ωE we can derive additional information from the differential equations of Theorem 3.2.
By definition we have say for the form ρ describing the affine connection on the tangent
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bundle the equality ρ(X)YX = R(X)Y for all X, Y ∈ TM or more succinctly ρ(·) · = R.
With the differential equations for the connection form ω and Φ−1 we observe

N [ω(·) · ] = [ (N + 1)ω ](·) · = RΦ−1 = N (N + 1) Φ−1

and thus find the identity ω(·) · = (N + 1)Φ−1 − id valid to all orders without ever having
to write down a Taylor series. We can make similar use of the differential equations to show
that the homogeneous components of the Taylor series of Φ−1 and ωE as polynomials in X
are polynomials in R and RE and their covariant derivatives homogeneous with respect to
a suitable definition of weight. Of course this is not too surprising in itself simply because
there are not that many ways to write down a polynomial in R and RE and their covariant
derivatives producing a vector or an endomorphism of E from a fixed number of arguments.
This reasoning does not specify the weight for RE and its covariant derivatives relative to the
weight of R however, because the curvature of E will only enter ωE linearly. Considerations
done later in this article fix this problem in favor of the following definition:

Definition 3.4 (Weight of Curvature Tensors)
Define the weight operator W as a derivation on the space of formal power series in the
curvature tensors R and RE as well as their covariant derivatives by specifying the weights:

W ∇kR := (k + 2) ∇kR W ∇kRE := k ∇kRE

Not only the power series Φ−1 and ωE but all the important derived formal power series
describing the geometry of the vector bundle EM over the affine manifold M have a nice
relation between their weight W as a polynomial in the curvature tensors and their degree
N as a polynomial on the tangent space TM . Besides the Levi–Civita connection ω and the
Christoffel symbols Γ we will need in particular the power series ΩE and j

1
2 defined by:

ΩE := ωE
Φ j

1
2 := det

1
2 Φ−1 = exp( 1

2
tr log Φ−1 )

Noting the relations WR = NR and WρE = (N − 1)ρE as well as Wρ = (N + 1)ρ we find:

W Φ−1 = N Φ−1 W ωE = (N − 1)ωE W ΩE = (N − 1) ΩE

W Φ = N Φ W ω = (N + 1)ω W Ω = (N + 1) Ω

W j
1
2 = N j

1
2 W Γ = (N + 1) Γ

(3.3)

Before closing this section we want to illustrate our considerations with an argument deriving
a non–trivial consistency relation between the Taylor series for ωE and Φ−1. According to
the central idea (3.2) of the special Jet Formula 3.1 the value of the symmetrized covariant
derivatives ∇kRE at a point y ∈ M are the components of the Taylor series of the curvature
RE of EM in exponential coordinates centered about y considered as a section of the bundle
Λ2T ∗M ⊗ End EM trivialized by parallel transport along radial geodesics. On the other
hand the very definition of curvature reads dωE + ωE ∧ ωE when considered as a 2–form in
exponential coordinates with values in End EM . The two different trivializations of T ∗M
involved are related by backward parallel transport Φ−1 and so we must have the equality∑

k≥0

1

k!
(∇k

X,...,XR
E )Φ−1(X)Y,Φ−1(X)Z = ( dωE + ωE ∧ ωE )(X)Y,Z (3.4)
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between sections of SymT ∗M ⊗ Λ2T ∗M ⊗ End EM . To second order in X it reads

RE
Y,Z + (∇XR

E)Y,Z + 1
2
(∇2

X,XR
E)Y,Z + RE

1
6
RX,Y X,Z

+ RE
Y, 1

6
RX,ZX

+ . . .

=
(

1
2
RE

Y,Z + 1
3
(∇YR

E)X,Z + 1
3
(∇XR

E)Y,Z + 1
8
(∇2

Y,XR
E)X,Z + 1

8
(∇2

X,YR
E)X,Z

+ 1
8
(∇2

X,XR
E)Y,Z + 1

24
RE

Y,RX,ZX + 1
24
RE

X,RY,ZX + 1
24
RE

X,RX,ZY

)
−
(

all terms repeated with Y ↔ Z
)

+ 1
4
RE

X,YR
E
X,Z − 1

4
RR

X,ZR
E
X,Y + . . .

which can hardly be called obvious. Actually this relation boils down to the first and second
Bianchi identity for R and RE respectively, if we take the implicit integrability condition

(∇2
Y,XR

E )X,Z = (∇2
X,YR

E )X,Z − [RE
X,Y , R

E
X,Z ] + RE

RX,Y X,Z + RE
X,RX,Y Z

for granted. Identities like the two identities above do come out of the blue, but are ma-
nifestations of rather stringent inner consistency conditions showing that the coefficients in
the Taylor series for Φ−1 and ωE are not at all random. Whatever else this example may
be good for we hope that at least it will make the reader understand that trying to guess
curvature identities without guiding principle is not really an option.

Changing the point of view it is possible to show that the Taylor series of ωE is the unique
solution to the consistency identity (3.4) subject to the initial condition ωE(X) = O(X) and
the constraint ωE(X)X = 0, because on the space of solutions to the constraint the formal
exterior derivative d : SymT ∗M ⊗ T ∗M ⊗ End EM −→ SymT ∗M ⊗ Λ2T ∗M ⊗ End EM
is injective by an elementary version of Hodge theory. Moreover it can be shown that the
Taylor series for Φ−1 and ωE are both uniquely determined by the consistency identity (3.4)
provided we impose an additional constraint on Φ−1 equivalent to the vanishing of torsion.
The natural context for formulating this peculiar characterization of the curvature is the
calculus of difference elements. A detailed exposition of this calculus however is beyond the
scope of this article.
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Chapter 4

From Special to General Jet Formula

With the special Jet Formula 3.1 proved in the previous section determining all from it-
self the Taylor series of some interesting geometric objects like the connection form ωE and
the backward parallel transport Φ−1 in the origin of normal coordinates one wonders what
use a general formula expressing the iterated covariant derivatives in terms of their sym-
metrizations could be. It turns out that such a formula indeed exists and can be proved
by straightforward induction once the right data structure keeping track of all the different
curvature terms is found. It turns out the right data structure is a jet forest, whose precise
Definition 4.1 is the key point of this section. The inductive nature of the set of all jet
forests corresponds directly to the induction step in the proof of the general Jet Formula 4.2.
Besides other applications the general Jet Formula will allow us to give a closed formula for
all powers of the class of twisted generalized Laplacians, which can then be used to calculate
the heat kernel coefficients of all generalized Laplacians explicitly.

Before we start it is perhaps appropriate to make a few general remarks about the identi-
fication of Taylor series of functions and symmetric multilinear forms in SymT ∗. Associated
to a function or formal power series F like Ω or Φ considered above is a sequence of symmetric
multilinear forms Fk ∈ Sym kT ∗, k ≥ 0, defined as the iterated directional derivatives

Fk( X1 ·X2 · . . . ·Xk ) :=

(
∂k

∂X1 ∂X2 . . . ∂Xk

F

)
(0) (4.1)

in such a way that Taylor’s formula reads F (X) =
∑

k≥0
1
k!
Fk(X ·X · . . . ·X). Conversely we

will take this formula as the definition of the formal power series F associated to a sequence
Fk ∈ Sym kT ∗, k ≥ 0, of symmetric multilinear forms or in turn to a function F . The
advantage of this convention is that the definition of the shuffle product on SymT ∗ turns
verbatim into the classical Leibniz formula for iterated derivatives of products, whereas the
only advantage of an alternative convention seen quite often in literature is that it prevents
people using it from doing any more sophisticated calculations. Usually we will simplify
notation and write F (X1 · . . . ·Xk) instead of Fk(X1 · . . . ·Xk). Although the reader should
be aware that the expression F (X) becomes ambiguous this way refering alternatively to
F1(X), this ambiguity is of little practical importance.

In order to illustrate the identification of formal power series with sequences of symmetric
multilinear forms we consider the sequence of symmetrized iterated covariant derivatives
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jetkψ(X1 · . . . ·Xk) := 1
k!

∑
σ∈Sk

∇k
Xσ1,...,Xσk

ψ for k ≥ 0, whose associated formal power series
jetψ ∈ Γ(SymT ∗M ⊗EM) will be called the infinite order jet of ψ. Sometimes we will use
the typographical variation jetk

X1·...·Xk
ψ in notation. According to the central argument (3.2)

in the proof of the special Jet Formula 3.1 the value of jetψ in a point y ∈ M is the infinite
order Taylor series of the section ψ in the origin of normal coordinates centered about y with
the bundle EM trivialized by parallel transport along radial geodesics, because

ψ(X) ∼
X→0

jetψ(X ) :=
∑
k≥0

1

k!
∇k

X,...,Xψ

for all vector fields X by the preceeding remarks about symmetric forms. In consequence the
differential operator jet : Γ(EM) −→ Γ(SymT ∗M ⊗ EM) is a model for the jet operator
and enjoys its universal property. In particular it is possible to express the iterated covariant
derivatives ∇kψ in terms of their symmetrizations jetrψ, r = 0, . . . , k, alone. The general
Jet Formula 4.2 will make precisely this reconstruction principle explicit.

The key step in the proof of the general Jet Formula is the special Jet Formula 3.1 proved
in the previous section. Interpreted the right way it expresses the covariant derivatives
∇k+1ψ symmetrized over all but the last entry in terms of their complete symmetrizations
jetrψ, r = 0, . . . , k + 1. In order to see this more clearly we cast the special Jet Formula( ∂

∂Y
jetψ

)
(X ) = [ ( jet∇ψ )(X ) ]Φ−1(X)Y − ωE(X )Y ( jetψ )(X )

into jet notation, replace Y by Φ(X )Y and ωE by the formal power series ΩE := ωE
Φ . Now

Φ(X)Y = Y − 1
6
RX,YX + O(X3) agrees with the identity up to at least quadratic terms

while ΩE(X)Y = 1
2
RE

X,Y +O(X2) has no constant term so that we eventually arrive at:

∇k+1
X,...,X,Y ψ = [ jetk

X·...·X∇ψ ]Y = jetk+1
X·...·X·Y ψ +

k∑
r=2

(
k
r

)
jetk+1−r

X·...·X·Φr(X·...·X)Y ψ (4.2)

+
k∑

r=1

(
k
r

)
ΩE

r (X · . . . ·X)Y jetk−r
X·...·Xψ

In a sense the general Jet Formula is the “functorial” extension of this version (4.2) of
the special Jet Formula 3.1. Book keeping however is a feat in itself in the process and to
simplify this task we need to introduce jet forests. Recall that a tree is a connected graph
without loops while a general graph without loops is called a forest. In this way every forest
is the union of its connected components and thus a union of trees. A rooted forest is a
forest together with an orientation for each of its edges such that every vertex is adjacent
to at most one outgoing edge. In a rooted forest a vertex without incoming edge is called a
leaf, similarly a vertex without outgoing edges is called a root. Clearly every rooted forest
is a union of rooted trees and every rooted tree has a unique root. Note however that the
sets Leaf F and Root F of leaves and roots of F need not be disjoint, the rooted forest F

may have solitary vertices adjacent to no edge at all. A variant of a well–known property
of forests asserts that every automorphism of a rooted forest is uniquely determined by the
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induced permutation of its leaves. One way to break the action of the automorphism group
is to label the leaves of a forest F of order |F| := #Leaf F with numbers 1, . . . , |F|.

In the considerations to come the rooted forests are used as abstract flow charts for doing
calculations. The leaves correspond to arguments and the vertices different from the leaves to
some as yet unspecified operations while the roots are associated to results. With this inter-
pretation rooted forests are particularly important in the theory of operads [MSS]. However
the rooted forests we will use have some characteristic feature quite annoying from the more
general point of view of operads, every vertex besides a leaf has a distinguished incoming
edge linking it directly to some leaf called the bud of the vertex in question. Rooted forests
with this property are appropriately called budding forests, moreover a labelled budding
forest will be assumed to have the labelling chosen in such a way that the bud of a vertex
V is the leaf of maximal label in the subtree rooted at V . In particular the bud label of a
tree T, the label taken by the bud of the root, is the maximal label of all leaves of T. Later
on we will need the notion of a twin bud, too, a vertex V in a labelled budding forest is said
to have a twin bud if the two leaves with maximal labels in the subtree rooted at V carry
consecutive labels and are both connected directly to V .

Definition 4.1 (Jet Forest and Feedback)
A jet forest F of order k ≥ 1 is a rooted forest with |F| = k leaves together with a labelling

Leaf F
∼=−→ { 1, . . . , k } of its leaves with numbers 1, . . . , k and a coloring of its vertices by

colors black and white meeting the following conditions:

• All leaves are white while all black vertices are roots. Moreover every black vertex has
at least two incoming edges, every white vertex at least three unless it is a leaf.

• For all vertices V besides leaves the leaf with maximal label in the subtree rooted at V
is connected directly to V and will be called the bud of V .

Depending on the color of their roots the trees in a jet forest F will be called black or white
trees. A feedback map for a jet forest F of order k is a not necessarily injective map f from
the set of black trees to {1, . . . , k,∞} such that f(T) exceeds the bud label of T.

In the interpretation of rooted forests as abstract flow charts a feedback map should
be thought of as a modification of the arguments of F by the results of the calculations in
the black trees. In this context the condition imposed on f(T) ensures that the result of
a calculation in a black tree T is never even implicitly used to modify its own arguments.
A different method to encode the information provided by a feedback map would be to
introduce new “transparent” vertices in a jet forest F sitting on the outgoing edges of its
leaves. The necessary reformulation of the budding condition makes the resulting alternative
definition of a jet forest rather contrieved as many transparent vertices could cascade on the
budding edge. This alternative definition of a jet forest has its merits however and we will
return to this concept in due time. At the moment splitting the information into a jet forest
F and a feedback map f as we have done is quite convenient.

Perhaps the most intriguing aspect of the definition of jet forests is the budding condition
imposed on every vertex besides leaves. In fact it is precisely this condition which gives the
set of all jet forests with feedback a very simply inductive structure. Namely every jet forest
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Fnew of order k + 1, k ≥ 0, arises from a unique jet forest F of order k by either adding a
solitary white vertex labelled k + 1 or by adding a white or black vertex with bud labelled
k+1 and the other incoming edges linking to a subset of the white roots of F. Similarly every
feedback map for Fnew extends a unique feedback f for F by choosing a subset of the black
trees T of F with f(T) = ∞ to have feedback k+1. Evidently the presence of this inductive
structure allows us to generate the set of all jet forests with feedback efficiently, however the
most important aspect of the inductive structure is the way it reflects the induction step in
the proof of the general Jet Formula.

In order to fill the abstract flow chart interpretation of jet forests with life we need to
specify rules turning a tree T in a jet forest F into a multilinear expression in the arguments
associated to the leaves. Inductively let us decorate the black and white vertices in a jet
forest F of order k by endomorphisms and vector fields respectively starting with k argument
vector fields X1, . . . , Xk on M decorating the correspondingly labelled leaves. Consider now
the source vertices of the incoming edges of a vertex V in F. These vertices are all necessarily
white and we may assume by induction that they are decorated with vector fields Y and
X1, . . . , Xr, where Y is the decoration of the bud. In turn we will decorate the vertex V with
either the vector field Φr(X1 · . . . ·Xr)Y or with one of the endomorphisms Ωr(X1 · . . . ·Xr)Y

and ΩE
r (X1 · . . . · Xr)Y respectively depending on the color of V . Evidently the decoration

of the root of a white tree T in F we get this way is a multilinear expression Φ(T)X(T) in
the arguments X(T) associated to the leaves of T, which depends essentially only on the
isomorphism class of T as a rooted tree with buds. Similarly we get multilinear expressions
Ω(T)X(T) or ΩE(T)X(T) respectively for the black trees in F.

Lemma 4.2 (General Jet Formula)
For all vector fields X1, . . . , Xk, k ≥ 1, on an affine manifold M with torsion free connection
and all sections ψ of a vector bundle EM over M endowed with a connection ∇ we have

∇k
X1, ..., Xk

ψ =
∑

jet forest
|F|= k

∑
feedback

f

( −→∏
T⊂F black
f(T) =∞

ΩE(T)Xf (T)

)
jetψ

( ∏
T⊂F white

Φ(T)Xf (T)

)

where the black trees T with f(T) < ∞ are used to modify the vector fields X1, . . . , Xk to:

Xf
r :=

( −→∏
T⊂F black
f(T) = r

Ω(T)Xf (T)

)∗
Xr

In this formula ∗ denotes the canonical adjoint antiautomorphism of U EndTM multiplying
all factors of the product with −1 and reversing their order. Because ΩE(T) and Ω(T) are
endomorphisms we need to specify that they are multiplied in increasing order of the maximal
labels of leaves in Leaf T or equivalently bud labels as indicated by the arrows over

∏
.

In order to follow the reasoning of the proof it is perhaps better to have a pictorial idea of
the statement and concrete non–trivial examples in mind. For this reason we want to write
out explicitly a couple of jet forests and the associated curvature terms. In the diagrams
representing the jet forests the edges are oriented upwards and the leaves on the bottom are
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labelled left to right, while the black roots are shown together with their feedback. To first
and second order of course the general Jet Formula 4.2 agrees with the self–evident formulas

∇1
X1
ψ = jet1

X1
ψ

a
1

∇2
X1,X2

ψ = jet2
X1·X2

ψ

a
1

a
2

+ 1
2
RX1,X2 jet0ψq∞

� Aa
1

a
2

Already to third order however the general Jet Formula features some rather strange terms

∇3
X1,X2,X3

ψ = jet3
X1·X2·X3

ψ

a
1

a
2

a
3

+ 1
2
RE

X1,X2
jet1

X3
ψ

q∞
� Aa
1

a
2

a
3

− jet1
1
2

RX1,X2
X3

ψ

q3
� Aa
1

a
2

a
3

+ 1
2
RE

X1,X3
jet1

X2
ψ

q∞
� @a

1
a
2

a
3

(4.3)

+1
2
RE

X2,X3
jet1

X1
ψ

q∞
� Aa

1
a
2

a
3

− jet1
1
6
[RX1,X3

X2+RX2,X3
X1]
ψ

a
� @a

1
a
2

a
3

+ 1
3
[(∇X1R

E)X2,X3 + (∇X2R
E)X1,X3 ] jet

0ψ

q∞
� @a

1
a
2

a
3

where the sums in brackets expand the symmetric bilinear forms associated to the quadratic
pieces of the Taylor series of the forward parallel transport Φ(X) = Y − 1

6
RX,YX +O(X3)

and the connection form ωE(X)Y = 1
2
RX,Y + 1

3
(∇XR

E)X,Y +O(X3). There are 21 jet forests
of order 4 and 30 different jet forests with feedback in total so that we refrain from writing
out the general Jet Formula to this order.

Proof: As there is only one jet forest F of order 1 having a single solitary white vertex
and no possible feedback the formula is certainly true for k = 1 for every vector bundle
EM over M . Assume by induction hypothesis that the formula is correct for some k ≥ 1
and every vector bundle over M , say for the vector bundle T ∗M ⊗ EM endowed with the
product connection. Applying the formula to the section ∇ψ ∈ Γ(T ∗M ⊗ EM) we get:

∇k
X1, ..., Xk

∇ψ =
∑

jet forest
|F|= k

∑
feedback

f

( −→∏
T⊂F black
f(T) =∞

ΩT ∗⊗E(T)Xf (T)

)
jet∇ψ

( ∏
T⊂F white

Φ(T)Xf (T)

)
(4.4)

The connection form ΩT ∗⊗E of the product connection on T ∗M ⊗ EM acts as a derivation

ΩT ∗⊗E(T)Xf (T) := Ω(T)Xf (T) ⊗ idE + idT ∗ ⊗ ΩE(T)Xf (T)

on T ∗M⊗EM for every black jet tree T. Consequently for every black tree T with f(T) = ∞
occurring in equation (4.4) we need to choose whether the corresponding curvature expression
is to act by minus the adjoint endomorphism Ω(T)Xf (T)α := −α(Ω(T)Xf (T) · ) on T ∗M or
as ΩE(T)Xf (T) on EM . The possible choices are conveniently parametrized by a modified
feedback map fnew with fnew(T) := f(T) unless T is a black tree with f(T) = ∞, whose
corresponding curvature expression is to act on T ∗M , in this case we set fnew(T) := k + 1.
Observe that only the black trees with f(T) ≤ k matter in modifying the argument vector
fields from X1, . . . , Xk to Xf

1 , . . . , X
f
k , hence using the modified feedback map fnew instead
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of f won’t change Xf
r = Xfnew

r , r = 1, . . . , k. Inserting the vector field Xk+1 into formula
(4.4) and changing the summation to modified feedback maps fnew we conclude

∇k+1
X1, ..., Xk+1

ψ

=
∑

jet forest
|F|= k

∑
feedback

f

[ −→∏
T⊂F black
f(T) =∞

ΩT ∗⊗E(T)Xf (T) jet∇ψ
( ∏

T⊂F white

Φ(T)Xf (T)

) ]
Xk+1

=
∑

jet forest
|F|= k

∑
modified

fnew

 −→∏
T⊂F black

fnew(T) =∞

ΩE(T)Xfnew (T)

 [
jet∇ψ

( ∏
T⊂F white

Φ(T)Xfnew (T)

) ]
Xfnew

k+1

(4.5)

by the coassociativity identity ∇k+1
X1,...,Xk,Xk+1

ψ = [∇k
X1,...,Xk

∇ψ ]Xk+1
of iterated covariant

derivatives. Evidently the adjoint antiautomorphism of UEnd TM makes its appearance
in modifying Xk+1 into Xfnew

k+1 , because this is the proper way the representation of the Lie
algebra End TM on T ∗M extends to the universal enveloping algebra UEnd TM or more
succinctly because (Xα)(X) = α(X∗X) for all X ∈ UEnd TM . With formula (4.5) we have
succeeded in expressing ∇k+1ψ solely in terms of jet∇ψ. In turn the special Jet Formula
expresses jet∇ψ in terms of jetψ, namely the polarization of (4.2) with respect to X reads

[
jetk

X1·...·Xk
∇ψ

]
Y

= jetk+1
X1·...·Xk·Y ψ +

k∑
r=2

∑
µ1<...<µr

jetk−r+1
X1·...·Xk·Φ(Xµ1 ·...·Xµr )Y ψ (4.6)

+
k∑

r=1

∑
µ1<...<µr

ΩE(Xµ1 · . . . ·Xµr)Y jetk−r
X1·...·Xk

ψ

where of course X1 · . . . ·Xk in the sums on the right hand side refers to the product of all
the remaining arguments with Xµ1 , . . . , Xµr omitted. Expanding every summand in (4.5)
in this way using (4.6) compares nicely to the way a jet forest Fnew of order k + 1 extends a
jet forest F of order k. Namely the summation over all r and all µ1 < . . . < µr turns into the
summation over all ways to join a new black or white vertex of Fnew with bud labelled k+ 1
to a subset of the white roots of F. Note that the Taylor series ΩE(X)Y = 1

2
RE

X,Y +O(X2)
has no constant term while Φ(X)Y = Y − 1

6
RX,YX +O(X3) agrees with the identity up to

at least quadratic terms reflecting the condition imposed on the number of incoming edges
for a black and white vertex respectively. �

Philosophically both the special and general Jet Formula are ultimately consequences of the
general curvature identity (3.1). Thinking of this statement the other way around we may
conclude that the general Jet Formula is uniquely characterized by two properties alone, first
of all the resulting expression for ∇k

X1,...,Xk
ψ satisfies all k − 1 applicable instances of the

curvature identity (3.1) and secondly this expression reduces to the definition

∇k
X,...,Xψ = jetk

X·...·Xψ

of jetkψ in case all argument vector fields X1, . . . , Xk agree. In principle we could thus
prove the general Jet Formula by showing that the sum over all jet forests indeed satisfies
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these characterizing conditions. The reader is invited to check formula (4.3) directly using
this argument, because it makes both applicable instances of the curvature identity (3.1)
true as a consequence of the first and second Bianchi identity. In general this approach to
proving the general Jet Formula seems rather difficult, although it is easily checked that with
all argument vector fields agreeing there is but one non–vanishing summand in the stated
formula for ∇k

X,...,Xψ, the summand associated to the jet forest with k solitary white vertices:

Remark 4.3 (Partial Symmetrization)
Consider a non–leaf vertex V in a jet forest F with the property that all incoming edges to
V connect directly to leaves. Symmetrizing the summand in the general Jet Formula 4.2
associated to F and a feedback map f avoiding the labels of the leaves connecting to V over
all arguments associated to these leaves results in zero.

In light of this observation let us try to find formulas for the iterated covariant derivatives
of the form ∇k+1

X,...,X,Y,X,...,Xψ. In this situation the partial symmetrization criterion 4.3 is
strong enough to characterize the relevant jet forests with feedback completely. Let us call
a jet tree T different from a solitary white vertex a palm tree if all its non–leaf vertices
occur on a single stem, a path from some leaf to the root. In other words a palm tree is
a tree of maximal height among all trees with a fixed number of non–leaf vertices. In the
absense of feedback partial symmetrization would imply that the only jet forests F possibly
contributing to ∇k+1

X,...,X,Y,X,...,Xψ are the jet forests with solitary white vertices only except
at most a single palm tree. Things are more complicated due to the presence of feedback,
however it is still easy to argue by induction that the jet forests F with feedback f possibly
contributing to ∇k+1

X,...,X,Y,X,...,Xψ consist entirely of solitary white vertices and palm trees.
Moreover the bud labels of all non–leaf vertices in such a jet forest F are strictly increasing
not only in each palm tree in F separately, but over the entire forest F in the sense that
the total order on the set of palm trees by bud labels is well–defined independent of the
choice of representative non–leaf vertices. Eventually all palm trees T in F except possibly
the maximal one are black and they are linked via feedback in the sense that f(T) < ∞ is
the label of a leaf connecting to the minimal non–leaf vertex in the successor palm tree of T.

Taking this characterization of the relevant jet forests into account we conclude that the
iterated covariant derivative ∇k+1

X,...,X,Y ψ is the sum over all jet forests F with at most one
non–leaf vertex with bud labelled k + 1, because the vector field Y occurs to the very right
decorating the leaf with maximal label. Consequently the general Jet Formula collapses to
the special one in the form (4.2) as expected. Of course this can’t be too surprising, because
the general Jet Formula is essentially conditioned to make the special Jet Formula true!

An interesting, but less trivial example is the iterated covariant derivative ∇k+1
Y,X,...,Xψ,

which plays a prominent role in the so–called canonical or Spencer connection on jet bundles
in the model of jet theory we are using at the moment. In order to sum the general Jet
Formula in this case we need to count the relevant jet forests of linked palm trees and
solitary white vertices. For starters we want to count the jet forests with only a single palm
tree T. Let us assume that we meet k1, k2, . . . , kr additional incoming edges following the
stem from the leaf labelled 1 decorated with Y to the root. Exactly(

k

k1 + . . .+ kr

)(
k1 + . . .+ kr − 1

kr − 1

)(
k1 + . . .+ kr−1 − 1

kr−1 − 1

)
. . .

(
k1 + k2 − 1

k2 − 1

)(
k1 − 1

k1 − 1

)
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jet forests meet this assumption. The first binomial chooses the subset of all leaves connecting
to non–leaf vertices besides the leaf labelled 1. The leaf of maximal label among these is the
bud of the root and only the other kr − 1 additional leaves of the root need to be chosen.
Again the leaf of maximal label in the remaining k1+ . . .+kr−1 leaves is the bud of the vertex
second to the root, kr−1 − 1 additional leaves have to be determined, and so on. Similarly
it is possible to count the number of jet trees with two or more palm trees and to sum
the general Jet Formula for ∇k+1

Y,X,...,Xψ eventually. Needless to say the combinatorial details
of this summation are intricate, the final result (4.8) however suggests a more streamlined
approach. First of all let us define the formal power series Φ∗ on TM with values in End TM
as the unique solution to the differential equation

(NΦ∗ ) Φ−∗ = Φ−1 (NΦ ) (4.7)

subject to the initial condition Φ∗(X) = id +O(X2). Written as formal power series in the
homogeneous components of R(X)Y :=

∑
k≥0

1
k!

(∇k
X,...,XR)X,YX the two power series Φ

and Φ∗ are closely related, Φ∗ = rev(Φ) is simply given by reversing the order of the factors
in Φ. In particular Φ∗ really is the adjoint of Φ on a Riemannian manifold M as suggested
by notation, because the homogeneous components of R are all symmetric endomorphisms
by the classical symmetries of the Riemannian curvature tensor. A rigorous proof of this
simple relation between Φ and Φ∗ based on the defining differential equation (4.7) proceeds
by induction on r in the congruences Φ∗ = rev(Φ) + O(Rr+1) modulo polynomials in the
homogeneous components of R of order at least r + 1.

Consider now the set of palm forests consisting entirely of palm trees linked via feedback
satisfying all the conditions above. In other words the palm trees in a palm forest F are
totally ordered by bud labels and all palm trees T in F except possibly the maximal one
are black with feedback f(T) labelling a leaf connected directly to the minimal non–leaf
vertex in the successor palm tree. Given such a palm forest F with exactly r + 1 leaves
and a decoration of the leaves by vector fields Y,X, . . . , X the root of the maximal white
or black palm tree in F is decorated either by a vector field or an endomorphism depending
polynomially of order r on X and linearly on Y . Summing this decoration over all palm
forests with exactly r + 1 leaves and with white or black maximal palm tree results in

− 1
r
[ (Φ− id)Φ∗ ]r(X · . . . ·X)Y − 1

r
[ ΩE

Φ∗ ]r(X · . . . ·X)Y

for all r ≥ 2 or r ≥ 1 respectively. Omitting the details of the argument, which is by
straightforward induction on r, we use this intermediate result to derive the following formula

∇k+1
Y,X,...,Xψ = jetk+1

X·...·X·Y ψ −
k∑

r=2

1

r

(
k

r

)
jetk+1−r

X·...·X·[(Φ−id)Φ∗]r(X·...·X)Y ψ

+
k∑

r=1

1

r

(
k

r + 1

)
jetk−r

X·...·X·[ΩΦ∗ ]r(X·...·X)Y Xψ (4.8)

−
k∑

r=1

1

r

(
k

r

)
[ ΩE

Φ∗ ]r(X · . . . ·X)Y jetk−r
X·...·Xψ
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for the Spencer connection, which can be verified along the lines of the recursive argument
leading to Theorem 3.2. Needless to say the author has done so for all orders up to k = 25.

At this point the reader may suspect that the symmetries underlying the general Jet For-
mula point to the existence of an underlying group theoretic framework. Indeed the most
natural interpretation of the general Jet Formula is that it gives a closed formula for the
exponential of the special Jet Formula considered as an element (sic!) of a suitable algebraic
group. In the calculus of difference elements the special Jet Formula is in fact the difference
element between jetψ and jet∇ψ. Alternatively we could have started from the difference
element between jetψ and ∇(jetψ) to get another version of the general Jet Formula upon
exponentiation. Redefining Ω and Φ if necessary equation (4.8) appears just as fundamental
and perhaps even more natural than the special Jet Formula. In any case it seems as suitable
a starting point for an induction proving (a different version of) the general Jet Formula.

Although this approach is perfectly feasible, it has a very serious drawback. At each
induction step we need to take the covariant derivative of the group element we have con-
structed so far. In this way the general Jet Formula we end up with will feature not only
the power series Ω and Φ, but all their iterated covariant derivatives as well. However the
whole point in the general Jet Formula is that it separates the material from the redundant
information contained in iterated covariant derivatives. Piling up more and more redun-
dant information during the induction we will eventually loose all control about symmetry
properties of the different terms and camouflaged curvature terms aka Weitzenböck formulas.
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Chapter 5

Regularity of the Supertrace of the
Heat Kernel

Philosophically the heat kernel coefficients of generalized Laplacians studied in Section 2 are
the images of a certain universal object governing jet calculus on a Riemannian manifold.
Pursuing this philosophy we will replace the original heat kernel coefficients by “universal”
coefficients in this section. The principal advantage of using these universal coefficients is
that their Taylor series live in the space SymT ∗ ⊗ Uhol of formal power series with values
in the universal enveloping algebra Uhol of the holonomy algebra hol. Twisting the natural
filtration on Uhol appropriately we will construct a filtration F •(SymT ∗ ⊗ Uhol) on this
space, whose very existence probes deep into the combinatorial structure of heat kernel
coefficients. Having defined this filtration we will turn it into an algebraic analogue of
Getzler’s transformation in this section and use it to prove the regularity of the trace of the
heat kernels for twisted Dirac operators. The subsequent calculation of the index density is
postponed to the next section.

Recall that the universal enveloping algebra Uhol of a Lie algebra hol is the associative
algebra with unit generated freely by hol subject only to the condition that the commutator of
two elements from hol in the algebra Uhol agrees with their Lie bracket in hol. Alternatively
we can define Uhol by its universal property, namely every representation E of the Lie
algebra hol extends uniquely to an algebra homomorphism Uhol −→ EndE. Moreover
the universal enveloping algebra Uhol comes equipped with a natural ascending filtration
with U≤rhol being spanned by all formal products of at most r factors from hol and the
graded algebra associated to this filtration is isomorphic to the symmetric algebra Sym hol.
Together with polarization and induction this readily implies that U≤rhol is already spanned
by elements of the form 1

r̃!
Xr̃ with 0 ≤ r̃ ≤ r and X ∈ hol. The universal property allows

us to identify the algebra (Uhol)op opposite to Uhol with the universal enveloping algebra
of the opposite Lie algebra holop. Consequently the canonical Lie algebra homomorphism
hol −→ holop, X 7−→ −X, extends to the involutive adjoint antiautomorphism of Uhol

∗ : Uhol −→ Uhol, X1 . . . Xr 7−→ (−1)r Xr . . . X1

with (Xα)(ψ) = α(X∗ψ) for every representation E and all ψ ∈ E, α ∈ E∗ and X ∈ Uhol.

In the gauge fixed geometric context used previously in Sections 2 and 3 let us consider the
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connection Laplacian ∇∗∇ acting on sections of a trivial vector bundle E × T carrying a
non–trivial connection over a euclidian vector space T endowed with a Riemannian metric
g such that the symbol metric g and its exponential map exp0 : T0T −→ T at the origin
agree with the scalar product on T and the canonical identification T0T ∼= T respectively.
Moreover let us assume that parallel transport along radial geodesics t 7−→ tX is the identity
E × {0} −→ E × {tX}. Fixing an orthonormal base {xµ} for the scalar product 〈 , 〉 on T
we get a local orthonormal base {Φxµ} for g and an explicit expansion of its cometric tensor

g−1 :=
∑

λ

Φxλ ⊗ Φxλ =
∑
µν

〈Φ∗xµ,Φ
∗xν〉xµ ⊗ xν =

∑
µν

gµν xµ ⊗ xν

where gµν := 〈ΦΦ∗xµ, xν〉. By definition of the connection form ωE we clearly have

∇2
Y,Z =

∂2

∂Y ∂Z
+ ωE

Y

∂

∂Z
+ ωE

Z

∂

∂Y
− ∂

∂ΓYZ
+ ωE

Y ω
E
Z + (

∂

∂Y
ωE )Z − ωE

ΓY Z

for two constant vector fields Y, Z, where Γ are the Christoffel symbols corresponding to
the symbol metric g or equivalently the connection form of the Levi–Civita connection on
the tangent bundle in the standard trivialization of TT ∼= T × T . Of course ωE and Γ
are completely unrelated in general, nevertheless similar formulas apply to both as they
serve similar purposes. Tracing ∇2 over the cometric tensor g−1 we arrive at the following
expression for the connection Laplacian ∇∗∇:

−
∑
µν

gµν

[( ∂2

∂xµ∂xν

− ∂

∂Γxµxν

)
+
(

2ωE
xµ

∂

∂xν

+ (
∂

∂xµ

ωE )xν − ωE
Γxµxν

)
+ ωE

xµ
ωE

xν

]
Looking more closely at this formula the reader will observe that all coefficients of ∇∗∇ are
functions on T with values in the universal enveloping algebra UholE of the holonomy algebra
holE of the connection ∇. Accordingly we have ordered the terms into scalar differential
operators with coefficients in U≤0holE and differential operators with coefficients in U≤1holE

or U≤2holE respectively. Evidently this property remains unchanged under conjugation by
the square root j

1
2 of the Jacobian determinant, because equation (2.3) reads

j
1
2 ∇∗∇ j−

1
2 = ∇∗∇ +

∂

∂L
+ ωE

L +
1

2
divg L − 1

4
g(L, L ) (5.1)

with L := gradg log j so that ∇∗∇ is modified by scalar differential operators only except

for the term ωE
L with coefficients in U≤1holE. This observation has the striking consequence

that the heat kernel coefficients ad ∈ C∞(T, EndE ) for ∇∗∇ acting on sections of E × T
are actually the images of “universal” heat kernel coefficients ad ∈ C∞(T, UholE ) under
the representation homomorphism UholE −→ EndE. In fact the recursion formula (2.8)

( d + 1 + N ) ad+1(X) = − ( j
1
2 ∇∗∇ j−

1
2 ) ad(X)

makes perfect sense for functions with values in UholE while the initial value for the recursion
is the image of a0(X) = 1 under the representation. Note however the minor subtlety that
the coefficients of ∇∗∇ act by multiplication with their adjoint from the right on UholE.
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Remark 5.1 (Universal Heat Kernel Coefficients)
Consider a representation E of holE and the associated trivial vector bundle E× T endowed
with the connection ∇ with connection form ωE. The heat kernel coefficients of the connection
Laplacian ∇∗∇ are the images of universal heat kernel coefficients ad ∈ C∞(T, UholE )
under the representation homomorphism UholE −→ EndE.

The existence of universal heat kernel coefficients ad, d ≥ 0, can be seen as an algebraic
analogue of the basic idea of the second proof of the Local Index Theorem in [BGV] using
the scalar Laplacian acting on functions on a principal bundle over M . A more satisfactory
explanation would be to realize the function a(t, x, y) as a family of sections of the groupoid
of diffeomorphisms of the principal bundle in question covering diffeomorphisms of M .

Eventually we want to solve the recursion formula (2.8) for the coefficients ad, d ≥ 0, in
order to find their values ad(0) in the origin. For this purpose it is clearly sufficient to solve
them for the Taylor series of ad ∈ SymT ∗⊗UholE only. Restricting to Taylor series has the
advantage that we know the Taylor series of the coefficients of j

1
2 ∇∗∇ j−

1
2 in the origin from

the formulas for the Taylor series for Φ−1 and ωE derived in Section 3. Surprisingly we get
an additional bonus from restricting to Taylor series in form of a quite remarkable filtration
on SymT ∗ ⊗ UholE, which will become an algebraic substitute for Getzler’s transform:

Definition 5.2 (Filtration for Heat Kernel Coefficients)
The space SymT ∗⊗UholE of formal power series with coefficients in the universal enveloping
algebra UholE of the holonomy algebra holE carries an ascending filtration

. . . ( F−1( SymT ∗⊗UholE ) ( F0( SymT ∗⊗UholE ) ( F1( SymT ∗⊗UholE ) ( . . .

defined by:

Fr( SymT ∗ ⊗ UholE ) :=
⊕
l≥0

Sym lT ∗ ⊗ U≤b l+r
2
cholE

The filtration on the space SymT ∗ ⊗ UholE induces a filtration on the space of Taylor
series of differential operators acting on SymT ∗ ⊗ UholE. Namely a differential operator
acting on SymT ∗ ⊗ UholE is called filtered of degree d ∈ Z if it maps Fr(SymT ∗ ⊗ UholE)
to Fr+d(SymT ∗ ⊗ UholE) for all r ∈ Z. The prototype example of such an operator is

(xk ⊗ X )
∂m

∂Xm

with X ∈ T, x ∈ T ∗ and a coefficient X ∈ U≤rholE which is filtered of degree m− k + 2r.
The crucial point in our first proof of the Local Index Theorem is that the connection
Laplacian∇∗∇ and the squaresD2 of twisted Dirac operators are filtered of degree 2. In order
to check this for∇∗∇ we use the Taylor expansion ωE(X)Y = 1

2
RE

X,Y + 1
3
(∇XR

E)X,Y +O(X3)
of the connection form to calculate the Taylor series of the connection Laplacian ∇∗∇ up to
differential operators which are filtered of degree 0. Say for the summand∑

µν

gµν(X )ωE
xµ

(X )
∂

∂xν
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which is of first order and has coefficients in U≤1holE, this means to expand the coefficients
gµνωxµ up to order O(X3), becausem = 1, r = 1 makem−k+2r ≤ 0 for k ≥ 3. Interestingly
the connection form ωE itself is O(X) so that we can replace gµν = δµν + O(X2) by δµν

without changing the result modulo operators filtered of degree 0. Similar considerations
apply to all summands in the expansion of ∇∗∇ and in the end we find

∇∗∇ ≡ −
∑

µ

∂2

∂x2
µ

−
∑

µ

(
RE
·,xµ

∂

∂xµ

+
2

3
(∇·R

E)·,xµ

∂

∂xµ

+
1

3
(∇xµR

E)·,xµ

)
(5.2)

−
∑

µ

(
1

4
RE
·,xµ
RE
·,xµ

+
1

6
RE
·,xµ

(∇·R
E)·,xµ +

1

6
(∇·R

E)·,xµR
E
·,xµ

)
modulo differential operators filtered of degree 0. Evidently this implies that the connection
Laplacian is filtered of degree 2. It is certainly not a coincidence that this looks pretty much
like the result of performing a Getzler transform on the square of a twisted Dirac operator.

Theorem 5.3 (Coefficients of the Connection Laplacian)
The heat kernel coefficients ad, d ≥ 0, of ∇∗∇ are elements of F2d(SymT ∗ ⊗ UholE), thus

ad ∈
⊕
l≥0

Sym lT ∗ ⊗ U≤d+b l
2
cholE

and the value ad(0) of the d–th coefficient along the diagonal lives in U≤dholE. Moreover
the symbol class [ad] ∈ F2d(SymT ∗ ⊗ UholE)/F2d−2(SymT ∗ ⊗ UholE) only depends on the
Taylor series of ∇∗∇ up to differential operators filtered of degree 0.

Proof: According to the Taylor expansion j(X) = 1− 1
6
Ric(X,X)+O(X3) of the Jacobian

determinant derived before the operator of multiplication by the scalar j
1
2 agrees with the

identity up to operators filtered of degree −2. As we already know that ∇∗∇ is filtered
of degree 2 we conclude that conjugation by j

1
2 does not change ∇∗∇ modulo operators

filtered of degree 0. On the other hand Euler’s number operator N :=
∑
xµ

∂
∂xµ

acts by

multiplication with l on Sym lT ∗ so that the operator d+ 1 +N appearing in the recursion
formula (2.8) of Minakshisundaram–Pleijel for d ≥ 0

( d + 1 + N ) ad+1 = −( j
1
2 ◦ ∇∗∇ ◦ j−

1
2 ) ad

is invertible on SymT ∗ ⊗ UholE with inverse preserving the filtration F •(SymT ∗ ⊗ UholE).

With j
1
2∇∗∇j− 1

2 being filtered of degree 2 a straightforward induction starting with the
initial value a0(X) = 1 in F0(SymT ∗ ⊗ UholE) proves the first assertion. The arguments
for the second statement are similar and omitted. �

Expanding the summands of the operator j
1
2∇∗∇j− 1

2 more carefully than we have done
above the reader may have noticed a couple of simplifications which altogether appear to
be too lucky a coincidence and rather point to a intriguingly consistent efficiency. Recall
that in Definition 3.4 we have defined the weight operator W as a derivation on the space
of formal power series in R and RE as well as their covariant derivatives by specifying the
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weights W∇kRE = k∇kRE and W∇kR = (k+2)∇kR compare table (3.3). Let us go back
for a second and have a look at the expansion of ∇2

Y,Z with constant vector fields Y and Z:

∇2
Y,Z =

∂2

∂Y ∂Z
+ ωE

Y

∂

∂Z
+ ωE

Z

∂

∂Y
− ∂

∂ΓYZ
+ ωE

Y ω
E
Z + (

∂

∂Y
ωE )Z − ωE

ΓY Z

The summand ωE
Y

∂
∂Z

is filtered of degree 3−N in the sense that the homogeneous component
of ωE of degree k as polynomial in X becomes a filtered operator of degree 3− k. Similarly
the summand ωE

Y ω
E
Z is filtered of degree 4−N while ωE

ΓY Z is filtered of degree 2−N and so on.
As soon as we express the degree N as a polynomial in X in terms of the weight W however
all summands become filtered of degree 2 −W ! Neither tracing over g nor conjugating by
j

1
2 spoils this property, because Wg−1 = Ng−1 and equation (5.1) becomes

j
1
2 ∇∗∇ j−

1
2 = ∇∗∇ +

∂

∂L
+ ωE

L +
1

2
divL +

1

4
g(L, L )

with L := gradg log j and NL = (W −1)L, the metric divergence divgL = L(log j)+divL
is replaced by the flat divergence div using the definition volg = jvol of the Jacobian.
Reconsidering the preceeding proof in light of this observation one readily concludes:

Remark 5.4 (Weight of the Heat Kernel Coefficients)
For every given r ≥ 0 the class [ad] of the d–th heat kernel coefficient ad, d ≥ 0, in the
quotient F2d(SymT ∗⊗UholE)/F2d−r−1(SymT ∗⊗UholE) is a polynomial of weight ≤ r in the
Riemannian curvature tensor R and the curvature RE of the connection on E together with
their derivatives, where ∇kRE and ∇kR are assigned the weights k and k + 2 respectively.

Example 5.5 (Connection Laplacian for Flat Connections [Gi])
Consider the connection Laplacian ∇∗∇ for a flat connection ∇. In this case the holonomy
algebra hol = {0} is trivial with Uhol = R and the definition of the filtration reduces to
Fr(SymT ∗) := Sym ≥−rT ∗. Consequently ad(0) = [ad] ∈ F2d(SymT ∗)/F−1(SymT ∗) is a
polynomial of weight ≤ 2d in the Riemannian curvature R and its covariant derivatives.

Let us turn to another class of generalized Laplacians which is perhaps even more interesting
than connection Laplacians namely squares D2 of twisted Dirac operators acting on sections
of Clifford bundles. Barring intricacies arising from the representation theory of Clifford
algebras the characteristic feature of a Clifford bundle E × T is that it is tensor product

E × T ∼= ( $ ⊗ HomCl T ( $ , E) )× T

E × T ∼=
(
$+ ⊗ HomCl T ($+, E) ⊕ $− ⊗ HomCl T ($−, E)

)
× T

endowed with a product connection ωE = ω⊗ id+ id⊗ωtwist, where $ and $± are the spinor
representations of the Clifford algebra ClT of the euclidian vector space T of even and odd
dimension respectively and HomCl T ($, E) or HomCl T ($±, E) are called the twists. Whereas
the spin connection ω couples to Riemannian geometry and can be identified with the Levi–
Civita connection of the symbol metric g, we have no further information about the twisting
connection ωtwist in general. Consequently the holonomy algebra holE of the connection on
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E × T is a subalgebra of the direct sum hol⊕ holtwist of the Riemannian holonomy algebra
hol and the holonomy algebra holtwist of the twisting connection. Its universal enveloping
algebra UholE is thus a subalgebra of the product Uhol⊗ Uholtwist.

Strictly speaking the tensor product decomposition given above is valid only for modules
over the Clifford algebra ClT of the euclidian vector space T and its scalar product 〈 , 〉
whereas a Clifford bundle E × T in differential geometry comes equipped with a Clifford
multiplication •g : (T ⊗E)× T −→ E × T satisfying the Clifford relations for the metric g.
The fiber E × {X} of such a Clifford bundle at a point X ∈ T however can be turned into
a module over ClT by setting Y • := Φ(X)Y •g. Conversely given a module E over ClT the
vector bundle E × T becomes a Clifford bundle via Y •g = Φ−1Y • without modifying the
tensor product decomposition. The general Weitzenböck formula for twisted Dirac operators

D2 = ∇∗∇ +
κ

4
+
∑
µ<ν

Xµ •g Xν •g R
twist
Xµ,Xν

(5.3)

written covariantly for a local orthonormal base X1, . . . , Xn for the symbol metric g with
its Clifford multiplication •g and its scalar curvature κ reads

D2 = ∇∗∇ +
κ

4
id⊗ id + 2

∑
µ<ν

(xµ ∧ xν) ?⊗Rtwist
Φxµ,Φxν

in terms of tensor product decomposition and the local orthonormal base Φx1, . . . , Φxn

where (Y ∧ Z)? = 1
2
(Y • Z • + 〈Y, Z〉) is the infinitesimal representation of the Lie algebra

soT on the spinor factor $ or $±. Evidently the additional curvature term will not be
an element of Uhol ⊗ Uholtwist unless the form part of the twisting curvature Rtwist takes
values in the Riemannian holonomy algebra hol. This restriction is not really a problem
as we can always replace hol by soT ∼= Λ2T , but it distinguishes a preferred class of
twists adapted to the Riemannian holonomy group. On a Kähler manifold the preferred
twists are exactly the hermitean holomorphic bundles whereas self–dual bundles are preferred
on hyperkähler manifolds. Presumably this condition has not yet been considered for the
exceptional Riemannian holonomy groups Spin7 and G2.

With respect to the filtration F •(SymT ∗ ⊗ UholE) on SymT ∗ ⊗ UholE the additional
curvature term above is quadratic in holE and thus filtered of degree 4 so that there is no
way to apply Theorem 5.3 directly. Remedy however is easily found in taking the tensor
product structure of UholE into account. In fact we can think of the heat kernel coefficients
ad, d ≥ 0, as functions on T with values in Uhol⊗Uholtwist. This additional structure allows
us to twist the filtration by setting:

Fr( SymT ∗ ⊗ Uhol⊗ Uholtwist ) :=
⊕
l≥0

Sym lT ∗ ⊗ U≤b l+r
2
chol⊗ Uholtwist

In particular the troublesome curvature term is linear in hol and thus filtered of degree 2 with
respect to the twisted filtration. This filtration F •(SymT ∗ ⊗ Uhol ⊗ Uholtwist) has another
advantage in that the connection form ωE of the connection on E × T is now the sum of
the spin connection form ω and its twisting counterpart ωtwist. For the term

∑
µν g

µνωE
xµ

∂
∂xν

considered before we thus get the sum of
∑

µν g
µνωxµ

∂
∂xµ

depending only the spin connection
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form ω and another term involving ωtwist which is filtered of degree 0. Omitting the tensor
product sign for the natural inclusions of Uhol and Uholtwist into UholE for convenience and
arguing as before we find

D2 ≡ −
∑

µ

∂2

∂x2
µ

−
∑

µ

(
R·,xµ

∂

∂xµ

+
2

3
(∇·R)·,xµ

∂

∂xµ

+
1

3
(∇xµR)·,xµ

)
−
∑

µ

(
1

4
R·,xµR·,xµ +

1

6
R·,xµ(∇·R)·,xµ +

1

6
(∇·R)·,xµR·,xµ

)
(5.4)

+
∑
µ<ν

(
2 (xµ ∧ xν)R

twist
xµ,xν

+ 2 (xµ ∧ xν) (∇·R
twist)xµ,xν

)
modulo differential operators filtered of degree 0. Note that the scalar curvature term κ

4
is

filtered of degree 0 and thus does not occur explicitly on the right hand side. Evidently the
square D2 of a twisted Dirac operator is a differential operator filtered of degree 2. Mutatis
mutandis the proof of Theorem 5.3 applies and we conclude:

Theorem 5.6 (Regularity of the Supertrace)
The heat kernel coefficients ad, d ≥ 0, of the square D2 of a twisted Dirac operator with
twisting holonomy holtwist belong to F2d( SymT ∗ ⊗ Uhol⊗ Uholtwist ). In other words

ad ∈
⊕
l≥0

Sym lT ∗ ⊗ U≤d+b l
2
chol ⊗ Uholtwist

and the value ad(0) of the d–th coefficient along the diagonal lives in U≤dhol ⊗ Uholtwist.
Moreover its symbol class in F2d(SymT ∗⊗Uhol⊗Uholtwist)/F2d−2(SymT ∗⊗Uhol⊗Uholtwist)
only depends on the Taylor series of D2 up to operators filtered of degree 0.

Contrary to the connection Laplacians considered before however there is no convincingly
defined notion of weight allowing a generalization of Remark 5.4 to squares of twisted Dirac
operators. Essentially the problem is that the Taylor series of the curvature dωE + ωE ∧ωE

of the connection on the bundle E × T in the origin is a sum of two terms satisfying

W dωE = N dωE W (ωE ∧ ωE ) = (N − 2) (ωE ∧ ωE )

and it is hard to believe that any adjustment can possibly reconsile this contradiction.
Nevertheless a direct consequence of Theorem 5.6 is the regularity of the supertrace of the
heat kernel for a twisted Dirac operator as time goes to zero. In fact the graded character
tr$+−$− of the spinor representation $ in even dimension and the characters tr$± of the two
inequivalent spinor representations $± in odd dimension have a very characteristic property:

Lemma 5.7 (Character of the Spinor Representation)
Consider the Lie algebra soT ∼= Λ2T of the orthogonal group of an oriented euclidian vector
space T of dimension n. In even dimensions n the unit volume Vol ∈ ΛnT associated to the
orientation provides a means to distinguish positive and negative half spinors. The graded
character tr$+−$− of the spinor representation $ = $+⊕$− vanishes on U< n

2 soT and satisfies

tr$+−$−( X1 . . . Xn
2

) Vol = i−
n
2 X1 ∧ X2 ∧ . . . ∧ Xn

2
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for all X1, . . . ,Xn
2
∈ soT . Similarly in odd dimensions n the unit volume Vol ∈ ΛnT of the

given orientation on T distinguishes between the two inequivalent spinor representations $±.
Associated to their characters tr$± are bilinear forms tr$±(X • X ) for X ∈ T, X ∈ UsoT ,

which vanish on U< n−1
2 soT while for all X ∈ T and X1, . . . ,Xn−1

2
∈ soT we find:

tr$±( X • X1 . . . Xn−1
2

) Vol = ± i−
n+1

2 X ∧ X1 ∧ X2 ∧ . . . ∧ Xn−1
2

Proof: By definition of the spinor representation the element eX, X ∈ soT, of a suitable
completion of U soT acts by Clifford multiplication with e

1
2
X ∈ ClT . In order to exponen-

tiate X ∈ soT ∼= Λ2T in the Clifford algebra it is convenient to write it as

X = x1 p1 ∧ q1 + . . . + xk pk ∧ qk

with orthonormal vectors p1, q1, . . . , pk, qk ∈ T and constants x1, . . . , xk ∈ R. The different
pr ∧ qr = pr qr are Clifford commuting square roots of −1 and so by Euler’s formula

e
1
2
X =

∏
r

[
cos

xr

2
+ sin

xr

2
pr qr

]
=

∏
r

cos
xr

2
+ . . . +

∏
r

sin
xr

2
p1 q1 . . . pk qk

where the omitted terms are even elements of ClT of intermediate degree. In even dimensions
n we may assume k = n

2
without loss of generality while p1, q1, . . . , pn

2
, qn

2
is an oriented

orthonormal base. In these dimensions only the multiples of the unit volume in the Clifford
algebra ClT have non–vanishing graded trace on $ and by convention Vol = p1 q1 . . . pn

2
qn

2

acts as ±i−n
2 on the half spinor representations $±. In particular we conclude:

tr$+−$−( eX ) =
∏

r

sin
xr

2
tr$+−$−( Vol ) = 2

n
2 i−

n
2

∏
r

sin
xr

2

Separating the homogeneous terms of this equation results in the formulas

tr$+−$−(
1

r!
Xr ) =

{
0 if r < n

2

i−
n
2 Pf(X) if r = n

2

(5.5)

where Pf(X) :=
∏

r xr is the Pfaffian of X. Recall that the filtration on the universal
enveloping algebra is defined in such a way that U<ksoT is spanned by elements of the
form 1

r!
Xr with 0 ≤ r < k. Hence the character tr$+−$− vanishes on U< n

2 soT . The second
statement follows via polarization from the more customary definition of the Pfaffian:

tr$+−$−(
1

(n
2
)!

X
n
2 ) Vol = i−

n
2 Pf( X ) Vol := i−

n
2

1

(n
2
)!

X ∧ X ∧ . . . ∧ X

In odd dimensions n we may assume similarly k = n−1
2

and can extend p1, q1, . . . , pk, qk to
an oriented orthonormal base z, p1, q1, . . . , pn−1

2
, qn−1

2
. However the only odd elements in

the Clifford algebra ClT of non–vanishing trace on $± are again the multiples of the unit
volume Vol acting by convention as ±i−n+1

2 on $±. Observing that the element X •e 1
2
X is odd

and arguing as before we conclude that the bilinear form tr$±(X •X) vanishes on U< n−1
2 soT

and verify the stated formula via polarization. �
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A different argument to the same end somewhat closer in spirit to Getzler’s approach uses
the filtration of the Clifford algebra directly instead of the filtration of UsoT . All X ∈ soT
act by elements of filtration degree 2 in the Clifford algebra, but only elements of top degree
have non–vanishing graded trace on the spinor representation $ in even dimensions n while
in odd dimensions n the only odd elements of non–vanishing trace on $± are again of top
degree. Using the universal enveloping algebra instead of the Clifford algebra however avoids
the problem that the filtration becomes trivial in degrees greater n and offers the possibility
to use other interesting representations or equivalently characters. In general the vanishing
order of the character trE of a representation E in the filtration of UsoT is precisely the
minimal order d ≥ 0 of a Casimir X ∈ Zent≤d UsoT with non–vanishing trace on E. In
particular it is possible to construct characters with arbitrarily high vanishing order, of
course the associated representations are rather complicated. Say the spinor representation
above has both $+ and $− irreducible of the same dimension and with the same Casimir
eigenvalues for all generators of the center of UsoT except for the Pfaffian of degree n

2
. The

future will show whether interesting polynomials in the curvature tensor R can be proved to
integrate to zero over M by using characters with vanishing order even higher than n

2
.
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Chapter 6

Symbols of the Heat Kernel
Coefficients

Proving the regularity of the trace of the heat kernel as time goes to zero is not sufficient
to prove the Local Index Theorem of course. In this section we will complete the proof of
the Local Index Theorem begun in the previous section by calculating the even part of the
symbol class of the heat kernel coefficients ad, d ≥ 0, for the connection Laplacian ∇∗∇ and
squaresD2 of twisted Dirac operators. Of fundamental importance is a proper understanding
of how the form and the endomorphism part of the Riemannian curvature tensor R exchange
roles in a mirror version of the classical Chern–Weil construction of characteristic classes.

In Chern–Weil theory the form factor of the curvature tensor RE produces a differential
form under the wedge product while we use a character to reduce the endomorphism factor
to a number. The mirror version on the other hand uses the form factor of the curvature
tensor RE to construct the heat kernel coefficients while the character of the representation
defining the bundle EM reduces the endomorphism factor to a number which has to be
multiplied by the Riemannian volume form to produce a differential form of top degree.

Evidently Chern–Weil theory and its mirror version will result in quite different differ-
ential forms when applied to general bundles EM . However for twisted spinor bundles the
relevant part of the curvature tensor is essentially the Riemannian curvature tensor R, which
is completely symmetric in the form and endomorphism factor, whereas the character of the
spinor representation essentially reproduces the wedge product so that we eventually end
up with the same differential form. Let us consider the Â–class as a particularly interesting
example and sketch the two different interpretations of the formula (6.1) involved.

Remark 6.1 (Special Logarithms and Â–Class)

The relation log z
F (z)

= −(z d
dz

)−1(z F ′(z)
F (z)

−1) for the logarithmic derivative of a formal power

series F (z) = z +O(z2) is very convenient to rewrite the definition of the Â–class as:

Â(M ) := det
1
2

( R
4πi

sinh R
4πi

)
= exp

(
1

2
tr log

tR

sinh tR

) ∣∣∣∣
t= 1

4πi

= exp

(
− 1

2
(t
d

dt
)−1 tr

( tR

tanh tR
− 1

) ) ∣∣∣∣
t= 1

4πi

(6.1)

51



The proper interpretation of the latter expression for the Â–class in Chern–Weil theory is
to think of the curvature tensor R ∈ Λ2T ∗⊗EndT as an element of the algebra ΛT ∗⊗EndT
and so formal power series in tR can be evaluated in ΛT ∗⊗EndT [[t]]. Applying the trace tr to
the endomorphism factor we reduce the resulting element of ΛT ∗⊗EndT [[t]] to a differential
form which we need to exponentiate in the exterior algebra ΛT ∗[[t]]. In this calculation every
t comes along with a 2–form so that the final evaluation at t = 1

4πi
will effectively multiply

the top degree piece with (4πi)−
1
2

dim T . The interested reader will notice that the formula

above represents the Â–class in terms of the Chern character of the tangent bundle.
In the mirror version of Chern–Weil theory on the other hand the expression above for

the Â–class is not interpreted as a differential form at all. Instead we think of the forms
Λ2T ∗ ⊂ End T as skew endomorphisms on T making the curvature tensor R an element of the
algebra End T ⊗ Uhol so that formal power series in tR have a well–defined interpretation.
Once the trace tr over T of the resulting element of End T ⊗ Uhol[[t]] is taken it can be
exponentiated in the algebra Uhol[[t]] returning the generating power series of the symbols

[ ad(0) ] ∈ U≤dholE/U≤d−1holE

of the values of the universal heat kernel coefficients ad, d ≥ 0, along the diagonal. The
universal heat kernel coefficients become the real heat kernel coefficients in every represen-
tation, in particular the pointwise supertrace of the heat kernel coefficient ad of the square
of the Dirac operator on the spinor bundle is just the value of the character tr$+−$− of the

Z2–graded spinor representation on ad. Pairing the coefficient of t
dim M

2 of the generating
formal power series (6.1) with this character and multiplying by the Riemannian volume

form (4π)−
dim M

2 volg we get the index density of the Local Index Theorem.
Before we begin discussing the details of the arguments sketched above we want to justify

the expansions of the connection Laplacian ∇∗∇ and of the squares D2 of twisted Dirac
operators in equations (5.2) and (5.4) respectively modulo operators filtered of degree 0,
although the expansion modulo operators filtered of degree 1 would actually be sufficient
to prove the Local Index Theorem. The graded algebra associated to the filtration on the
universal enveloping algebra UholE is the commutative algebra Sym holE. With this in mind
the standard short exact sequence associated to every filtration F •

0 −→ F2d−1/F2d−2 −→ F2d/F2d−2 −→ F2d/F2d−1 −→ 0

becomes for the filtration F •(SymT ∗ ⊗ UholE) introduced in Definition 5.2:

0 −→
⊕
l≥0

l odd

Sym lT ∗ ⊗ Sym
l−1
2

+dholE −→
⊕
l≥0

Sym lT ∗ ⊗ Sym b l
2
c+dholE −→ (6.2)

−→
⊕
l≥0

l even

Sym lT ∗ ⊗ Sym
l
2
+dholE −→ 0

Restricting our ambitions to calculating only the symbol classes of the universal heat kernel
coefficients [ad] ∈ F2d(SymT ∗ ⊗ UholE)/F2d−2(SymT ∗ ⊗ UholE) ∼= SymT ∗ ⊗ Sym holE we
get rid of virtually all problems stemming from the non–commutativity of endomorphisms.
In this specific sense the symbol class [ad] ∈ SymT ∗⊗Sym holE lives in the maximal quotient
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of F2d(SymT ∗⊗UholE) allowing us to replace the non–commutative multiplication of UholE

with the commutative multiplication in Sym holE in doing the recursion (2.8) simplifying
calculations drastically. Looking once more at the sequence (6.2) we note that the even part
of the symbol class [ad] as a formal power series on T depends on ∇∗∇ only up to operators
filtered of degree 1 and hence is a polynomial in the curvature RE of the bundle EM .

At this point let us discuss a more subtle point in solving the recursion formula (2.8) of
Minakshisundaram–Pleijel explicitly for the symbol classes [ad] of the connection Laplacian
∇∗∇ and squares D2 of twisted Dirac operators. The problem is that it is not completely
self–evident how precisely the operator j

1
2 ∆∆∗j−

1
2 appearing in the recursion formula (2.8)

acts on the heat kernel coefficient ad ∈ C∞(T,End E) ∼= C∞(T,E∗) ⊗ E thought of as a
section of the trivial bundle E∗ × T keeping E fixed. Interestingly there are two logically
independent arguments in this matter and their equivalence leads to a consistency condition
on the Taylor expansion of ∆∆ in the chosen trivialization, which is already non–trivial in the
expansion (5.2) of ∇∗∇.

In a first line of reasoning we use the fact that the differential operator (∇∗∇)∗ is the
connection Laplacian on the dual bundle E∗ × T with dual connection compare (2.4). The
gauge fixing conditions originally imposed on E × T are clearly valid for E∗ × T as well,
the only way to make the canonical pairing parallel is to have parallel transport along radial
geodesics t 7−→ tX being the identity E∗ × {0} −→ E∗ × {X}. Essentially this is good
news allowing us to use expansion (5.2) with the connection form of E∗, which is ωE acting
by minus its adjoint on E∗ or ωEη := −η(ωE · ) for η ∈ E∗. Under the isomorphism
E∗ ⊗ E ∼= End E this action of A ∈ End E on E∗ keeping E fixed corresponds to right
multiplication by −A so that the expansion (5.2) of ∇∗∇ turns into the expansion

(∇∗∇)∗ ≡ −
∑

µ

∂2

∂x2
µ

+
∑

µ

(
RE
·,xµ

∂

∂xµ

+
2

3
(∇·R

E)·,xµ

∂

∂xµ

+
1

3
(∇xµR

E)·,xµ

)
(6.3)

−
∑

µ

(
1

4
RE
·,xµ
RE
·,xµ

+
1

6
RE
·,xµ

(∇·R
E)·,xµ +

1

6
(∇·R

E)·,xµR
E
·,xµ

)
up to operators filtered of degree 0, where all endomorphisms act by multiplication from
the right on the heat kernel coefficients ad ∈ C∞(T,End E). Alternatively we observe that
for a differential operator Q with formal adjoint Q∗ with respect to the Riemannian volume
form volg = jvol the operators j

1
2 Qj−

1
2 and j

1
2 Q∗ j−

1
2 are formally adjoint with respect to

the flat volume form vol, because∫
T

〈( j
1
2 Q∗ j−

1
2 ) η, ψ〉 vol =

∫
T

〈Q∗ ( j−
1
2η ), ( j−

1
2ψ )〉 j vol

for any two sections η ∈ C∞
0 (T,E∗) and ψ ∈ C∞

0 (T,E). Calculating the formal adjoint
with respect to the flat volume form is easy, simply reverse the order of all operators and
switch ∂

∂xµ
to − ∂

∂xµ
. Of course the isomorphism E∗⊗E ∼= End E still requires us to have all

endomorphisms in (5.2) acting from the right. Recalling the congruence ∇∗∇ ≡ j
1
2∇∗∇j− 1

2

up to operators filtered of degree 0 we immediately verify the expansion (6.3) because:

−
∑

µ

(
− ∂

∂xµ

) 2

3
(∇·R

E)·,xµ =
∑

µ

( 2

3
(∇·R

E)·,xµ

∂

∂xµ

+
2

3
(∇xµR

E)·,xµ

)
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Additional potentials as they appear e. g. in the expansion (5.4) of squares of twisted Dirac
operators simply act by multiplication from the right as well.

According to remarks before the sequence (6.2) the symbol classes [ad] of the connection
Laplacian ∇∗∇ can be thought of as formal power series on T with values in Sym holE as
F2d(SymT ∗⊗UholE)/F2d−2(SymT ∗⊗UholE) ∼=

⊕
l≥0 Sym lT ∗⊗Sym b l

2
c+dholE. Eventually

we are thus interested in polynomials on T with values in Sym holE. For the moment however
let us consider bilinear forms B ∈ (T ∗⊗T ∗)⊗Sym holE on T with values in Sym holE instead,
although only the symmetric part of such a form defines a (quadratic) polynomial on T . The
special element RE ∈ Λ2T ∗ ⊗ holE ⊂ (T ∗ ⊗ T ∗) ⊗ Sym holE suggests to use the notation
BX,Y ∈ Sym holE in general for these bilinear forms. Besides the trace trB :=

∑
µBxµ,xµ

with an orthonormal base {xµ} of T we have a multiplication defined by

(B B̃ )X,Y :=
∑

µ

BX,xµ B̃xµ,Y (6.4)

for any two elements B, B̃ ∈ (T ∗⊗T ∗)⊗Sym holE. Contrary to the sketch in the introduc-
tion this multiplication is anti–isomorphic to the multiplication on EndT under the metric
isomorphism T ∗ ⊗ T ∗ ∼= T ∗ ⊗ T and in principle we will have to reverse the order of all
products in the end, this nuisance however will have no effect at all on the final result.

In case we consider the squares D2 of twisted Dirac operators we need to use the twisted
filtration F •(SymT ∗ ⊗ Uhol⊗ Uholtwist) to get well–defined symbol classes [ad], which then
become formal power series on T with values in Sym hol⊗Uholtwist. Both the definition of the
trace and the multiplication (6.4) on the bilinear forms (T ∗⊗T ∗)⊗Sym hol⊗Uholtwist continue
to make sense in this situation. Note that the twisting curvature Rtwist ∈ Λ2T ∗ ⊗ holtwist

appears as a constant function on T with values in hol⊗ holtwist in this context, because we
assume that its form part takes values in the holonomy algebra hol ⊂ Λ2T ∗. The generating
series for the even part of the symbols [ad] can be written in terms of the trace and the
multiplication on (T ∗ ⊗ T ∗)⊗ Sym holE or (T ∗ ⊗ T ∗)⊗ Sym hol⊗ Uholtwist:

Theorem 6.2 (Symbol Classes of the Heat Kernel Coefficients)
The generating series for the even part of the symbol classes [ad] ∈ SymT ∗⊗Sym holE of the
universal heat kernel coefficients of the connection Laplacian considered as a formal power
series [a(t, ·)]ev :=

∑
d≥0 t

d[ad]
ev in t with coefficients in Sym evT ∗ ⊗ Sym holE reads:

[ a(t,X) ]ev = exp

(
− 1

2
(t
d

dt
)−1tr

( tRE

tanh tRE
− 1

)
− 1

4t

( tRE

tanh tRE
− 1
)

X,X

)

Using similarly the filtration F •(SymT ∗⊗Uhol⊗Uholtwist) we find the slightly modified result

[ a(t,X) ]ev = exp

(
− 1

2
(t
d

dt
)−1tr

( tR

tanh tR
− 1

)
− 1

4t

( tR

tanh tR
− 1
)

X,X
− 2tRtwist

)

for squares D2 of twisted Dirac operators on Clifford bundles EM over M .
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Evidently this formula for the even part of the symbol classes is a variant of Mehler’s Formula
for formal power series on T with values in Sym holE and is proved in the same way using an
ansatz [BGV]. Of course we are lucky to know the final result in advance from other proofs of
the Local Index Theorem. Nevertheless the reader should keep in mind that we do not assume
that the vector bundle E × T is a twisted spinor bundle and this difference accounts for the
factor 1

2
apparently missing in the formulas above. Lack of time or possibly determination

prevents us from discussing the odd part of the symbol classes [ad] as polynomials on T .

Proof: Let us focus on the perhaps more interesting squares D2 of twisted Dirac operators.
Mutatis mutandis all arguments presented work equally well for connection Laplacians ∇∗∇
and in any case the discussion simplifies in the latter case due to the simpler definition of
the filtration F •(SymT ∗ ⊗ UholE). Starting with an ansatz

[ a(t,X) ]ev = exp

(
− 1

2
(t
d

dt
)−1trF (tR) − 1

4t
F (tR)X,X − 2tRtwist

)
with an even formal power series F (z) in one variable z satisfying F (z) = O(z2) so that F (tR)
is defined by multiplication (6.4) and in the image of the t d

dt
as an element of the algebra

(T ∗⊗T ∗)⊗Sym hol[[t]] ⊂ (T ∗⊗T ∗)⊗Sym hol⊗Uholtwist[[t]]. Note that the coefficient [ad(X)]ev

of td in the formal power series [a(t,X)]ev is an even polynomial on T of degree ≤ 2d with
values in Sym hol⊗ Uholtwist. We want to choose the parameter F (z) of our ansatz so that
the sequence of these polynomials satisfy the recursion formula (2.8) of Minakshisundaram–
Pleijel. Clearly both d

dt
and Euler’s number operator N act by derivations or:

(
d

dt
+
N

t
) [a(t,X)]ev (6.5)

= [a(t,X)]ev
(
− 1

2t
trF (tR) +

1

4t2
F (tR)X,X − 1

4t
[RF ′(tR)]X,X − 2Rtwist − 1

2t2
F (tR)X,X

)
Problems due to non–commutativity could only arise through the additional potential Rtwist,
which clearly commutes with itself and all other relevant elements of Sym hol ⊗ Uholtwist.
For the time being we are only interested in the even part of the symbol classes [ad], hence

we can replace the operator −j 1
2D2j

1
2 in the recursion formula (2.8) by its expansion (5.4)

−j
1
2 D2 j−

1
2 ≡

∑
µ

∂2

∂x2
µ

+
∑

µ

R·,xµ

∂

∂xµ

+
1

4

∑
µ

R·,xµR·,xµ − 2Rtwist

modulo operators filtered of degree 1 (sic!), all coefficients act by multiplication from the
right on [a(t,X)]ev and the term

∑
µR·,xµ

∂
∂xµ

switches sign. For any formal power series F (z)

we evidently have F (tR)X,Y = F (−tR)Y,X for all X, Y ∈ T so that F (tR)X,Y is symmetric
in X and Y for an even formal power series F . Keeping this in mind we calculate for starters

∂

∂Y
[a(t,X)]ev = [a(t,X)]ev

(
− 1

2t
F (tR)X,Y

)
to get some feeling for calculating the derivatives of [a(t,X)]ev with respect toX, in particular

(−j
1
2D2j−

1
2 ) [a(t,X)]ev (6.6)

= [a(t,X)]ev
(
− 1

2t
trF (tR) +

1

4t2
F 2(tR)X,X +

1

2t
F (tR)RX,X − 1

4
[z2(R)]X,X − 2Rtwist

)
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where 1
2t
F (tR)RX,X = 0 vanishes, because the formal power series F (z)z is odd. Comparing

equations (6.5) and (6.6) we see that we can make things work by choosing F to satisfy the
differential equation −(z d

dz
F )(z) − F (z) = F 2(z) − z2. However subject to the constraint

F (z) = O(z2) this differential equation has a unique solution F (z) = z
tanh z

− 1. �

Corollary 6.3 (Index Theorem for Twisted Dirac Operators)
The index of a twisted Dirac operator acting on sections of a (complex) Clifford bundle EM
over a compact manifold M of even dimension dimM is given as the integral

index D =

∫
M

Â(M ) ch HomCl TM( $M, EM )

Proof: According to McKean–Singer’s “Fantastic Cancellations” the Dirac operator D
defines a spectral symmetry Γ(E+M) −→ Γ(E−M), ψ 7−→ Dψ, off the kernel between the
spectrum of D2 acting on E+M and E−M respectively. Consequently the global supertrace
of the heat kernel kD2

t of D2, which converges to the index of the Dirac operator as time t
goes to ∞, is actually independent of time:

index D =
(

lim
t−→∞

) ∫
M

trE+M−E−M kD2

t ( y, y ) vol(y)

This equation is the key idea in all heat equation proofs of the Index Theorem. In particular
we can replace the heat kernel kD2

t by its asymptotic expansion and calculate the index of
the Dirac operator as the limit of the global supertrace

index D = lim
t−→0+

∫
M

1
√

4πt
dim M

trE+M−E−M

(∑
d≥0

td ad(y)

)
vol(y) (6.7)

as time t goes to zero. Localizing at a given point y ∈ M by setting T := TyM and
E := EyM while employing the usual gauge fixing conditions we are thus lead to study
the supertrace of the formal power series a(t,X) =

∑
d≥0 t

dad(X) at the origin X = 0. As
always in even dimensions this supertrace trE+−E− splits via the isomorphism of complex
Clifford modules E ∼= $ ⊗ HomCl T ($, E) into the product tr$+−$− ⊗ trHomCl T ($,E) of the
characters of the spinor representation and the twist. By Lemma 5.7 however the character
of the spinor representation essentially reproduces the algebra homomorphism

Pf : Sym hol −→ ΛevT ∗, X1 · . . . · Xr 7−→ X1 ∧ . . . ∧ Xr

extending the inclusion hol ⊂ Λ2T ∗ in degree dim M
2

up to an additional factor i−
dim M

2 or

1
√

4πt
dim M

trE+−E− [a(t, 0)] vol ≡ (4πti)−
dim M

2 ( Pf⊗ trHomCl T ($,E) )([a(t, 0)]) + O(t) (6.8)

modulo differential forms of degree strictly less than dim M . In fact the values ad(0), d ≥ 0,
of the heat kernel coefficients live in U≤dhol ⊗ Uholtwist by Theorem 5.6. Consequently the
coefficients ad(0) with d < dim M

2
do not contribute at all to the left hand side while their
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classes [ad(0)] only contribute forms of less than top degree on the right. On the other hand
the contributions from the coefficients ad(0) with d > dim M

2
are all O(t). Strictly speaking

equation (6.8) is thus a statement only about the critical coefficient ad(0) with d = dim M
2

and
amounts to a reformulation of Lemma 5.7. In particular only the integral over the critical
coefficient has any bearance on the limit in equation (6.7).

With the Pfaffian Pf being an algebra homomorphism we can replace the multiplication
on (T ∗ ⊗ T ∗) ⊗ Sym hol ⊗ Uholtwist used to construct the generating series [a(t,X)] of the
symbol classes by a similar multiplication defined on (T ∗⊗T ∗)⊗ΛevT ∗⊗Uholtwist. Thinking
of R and Rtwist similarly as elements of (T ∗ ⊗ T ∗)⊗ Λ2T ∗ ⊗ Uholtwist and ΛevT ∗ ⊗ Uholtwist

respectively and applying Theorem 5.6 we arrive at

( Pf⊗ trHomCl T ($,E) )([a(t, 0)])

= trHomCl T ($,E) exp
(
− 1

2
(t
d

dt
)−1tr

( tR

tanh tR
− 1

)
− 2tRtwist

)
= exp

(
− 1

2
(t
d

dt
)−1tr

( tR

tanh tR
− 1

) )
∧ trHomCl T ($,E) exp

(
− 2tRtwist

)

where exp now refers to the exponential in ΛevT ∗ ⊗ Uholtwist. In this equation every two
form comes along with t so that multiplying by (4πti)−

dim M
2 as in equation (6.8) amounts to

evaluating at t = 1
4πi

on forms of top degree dim M . Under this evalution the second factor
turns into the definition of the Chern character of the twist whereas the first factor seems
to turn into the Â(M)–class according to equation (6.1). Recall however that we have used
the form part of R ∈ Λ2T ∗⊗ hol already to construct the multiplication. An allusion to the
classical symmetries between form and endomorphism in R completes the proof. �

Among the well–known special cases of the Local Index Theorem we want to mention in
particular the Theorem of Gauß–Bonnet–Chern, which is the Local Index Theorem for the
Clifford bundle ΛevT ∗M − ΛoddT ∗M possibly twisted with an auxiliary vector bundle. It is
quite remarkable that equation (5.5) originally used to prove the regularity of the supertrace
only can be interpreted directly as an identity of rational characteristic classes

ch ($+M − $−M) = tr$+M−$−M( e−
R

2πi ) = i−
dim M

2 Pf(− R

2πi
) = Pf(

R

2π
)

on an oriented even dimensional manifold M . By construction the Pfaffian is a form of purely
top degree so that its product Â(M)∧ch ($+M−$−M) = Pf( R

2π
) with the Â(M)–class only

picks up the constant term 1 of the latter. On the other hand the classical isomorphism
Cl TM ⊗R C ∼= End $M ∼= ΛT ∗M valid in even dimensions clearly becomes

ΛevT ∗M ⊗R C − ΛoddT ∗M ⊗R C = ( $+M − $−M )∗ ⊗ ($+M − $−M )

∼= (−1)
dim M

2 ( $+M − $−M )⊗ ($+M − $−M )

because by the classification of Clifford algebras the even subalgebras Cl 0TM containing the
spin groups are real or quaternionic matrix algebras for dim M ≡ 0 mod 4 or $±∗M ∼= $±M
while they are complex matrix algebras for dim M ≡ 2 mod 4 resulting in $±∗M ∼= $∓M .
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Chapter 7

Heat Kernel Coefficients of
Generalized Laplacians

It is well known that the squares of twisted Dirac operators are generalized Laplacians with
potentials given by curvature terms linking the differential operator directly to the geometry
of the Riemannian manifold M , more precisely the form of their potentials is dictated by
the Lichnerowicz–Weitzenböck formula. Formalizing this characteristic property we will
introduce a class of generalized Laplacians in this section whose potentials will be the most
general curvature terms arising from Weitzenböck formulas. The salient feature of twisted
Laplacians in the class of all generalized Laplacians is that it is very easy to calculate their
powers using iterated covariant derivatives. In turn the general Jet Formula 4.2 allows us
to express these iterated covariant derivatives in terms of the Taylor series of sections in
normal coordinates with the bundle trivialized by parallel transport along radial geodesics.
According to Theorem 2.4 this information is precisely the input we need to calculate the
infinite order jet of the heat kernel coefficients along the diagonal explicitly. Pursuing this
strategy we will discuss the resulting formula for the heat kernel coefficients as a sum over
all jet forests and its subsequent simplifications and ramifications for arbitrary generalized
Laplacians in detail in this section.

The class of twisted Laplace operators ∆∆� acting on sections of twisted vector bundles EM
over Riemannian manifolds M turns out to contain most interesting generalized Laplacians
met in differential geometry. Incidentally many of these twisted Laplacians are really incar-
nations of a particular twisted Laplacian, the standard Laplacian, whatever their original
motivation or definition. In order to define twisted Laplacians and the standard Laplacian
let us first fix a viable notation for the application map app : End EM ⊗ EM −→ EM
associated to every vector bundle EM over M .

Definition 7.1 (Twisted Bundles and Twisted Laplacians)
A twisted vector bundle EM is a vector bundle over a Riemannian manifold M together with
a connection ∇ and a parallel map � : Λ2T ∗M −→ End EM . The twisted trace

tr� : T ∗M ⊗ T ∗M −→ End EM, α⊗ β ⊗ ψ 7−→ g(α, β ) id − (α ∧ β ) �

defines a generalized Laplacian ∆∆� := app ◦ (−tr�) ◦ ∇2 acting on sections Γ(EM) of the
twisted vector bundle EM called the twisted Laplacian on EM .
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Just as we can twist the spinor bundle on a spin manifold we can twist every twisted
vector bundle EM by a coefficient bundle LM endowed with a connection to get a new
twisted vector bundle EM ⊗ LM simply by having Λ2T ∗M act trivially on the coefficients
LM . Every tensor or Clifford bundle on the other hand or more generally every vector
bundle EM associated to the (spin) holonomy reduction of M is naturally a twisted vector
bundle, because the infinitesimal representation ? of the holonomy algebra defines a twist:

Λ2 T ∗M −→ End EM, α ∧ β 7−→ prhol(α ∧ β) ?

For every parallel subbundle of the forms the corresponding twisted Laplacian ∆∆? agrees
with the Hodge Laplacian while on a symmetric space the operator ∆∆? is the Casimir of the
isometry group for every homogeneous vector bundle. In the same vein the Partharasarty
formula for the square of the Dirac operator on symmetric spaces generalizes to

D2 = ∆∆? +
κ

8
= ∆∆2?

on the spinor bundle $M of a spin manifold M . Given its ubiquitousness it seems appropriate
to call the twisted Laplacian ∆∆? the standard Laplacian on the vector bundle EM . Its very
existence has deep implications in differential geometry like the strong Lefschetz theorem
and most of the known vanishing theorems for Betti numbers in special holonomy.

Definition 7.2 (Standard Laplace Operator)
Consider a vector bundle EM on a Riemannian manifold M associated to the holonomy
bundle of M and endowed with the connection ∇ arising from the Levi–Civita connection.
The standard Laplacian on EM is the twisted Laplacian

∆∆? = ∇∗∇ + 1
2

∑
µν

prhol(dXµ ∧ dXν) ? R
E
Xµ,Xν

associated to the parallel map ? : Λ2T ∗M −→ End EM, α ∧ β 7−→ prhol(α ∧ β)? induced
from the infinitesimal representation of the holonomy algebra hol on the representation E.

A general vector bundle EM endowed with a connection can be naturally thought of
as a twisted vector bundle with trivial twist � : Λ2T ∗M −→ End EM . In this case the
twisted Laplacian ∆∆� is simply the connection Laplacian ∇∗∇ of course. Turning to the
general case we consider the fibered product HolEM ×M HolM of the holonomy bundles
HolEM and HolM of EM and M respectively, which is naturally a principal bundle over
M modelled on HolE × Hol endowed with the direct sum connection ωtotal := ωE ⊕ ω.
The minimal closed principal subbundles tangent to ωtotal are all conjugated under global
gauge transforms and chosing one such bundle HoltotalM ⊂ HolEM ×M HolM defines the
total holonomy group Holtotal ⊂ HolE × Hol. Note that the projection Holtotal −→ HolE is
surjective, for otherwise HolE is not the holonomy group of the connection on EM contrary
to assumption. With the same argument the projection Holtotal −→ Hol is surjective, too, so
that Holtotal ⊂ HolE ×Hol can be thought of as a group correspondence between HolE and
Hol. Clearly the parallel twists � : Λ2T ∗M −→ End EM are parametrized by the invariants

� ∈ [ Λ2T ⊗ End E ]Holtotal
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in the representation Λ2T⊗End E of Holtotal. Consequently the kernel of the correspondence
projection Holtotal −→ HolE fixes all bivectors in the image of �∗ : End E −→ Λ2T .
In particular a non–trivial invariant twist can only exist if the kernel of the projection
Holtotal −→ HolE is rather small so that the other projection Holtotal −→ Hol is close to a
surjective group homomorphism HolE −→ Hol. It is difficult to make this statement any
more precise in this generality, but we hope the reader has got some idea about the analysis
needed to study the set of all possible twists on a given vector bundle EM .

Twisted Laplacians ∆∆� are distinguished among all generalized Laplacians by the property
that all their powers ∆∆k

�, k ≥ 0, can be neatly expressed in terms of iterated covariant
derivatives alone. In fact the application map app : End EM ⊗ EM −→ EM is parallel
by the very definition of the connection on End EM as is its natural extension to multiple
endomorphisms

−→
app :

⊗
End EM ⊗ EM −→ EM applied in the usual order with the

rightmost one first. A straightforward induction using in addition the parallel powers

(−tr� )k :
⊗2k T ∗M

(−tr�)⊗k

−→
⊗k End EM

of the twisted trace proves the closed formula ∆∆k
� =

−→
app ◦(−tr�)

k ◦ ∇2k for all k ≥ 1. At
this point it may seem as if this triviality can’t possibly have any bearance on the problem
of calculating the heat kernel coefficients explicitly. However the critical input we need in
order to calculate the heat kernel coefficients via Theorem 2.4 is the total symbol ev[ e−t∆∆� ]],
which is defined explicitly in the gauge fixed context of Section 2.

According to Section 2 the total symbol of a differential operator D acting on sections
of a trivial vector bundle E × T over a euclidian vector space T is the element ev[D ]] of
SymT ∗ ⊗ End E characterized by ev[Dψ ] = 〈ev[D ], ψ〉Sym T ∗ for all sections ψ of E × T ,
where ψ is identified with its infinite order Taylor series jetψ ∈ SymT ∗⊗E on the right and
〈·, ·〉Sym T ∗ denotes the standard scalar product on SymT ∗ defined via Gram’s permanent.
Polarizing the characterization 〈eα, eβ〉Sym T ∗ = e〈α,β〉 of this scalar product with respect to
β ∈ T ∗M we can easily pin down the total symbol of iterated partial derivatives

ev[
∂k

∂X1 . . . ∂Xk

eα ] = α(X1) · . . . · α(Xk) = 〈 eα, X]
1 · . . . · X

]
k 〉Sym T ∗

for all X1, . . . , Xk ∈ T and all α ∈ T ∗. The conventions concerning the relation between
polynomials and symmetric forms discussed in Section 4 make this equation read:

jet eα(X1 · . . . ·Xk ) = 〈 eα, X]
1 · . . . · X

]
k 〉Sym T ∗

In other words the total symbol of the differential operator ψ 7−→ jetψ(X1 · . . . ·Xk) acting
on sections ψ of a trivial vector bundle E×T is simply given by X]

1 · . . . ·X
]
k ⊗ idE. In order

to translate the gauge fixed context of Section 2 into covariant language we have to fix a
point y ∈ M and define T := TyM and E := EyM . Taking normal coordinates about y
and trivializing the bundle EM using parallel transport along radial geodesics we can then
make sense out of jetψ ∈ SymT ∗yM ⊗EyM for a section ψ ∈ Γ(EM). However the central
argument (3.2) in the proof of the special Jet Formula tells us that jetψ agrees with the
symmetrization of the iterated covariant derivatives of ψ. Put differently the general Jet
Formula 4.2 is essentially a formula for the total symbol ev[∇k ]] of ∇k, k ≥ 1.
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Recall that in Section 4 we have specified inductive rules to turn a given decoration of the
leaves of a jet forest F of order k ≥ 1 with vector fields X1, . . . , Xk into a decoration of all
black or white vertices of F with endomorphisms on EM or vector fields on M respectively.
Namely given decorations X1, . . . , Xr and Y on the white source vertices of the incoming
edges and the bud of a vertex V the decoration of V will either be ΩE

r (X1 · . . . · Xr)Y or
Φr(X1 ·. . .·Xr)Y depending on the color of V . Clearly the decorations of the roots of black or
white jet trees T ⊂ F are multilinear expressions ΩE(T)X(T) or Φ(T)X(T) respectively in the
argument vector fields X(T) of the leaves of T. Stressing the aspect of multilinear forms we
drop the reference to the arguments from now on and think of ΩE(T) and Φ(T) as sections of⊗|T|T ∗M⊗holEM and

⊗|T|T ∗M⊗TM . Similarly the notation Ω(T) ∈ Γ(
⊗|T|T ∗M⊗holM)

refers to the multilinear form we get by the same rules replacing the curvature of EM by the
Riemannian curvature tensor of M . The labelling of jet forests allows us to sort all occurring
multilinear expressions into the right slots in expressions like:⊗

T⊂F black

ΩE(T)⊗
∏

T⊂F white

Φ(T)] ∈ Γ(
⊗|F|T ∗M ⊗

⊗
T⊂F black

holEM ⊗ Sym #White FT ∗M )

In the formulas to come it is tacitly understood that this correspondence between the factors
in
⊗|F|T ∗M and the leaves of trees T ⊂ F depending on the labelling is established, in

particular this notation is only defined for trees in a common jet forest! The ordering of
the tensor product

⊗
holEM is uncritical, because we insist that the factors are indexed by

trees T ⊂ F.
Nevertheless we still have to twist this notation to account for feedback. Given the fact

that the summation over feedback maps f will disappear in a moment we keep this problem
short and simply use the notation ΩE(T)f and Φ(T)f for the multilinear maps created by
the rules pertaining to feedback. Note that these expressions are multilinear not only in the
arguments associated to T, but also in the arguments associated to all trees T̃ chained to
T by a given feedback map f . With this proviso we can read off the total symbol of the
operator (−∆∆�)

k =
−→
app ◦ trk

� ◦ ∇2k for all k ≥ 1 from the general Jet Formula 4.2

ev[ (−∆∆�)
k ]] =

∑
jet forest
|F|= 2k

∑
feedback

f

(
−→
m ◦ trk

� )

 ⊗
T⊂F black
f(T) =∞

ΩE(T)f ⊗
∏

T⊂F white

Φ(T)]
f

 (7.1)

where the multiplication
−→
m :

⊗
End EM −→ End EM is the appropriate replacement for

−→
app in the absence of an argument to apply to. Note that in the spirit of the general Jet
Formula all terms ΩE(T) have to be applied first before any endomorphism arising from the

twisted trace trk
�. In other words

−→
m multiplies the endomorphisms arising from trk

� all sorted
to the left in their usual order and independently the terms ΩE(T) ∈ Γ(holEM) all sorted
to the right in ascending order of the bud labels of the trees T.

Comparing this with the formula say for the standard Laplacian ∆∆? in Definition 7.2
the reader may agree that this “normal” ordering is extremely strange, we would rather
expect terms of the form tr�(α⊗β) alternating with terms arising from curvature. In fact it
turns out that by judiciously redefining the order of multiplication in (7.1) we can effectively
get rid of feedback altogether. Before discussing this argument we recall that feedback
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modifies the multilinear forms ΩE(T) and Φ(T) by changing their arguments away from X
to (X1 . . .Xr)

∗X with suitable X1, . . . , Xr ∈ holM depending on f . In turn the canonical
adjoint antiautomorphism ∗ of UEnd TM used here characterizes the dual representation
of UEnd TM on T ∗M via (X1 . . . Xrα)(X) := α((X1 . . .Xr)

∗X). Instead of alternating

the arguments we may thus let holM act directly on the slots of
⊗|F|T ∗M dictated by f .

Pressing this point home we define the application map

appf :
⊗|F|T ∗M ⊗

⊗
T⊂F black

holtotalM −→
⊗|F|T ∗M ⊗

⊗
T⊂F black
f(T)=∞

holEM

where holtotalM ⊂ holEM ⊕ holM is the total holonomy algebra bundle associated to the
holonomy reduction HoltotalM ⊂ HolEM ×M HolM . In the holtotalM–factors indexed by
trees T with f(T) = ∞ the map appf is simply the projection holtotalM −→ holEM , whereas
the factors indexed by trees with f(T) <∞ are projected to holM and then act by the dual

representation on the slot f(T) of
⊗|F|T ∗M . With multiplication of endomorphisms failing

to be commutative we need to specify that elements of holM acting on the same slot are
applied in the order corresponding to multiplication in ascending order of bud labels, i. e. the
rightmost tree with the maximal bud label is applied first. Defining the multilinear form
Ωtotal(T) := ΩE(T)⊕ Ω(T) with values in holtotalM we can thus rewrite (7.1) using:

⊗
T⊂F black
f(T) =∞

ΩE(T)f ⊗
∏

T⊂F white

Φ(T)]
f = appf

( ⊗
T⊂F black

Ωtotal(T)⊗
∏

T⊂F white

Φ(T)]

)

This is a very crucial point and the reader should not skip it too fast! With this reformulation
of feedback we can make good use of tr� : T ∗M ⊗ T ∗M −→ End EM being parallel or

XE tr�(α⊗ β ) = tr�( (Xα)⊗ β ) + tr�(α⊗ (Xβ) ) + tr�(α⊗ β ) XE (7.2)

for all XE ⊕ X ∈ holtotalM and all α, β ∈ T ∗M . Summing the expression

(
−→
m ◦ trk

� ◦ appf )

( ⊗
T⊂F black

Ωtotal(T)⊗
∏

T⊂F white

Φ(T)]

)

for a fixed jet forest F over all possible feedback maps f will thus provide plenty of commu-

tators, which allow us to reorder the factors in the multiplication
−→
m . Let us fix say arbitrary

values for f for all black trees except for the tree T with minimal bud label and sum over
all possible values for f(T) in decreasing order starting with f(T) = ∞. The first summand
will see ΩE(T) to the right of all tr�–factors, summing the next two values will commute it
past the rightmost tr�(α⊗ β) by equation (7.2) and so on until ΩE(T) is sorted between

. . . tr�( α2s−1 ⊗ α2s ) ΩE(T) tr�( α2s+1 ⊗ α2s+2 ) . . .

where 2s−1 or 2s is the bud label of T so that we can’t commute ΩE(T) past tr�(α2s−1⊗α2s).
Note that this reordering can always be achieved independent of the values f(T) of the other
trees, because the curvature term Ω(T) of the tree with minimal bud label will always be
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applied last by appf . Continuing in this manner with the other black trees in ascending
order of bud labels we will eventually end up with product involving essentially the same
factors as before, but reordered in a more plausible way. Simply by reordering a product
however we can’t get rid of feedback completely, because for a black tree T with odd bud
label 2s − 1, s ≥ 1, the feedback value f(T) = 2s is perfectly legal, but provides only an
incomplete half commutator according to (7.2).

In order to cope with this nuisance let us modify the definition of jet forests by introducing
transparent vertices. A transparent vertex V is a vertex with at least three incoming edges
required to have an aligned twin bud, i. e. the two leaves with maximal labels in the subtree
rooted at V are connected directly to V with labels 2s − 1 and 2s for some s ≥ 1. In a
modified jet forest the root of a tree T ⊂ F may be black, white or transparent, nevertheless
we will continue to distinguish only between black and white trees, trees with transparent
roots are white. Transparent vertices are to simulate the situation, where the feedback map
on a black tree T with odd bud label 2s − 1 takes the value f(T) = 2s. Consequently the
rule for decorating a transparent vertex with a vector field reads −Ω(X1 · . . . ·Xr)YZ, where
Y and Z are the decorations of the twin buds with labels 2s − 1 and 2s respectively while
X1, . . . , Xr are the decorations of the source vertics of the other incoming edges. In the
presence of transparent vertices the budding condition has to be modified, too, we can no
longer insist that the bud of a vertex V , the leaf of maximal label in the subtree rooted
at V , is connected directly to V . Although the twin buds of a transparent vertex are still
required to connect directly to the vertex in question, for other non–leaf vertices intermediate
transparent vertices are allowed on the branch to the bud. For the time being we refrain from
formalizing the definition of modified jet forests, more details can be found in the Definition
7.3 of Laplace forests.

Summarizing our considerations so far we have seen that by multiplying the factors in
equation (7.1) in a delicately chosen order and modifying the concept of jet forests slightly
we can eliminate the sum over feedback maps. The new multiplication m∗ doing the trick
depends on the jet forest F of order |F| = 2k considered and is defined as the linear map

m∗ :
⊗k End EM ⊗

⊗
T⊂F black

holEM −→ End EM

which shuffles the two different kinds of endomorphisms like a deck of cards before multi-
plication. More precisely in the final product all factors from

⊗kEnd EM appear in their
usual order from left to right and all factors from

⊗
holEM appear in ascending order of bud

labels, however the factor of
⊗

holEM indexed by a black tree T in F with bud label 2s− 1
or 2s appears sandwiched between the factors from

⊗kEnd EM indexed by s and s+ 1 re-
spectively. Of course this does not mean that in the final product factors from

⊗kEnd EM
will alternate with factors from

⊗
holEM , in a given jet forest F we may have two black

trees with bud labels 2s − 1 and 2s or none. Introducing the empty jet forest Fvac := ∅ of
order |Fvac| = 0 and summing (7.1) over all k ≥ 0 we eventually find the total symbol

ev[ e−t∆∆� ]] =
∑

(modified) jet forest
|F| even

t
|F|
2

( |F|
2

)!
(m∗ ◦ tr

|F|
2
� )

( ⊗
T⊂F black

ΩE(T) ⊗
∏

T⊂F white

Φ(T)]

)
(7.3)
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of the operator e−t∆∆� , where the summand corresponding to the empty jet forest Fvac can
be interpreted without straining the notation too much as the identity idE, which is the
constant term in the formal power series e−t∆∆� of differential operators.

Equation (7.3) is the cornerstone of our calculation of the heat kernel coefficients of the
twisted Laplacian ∆∆�. The remaining steps in this calculation are essentially trivial and will
unveil the secret wisdom of the formula given in Theorem 2.4. Consider an aligned pair
of solitary white vertices in a modified jet forest F labelled 2s − 1 and 2s for some s ≥ 1.
Tracing over these solitary white vertices alone we see that the summand corresponding to
F in the total symbol of the operator e−t∆∆� picks up the factor∑

µν

. . . tr�( dxµ ⊗ dxν ) . . . ⊗ . . . x]
µ · x]

ν . . . = . . . idE . . . ⊗ . . . | · |2 . . .

in equation (7.3). In particular in the flat case the total symbol of the operator e−t∆∆� is
just et| · |2 , because all summands in (7.3) vanish except for the summands associated to jet
forests with only solitary white vertices. In the formula of Theorem 2.4 this total symbol
is countered by the multiplication with e−t| · |2 so that j

1
2a(t) = 1 as expected. Of course

this argument only works in the flat case, but it suggests that the multiplication with e−t| · |2

eliminates exactly those summands in (7.3), which are associated to jet forests F with at
least one aligned pair of solitary white vertices. In fact there are exactly

(
k
r

)
ways to insert

aligned pairs of solitary white vertices into a possibly empty jet forest Fred of order 2r, r ≥ 0,
without such pairs in order to produce a jet forest F of order 2k and conversely every jet
forest F of order 2k arises this way from a unique reduced jet forest Fred without aligned
pairs of solitary white vertices. Consequently the total symbol of the operator e−t∆∆� in (7.3)
splits of the factor et| · |2 , which is subsequently killed by the multiplication with e−t| · |2 :

e−t| · |2 ev[ e−t∆∆� ]] =
∑

reduced (modified)
jet forest |F| even

t
|F|
2

( |F|
2

)!
(m∗ ◦ tr

|F|
2
� )

( ⊗
T⊂F black

ΩE(T) ⊗
∏

T⊂F white

Φ(T)]

)
(7.4)

Motivated by this success vindicating Theorem 2.4 we want to eliminate solitary white
vertices altogether. A straightforward way to do this is to omit all solitary white vertices
in a reduced jet forest F and shift the labels of the remaining leaves down accordingly to
get a new jet forest Fnew without solitary white vertices. The information lost this way can
essentially be recovered from knowing the subset L ⊂ Leaf Fnew of leaves, which formed
an aligned pair with some solitary white vertex in the original jet forest F. More precisely
given a jet forest Fnew without solitary white vertices and a subset L ⊂ Leaf Fnew of marked
leaves we simply double each marked leaf and shift the labels of the leaves up accordingly
to reproduce the orginal reduced jet forest F. Because we do not know whether the solitary
white vertex originally took the label 2s−1 or 2s, it is not possible to reconstruct the original
reduced jet forest F exactly. Eventually however we are only interested in the sum (7.4) over
all reduced jet forests and so we may sum over all 2#L possibilities to expand Fnew to a
reduced jet forest F first. Actually this summation reduces to a partial symmetrization by:∑

µ

. . . tr�( dxµ ⊗ α + α⊗ dxµ ) . . . ⊗ . . . x]
µ . . . = . . . idE . . . ⊗ . . . 2α . . . (7.5)
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In consequence it is possible to express the total symbol of the operator e−t∆∆� as a sum over
modified jet forests without solitary white vertices or Laplace forests:

Definition 7.3 (Laplace Forest with Marked Leaves)
A Laplace forest of order k ≥ 0 is a rooted forest F without solitary white vertices together

with a labelling of its leaves Leaf F
∼=−→ {1, . . . , k} and a coloring of its vertices by colors

white, transparent and black such that the following three conditions are met:

• All leaves are white while all black vertices are roots. Every black vertex has at least
two, every white or transparent vertex at least three incoming edges unless it is a leaf.

• In the subtree rooted at a transparent vertex V the two leaves of maximal labels take
consecutive labels and connect directly to V , every transparent vertex has a twin bud.

• For all black or white vertices V besides leaves the leaf of maximal label in the subtree
rooted at V is connected to V via a branch with transparent intermediate vertices only.

A Laplace forest with marked leaves is a Laplace forest F together with a distinguished subset
L ⊂ Leaf F \ Twin F of its leaves with #L ≡ |F| mod 2 avoiding the set Twin F of twin buds
of transparent vertices of F such that every maximal sequence I ⊂ Leaf F \ (L ∪ Twin F) of
leaves with consecutive labels avoiding both L and Twin F has even length #I.

According to the color of their roots the trees T in a Laplace forest F will be called black
or white trees, trees with transparent roots are white. Perhaps the most difficult aspect of
this definition is the constraint imposed on the subset L of marked leaves. Recall that the
marked leaves in the subset L ⊂ Leaf F make up aligned pairs of leaves with solitary white
vertices in a reduced jet forest mapping to F. Doubling each leaf in L and shifting up the
labels of the leaves accordingly the twin buds of transparent vertices must be aligned as well
as the pairs of doubled leaves in L, equivalently the set of marked leaves Leaf F \ L is the
disjoint union of pairs of leaves with consecutive labels among which are the twin buds of
transparent vertices. In other words the constraint imposed on the subset L of marked leaves
allows us to group all unmarked leaves in disjoint pairs of leaves with consecutive labels such
that the twin buds of transparent vertices stay together in a pair.

Given a Laplace forest F with marked leaves L ⊂ Leaf F any reduced jet forest obtained
by doubling each marked leaf clearly has order |F| + #L. The summation over the 2#L

different possibilities to choose the solitary white vertices in the two copies of each doubled
marked leaf results in a partial symmetrization according to (7.5), in particular the twisted
trace factorizes over the symmetric multiplication

mL :
⊗|F|T ∗M ⊗ Sym #White FT ∗M −→

⊗|F|−#LT ∗M ⊗ Sym #White F+#LT ∗M

of the slots associated to the labels of marked leaves in L and the twisted trace tr
|F|−#L

2
� over

the remaining slots while picking up an additional factor 2#L. In this way we have succeeded
in rewriting equation (7.4) as a sum over all Laplace forests with marked leaves:

( 2t )−N e−t|·|2 ev[ e−t∆∆� ]] (7.6)

=
∑

F Laplace forest
L marked leaves

t
|F|−#L

2
−#White F

2#White F ( |F|+#L
2

)!
m∗ ◦ tr

|F|−#L
2

� ◦mL

( ⊗
T⊂F black

ΩE(T) ⊗
∏

T⊂F white

Φ(T)]

)
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At first sight it appears that the right hand side is a Laurent series, there certainly are
Laplace forests F and subsets L ⊂ Leaf F of marked leaves which make |F|−#L

2
−#White F

negative. A priori we know from the derivation of Theorem 2.4 that the series is regular
in t. Nevertheless it is worthwhile to think about an argument proving regularity directly,
because in principle regularity could be the result of several summands cancelling each other.
In our situation the critical summands vanish all by themselves, more precisely the summand
associated to a Laplace forest F with marked leaves L ⊂ Leaf F vanishes as soon as the set
L contains all or all but one leaf of some white tree T in F. Hence a summand in formula
(7.6) vanishes unless every white tree T contributes at least 2 to the difference |F| −#L:

Lemma 7.4 (Gauß Type Vanishing)
Let T be a white Laplace tree necessarily of order |T| ≥ 3 without transparent vertices. For
all subsets L ⊂ Leaf T containing all but one leaf the symmetrization of result and leaves in
L via the multiplication mL :

⊗|T|T ∗M ⊗T ∗M −→ T ∗M ⊗Sym |T|T ∗M kills the multilinear

form Φ(T) ∈ Γ(
⊗|T|T ∗M ⊗ TM) associated to T in the sense mL(Φ(T)]) = 0.

Proof: Thinking of mL(Φ(T)]) as a polynomial on TM it is sufficient to prove that its
evaluation mL(Φ(T)])(X)Y = 〈Φ(T)X,...,X,Y,X,...,X , X〉 vanishes at all points and arguments
X, Y ∈ TM . According to the rules for converting T into a multilinear form applied to the
root of T only 〈Φ(T)X,...,X,Y,X,...,X , X〉 equals 〈Φr(X · . . . ·X ·Z)X,X〉 or 〈Φr(X · . . . ·X)Z,X〉
depending on whether the bud is in L or not for some r ≥ 2 and a vector field Z. In
light of the consequence Φr(X · . . . · X · Z)X = −1

r
Φr(X · . . . · X)Z of the constraint

Φr(X · . . . · X)X = 0 there is no essential difference between the two possibilities and the
vanishing 〈Φr(X · . . . ·X)Z,X〉 = 0 for r ≥ 2 is just the Gauß Lemma 3.3. �

Theorem 7.5 (Heat Kernel Coefficients of Twisted Laplacians)
The generating series a(t) for the heat kernel coefficients of a twisted Laplacian satisfies

j
1
2 a(t)

= et∆

 ∑
F Laplace forest
L marked leaves

t
|F|−#L

2
−#White F

2#White F ( |F|+#L
2

)!
m∗ ◦ tr

|F|−#L
2

� ◦mL

( ⊗
T⊂F black

ΩE(T) ⊗
∏

T⊂F white

Φ(T)]

) 
where ∆ is the formal Laplace operator on SymT ∗M defined by the Riemannian metric.

Invoking Theorem 2.4 with equation (7.6) we immediately verify the stated formula for
the generating series a(t) =

∑
d≥0 t

dad. Lest the reader objects that this formula is not

really explicit we remark that the multilinear forms ΩE(T) and Φ(T) are explicitly known
polynomials in the curvature tensor R of M and the curvature RE of the vector bundle EM
together with all their covariant derivatives depending only on the isomorphism class of T

considered as a budding tree. Moreover the differential operator et∆ is just the flat Laplacian
on polynomials on TyM at every point y ∈ M , in other words it is in essence a symmetrized
iterated trace. In particular a Laplace forest F with marked leaves will only contribute to
the value of some heat kernel coefficient along the diagonal if |F| and #White F have the
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same parity, and in this case it will contribute to the coefficient ad(0) with d = |F|−#White F
2

independent of the choice of marked leaves. For such forests the differential operator et∆ is
a version of the unique SO TyM–invariant linear functional on Sym #White F+#LT ∗yM .

In the second part of this section we want to generalize Theorem 7.5 to include even the most
general Laplacians. In principle every such Laplacian can be written ∇∗∇+F for a suitable
potential F ∈ Γ(End EM). Motivated by questions arising from the inverse scattering
theory approach to solitons however we will consider Laplacians of the form ∆∆�,F := ∆∆� + F
on a twisted vector bundle EM with an auxiliary potential F ∈ Γ(End EM). Of course it
is no restriction at all to work on a twisted vector bundle, every vector bundle endowed with
a connection is trivially twisted, but the arbitrariness in writing the potential as a sum of a
curvature term and an auxiliary potential F must eventually be reflected in all our formulas
for the heat kernel coefficients providing us with an implicit consistency check. Naturally the
calculation of the heat kernel coefficients of twisted Laplacians ∆∆�,F with potential proceeds
more or less parallel to the calculations in the special case of twisted Laplacians ∆∆� without
auxiliary potential F = 0. In particular there is not too much of a difference between the
formula given in Theorem 7.5 above and in the final Theorem 7.8. For this reason we will
be rather sketchy in this second part and focus attention on the three critical steps in the
calculation, which differ significantly from the special case.

Recall that in the special case of a twisted Laplacian ∆∆� we started the calculation with
the formula ∆∆k

� =
−→
app ◦(−tr�)

k ◦∇2k for the powers of a twisted Laplace operator ∆∆�. In a
second step we applied the general Jet Formula 4.2 to calculate the total symbol ev[ ∆∆k

� ]] of

the powers ∆∆k
�, k ≥ 0, and then reordered the multiplication of the endomorphisms from

−→
m

to m∗ in a third step to eliminate the sum over feedback maps. Similarly the first and most
difficult step of the calculations in the general case of a twisted Laplacian ∆∆�,F with potential
is to find the analogue of the formula for the powers ∆∆k

�,F , k ≥ 0, suitable for manipulation.
In a second step we apply the general Jet Formula to the iterated covariant derivatives not
only of the section ψ, but also of the potential F , in order to calculate the total symbol
ev[ ∆∆k

�,F ]] and then reorder the multiplication from msort to m∗ to eliminate the sum over
feedback and hook maps. Concerning the first step a very simple–minded version of the jet
and Laplace forests we have been using so far will serve as a bootstrap device:

Definition 7.6 (Red–White Forests)

A red–white forest of order k is a labelled rooted forest F with labelling Leaf F
∼=−→ {1, . . . , k}

together with a coloring of its vertices by colors red and white such that every leaf is white
and every other vertex is a red root with at least two incoming edges and a twin bud.

Of course we will continue to distinguish trees T ⊂ F in a red–white forest F by the color
of their roots in red and white trees and will write Red F and White F for the subsets of
red and white trees respectively. Clearly a red tree T ⊂ F consists of a red root connected
directly to two or more leaves, such that the two leaves with maximal labels form a twin bud
in that their labels are two consecutive numbers. Similarly a white tree T ⊂ F is nothing
but a solitary white vertex. A red–white forest F of even order |F| will be called aligned if
the twin bud of every red root in F is aligned in the sense that the two leaves with maximal
labels take the labels 2s− 1 and 2s for some s ≥ 1.
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Thinking of forests as abstract flow charts for calculations it is natural to ask about the
rules pertaining to red–white forests. For formulating these rules it is convenient to use the
notation jetF(X1⊗ . . .⊗Xr) := ∇r

X1,...,Xr
F for iterated covariant derivatives of unspecified

order r ≥ 0, for r = 0 both sides equal F by definition. Given a decoration of the leaves of a
red–white forest F by vector fields all non–leaf vertices are red roots and will be decorated by
the iterated covariant derivatives − 1

dim M
〈Y, Z〉(jetF)(X1⊗ . . .⊗Xr), r ≥ 0, of the potential

F , where Y and Z are the decorations of the twin bud and X1, . . . , Xr are the decorations of
the remaining leaves in ascending order of their labels. In this way the root of every red tree
T ⊂ F is decorated by an endomorphisms jetF(T)X(T) on EM depending multilinearly on
the argument vector fields X(T) decorating the leaves of T, while every solitary white vertex
tree T is decorated by its argument vector field X(T). Stressing the aspect of multilinear
forms we will use the notation id(T) ∈ Γ(T ∗M ⊗TM) for the identity associated to a white

tree T and jetF(T) ∈ Γ(
⊗|T|T ∗M ⊗End EM) for the multilinear form associated to a red

tree T in a red–white forest F with the usual convention of ordering the multilinear forms
according to the labelling of the leaves in the forest F to define the multilinear form:⊗

T⊂F red

jetF (T) ⊗
⊗

T⊂F white

id(T) ∈ Γ(
⊗|F|T ∗M ⊗

⊗
T⊂F red

End EM ⊗
⊗

T⊂F white

TM ) (7.7)

The important point to notice here is that the multilinear form jetF(T) associated to a red
tree is set up in such a way that tracing it over the twin bud

(−tr� )( jetF(T) ) = idE ⊗ ∇|T|F (7.8)

produces exactly the iterated covariant derivatives of the potential F we expect to see in the
formula for ∆∆k

�,F . Although this way to treat the potential F is rather artificial it will turn
out to be quite convenient to keep the notational overhead at bay.

Pairing the
⊗

TM–factor of the multilinear form (7.7) with the iterated covariant deriva-
tives of a section ψ ∈ Γ(EM) associates to every red–white forest F a differential operator

on sections of EM with values in
⊗|F|T ∗M ⊗

⊗#Red FEnd EM ⊗ EM . In order to end up
with a differential operator on EM we need to restrict ourselves to aligned red–white forests
so that we can reduce the

⊗
T ∗M–factor to a couple of endomorphisms on EM via powers

of the twisted trace tr�. Choosing a suitable order to apply the different endomorphisms
arising from tr� and the potential to the EM–factor we get in fact a differential operator on
EM . The appropriate order of application is most easily encoded in a linear map appsort,
which we choose in dependence on the aligned red–white forest F such that the composition

appsort ◦ (−tr�)
|F|
2 :

⊗|F|T ∗M ⊗
⊗

T⊂F red

End EM ⊗ EM −→ EM

will see all endomorphisms arising via the twisted trace tr� applied in their usual order with
the rightmost one first while the endomorphisms arising via red trees from the potential
are applied directly before the twisted traces of their respective twin buds compare (7.8).
Of course the twisted trace over the twin bud of a red tree T is a multiple of the identity,
which clearly commutes with the endomorphism ∇|T|F , hence it is immaterial whether we
choose to apply ∇|T|F directly before or directly after the identity or even drop the identity,
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however the order of application with respect to the other endomorphisms is critical. With
this specific order of multiplication the powers ∆∆�,F of a twisted Laplacian with potential
F can be written as a linear combination of the differential operators on EM associated to
aligned red–white forests F:

Lemma 7.7 (Powers of Laplacians with Potentials)
The powers ∆∆k

�,F , k ≥ 1, of a twisted Laplacian ∆∆�,F with potential F can be written as a
sum over all aligned red–white forests of order 2k:

∆∆k
�,F ψ =

∑
aligned red–white
forest |F|= 2k

appsort ◦ (−tr�)
k

[ ⊗
T⊂F red

jetF(T) ⊗ jetψ(
⊗

T⊂F white

id(T) )

]

We will prove this Lemma by induction on k using the inductive structure on the set of
aligned red–white forests, namely every aligned red–white forest Fnew of order 2k + 2 arises
from a unique aligned red–white forest F of order 2k by shifting the labels of the leaves up by
2 to preserve alignment and adding two new leaves with labels 1 and 2 respectively. These
two new leaves either form the twin bud of a new red root or can be separately chosen to
stay solitary or connect to any of the already existing red roots of F.

Proof: Evidently there are exactly two aligned red–white forests of order 2, the forest with
two solitary white vertices and the forest with a red root connected to two white leaves. For
the former forest the only endomorphism to be applied is the twisted trace (−tr�)∇2ψ, which
contributes ∆∆�ψ while the latter forest is responsible for providing the term Fψ involving the
auxiliary potential F by (7.8). Consequently the statement is certainly correct for k = 1.
Assume now by induction hypothesis that ∆∆k

�,Fψ can be written as a sum over all aligned
red–white forests of order 2k for some k ≥ 1. The crucial point is that ∇2 ∆∆k

�,F ψ can be
written as a sum over all aligned red–white forests Fnew of order 2k + 2 with the property
that the leaves labelled 1 and 2 are not the twin buds of a red tree in Fnew. Every such
aligned red–white forest arises from a unique red–white forest F of order 2k by shifting the
labels of all leaves up by 2 and adding two new leaves labelled 1 and 2, which either stay
solitary or connect independently to any of the already existing red roots of F. Fixing the
forest F and keeping the Leibniz rule for covariant derivatives in mind we observe

∇2

( ⊗
T⊂F red

jetF (T) ⊗ jetψ
( ⊗

T⊂F white

id(T)
))

=
∑
Fnew

⊗
T⊂Fnew red

jetF (T) ⊗ jetψ

( ⊗
T⊂Fnew white

id(T)

)

where the sum on the right is over all aligned red–white forests Fnew of order 2k + 2 arising
from the fixed red–white forest F as above. In fact we may choose the leaves 1 and 2 in
Fnew independently to stay solitary or connect to any of the red roots of F. Staying solitary
these leaves will increase the number of covariant derivatives taken of the section ψ while
they will increase the number of covariant derivatives taken of the potential factor jetF(T)

70



arising from a red tree T in case they connect to the red root of T. On the other hand both
the sorted application appsort and the twisted trace tr� are parallel so that we conclude

∇2( ∆∆k
�,F ψ ) (7.9)

=
∑

aligned red–white
|Fnew|= 2k+2

appsort ◦ ( id⊗ id⊗ (−tr�)
k )

[ ⊗
T⊂Fnew red

jetF(T) ⊗ jetψ(
⊗

T⊂Fnew white

id(T) )

]

where the summation is over all aligned red–white forests Fnew of order 2k+ 2 such that the
leaves labelled 1 and 2 are not the twin buds of a red tree. If we replace id⊗ id⊗ (−tr�)

k by
(−tr�)

k+1 on the right hand side of (7.9) then the sorted application appsort will apply the
additional twisted trace over the leaves labelled 1 and 2 last by definition so that the left
hand side becomes (app ◦ (−tr�) ◦ ∇2) ∆∆k

�,F ψ = ∆∆� ∆∆k
�,F ψ.

In this way we have succeeded in expressing ∆∆� ∆∆k
�,F ψ as a sum over all aligned red–white

forests Fnew of order 2k + 2 with the property that the leaves labelled 1 and 2 are not the
twin buds of a red tree. Clearly in the remaining aligned red–white forests Fnew of order
2k + 2 the leaves labelled 1 and 2 are the twin buds of a red tree and the sorted application
appsort will apply the twisted trace idE ⊗ F over these two leaves last. The net sum over
these remaining forests Fnew will thus contribute F ∆∆k

�,F ψ to the total sum (∆∆� +F) ∆∆k
�,F ψ

over all aligned red–white forests of order 2k + 2. �

With Lemma 7.7 proved we have overcome the most difficult problem in finding a closed
formula for the heat kernel coefficients of twisted Laplacians with potentials. In a second
step we need to apply the general Jet Formula 4.2 to the iterated covariant derivatives jetψ
occurring in the formula for the powers ∆∆k

�,F , k ≥ 1, of the generalized Laplacian ∆∆�,F in
order to find the total symbol ev[ e−t∆∆�,F ]] of the operator e−t∆∆�,F . Despite first appearance
however things become significantly simpler if we decide to apply the general Jet Formula
4.2 not only to the iterated covariant derivatives of the section ψ but at the same time to
the covariant derivatives of the potential F , which appear in the potential terms jetF(T).

Instead of making the resulting summation formula explicit it is more important to
get a proper understanding of its general structure, which will allow us to make a crucial
rearrangment of the different summands. Every aligned red–white forest F of order 2k
partitions the set {1, . . . , 2k} into subsets labelled by the set of red trees in F together with
∞, namely all solitary white vertex trees will have the labels of their leaves in the possibly
empty set labelled by ∞, whereas the labels of the leaves of a red tree T in F form the subset
labelled by T. It is convenient to strip the labels of the twin buds from the latter subsets
in this partition to get a partition of the subset SimpleF ⊂ {1, . . . , 2k} of labels of leaves
different from twin buds into possibly empty subsets labelled by Red F ∪ {∞}. Expanding
the covariant derivatives of both the section ψ and the potential F simultaneously via the
general Jet Formula 4.2 results in a summation over all aligned red–white forests F of order
2k and a jet forest with feedback for each (nonempty) subset in this partition of SimpleF.

Let us now modify the notion of jet forests by allowing red in addition to black and white
vertices subject to the condition that every red vertex is a root with at least two incoming
edges and a twin bud. According to the color of their roots the trees in such a red–white
jet forest F will be called white, red or black trees respectively, moreover a red–white jet
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forest of even order 2k will be called aligned if all twin buds of red vertices are aligned. The
definition of feedback maps for jet forests extends verbatim to aligned red–white jet forests
F of order 2k, namely f is a map from the set of black trees in F to {1, . . . , 2k,∞} such that
f(T) exceeds the bud label of T for all black trees T in F.

Besides feedback maps we will need the notion of hook maps for aligned red–white jet
forests as well, namely maps h from the set of black trees in an aligned red–white jet forest
F to the set Red F∪{∞} of its red trees extended by ∞ such that for every black tree T the
bud label of h(T) <∞ exceeds the bud label of T unless h(T) = ∞ of course. Hook maps
provide the information needed to reconstruct the partition of the set SimpleF ⊂ {1, . . . , 2k}
of labels of leaves different from twin buds of red vertices into subsets labelled by Red F∪{∞}.
While the labels of the leaves of a red or white tree T are in the subset labelled T or ∞
respectively the labels of the leaves of a black tree T are in the subset labelled h(T). A
feedback map f is said to be compatible with a hook map h if either f(T) = ∞ or f(T) is
in the subset of the partition of SimpleF labelled h(T) for all black trees T. In particular a
compatible feedback map f avoids the labels of the twin buds of red vertices.

The reason for introducing the notion of red–white jet forests with hook maps and com-
patible feedback is that the summands occurring in the simultaneous expansion of all iterated
covariant derivatives of both the section ψ and the potential F in the formula for the pow-
ers ∆∆k

�,F , k ≥ 0, of twisted Laplacians with potentials are in bijection to the set of aligned
red–white jet forests F of order 2k with compatible feedback f and hook map h. In fact the
straightforward expansion of all the iterated covariant derivatives occurring in Lemma 7.7 re-
sults in a sum over all aligned red–white forests Frw of order 2k together with jet forests with
feedback for every (nonempty) subset in the associated partition of SimpleFrw ⊂ {1, . . . , 2k}.
Given on the other hand an aligned red–white jet forest F of order 2k with compatible feed-
back f and hook map h the hook map reconstructs the partition of SimpleF and thus the
underlying red–white forest Frw. Forgetting the red vertices in F and collecting the remain-
ing jet trees together appropriately associates moreover a jet forest F|L with feedback f |L to
every (nonempty) subset L ⊂ SimpleF of this partition. Clearly the feedback map f must
be compatible with the hook map h to get meaningful feedbacks f |L for the jet forests F|L.

In this way we can expand all iterated covariant derivates occurring in Lemma 7.7 simul-
taneously via the general Jet Formula 4.2 into a sum over all aligned red–white jet forests
F with compatible feedback f and hook map h. In essence the resulting formula summed
over all k ≥ 0 should be seen as the analogue of equation (7.1) in the presence of auxil-
iary potentials. Note that once we have expanded the iterated covariant derivatives of the
potential F the rule for decorating a red root with decorations Y, Z on the twin buds and
X1, . . . , Xr on the sources of the other incoming edges need to be changed from iterated
covariant derivatives to their symmetrizations − 1

dim M
〈Y, Z〉 jetF(X1 · . . . ·Xr). In particular

every red tree T̃ ⊂ F in a red–white jet forest F defines a multilinear form jetF(T̃) with
values in End EM . Moreover the black trees T ⊂ F with feedback f(T) = ∞ and hook map
h(T) = T̃ act on the jetF(T̃) by iterated commutators:

( −→∏
T⊂F black

f(T)=∞, h(T)=T̃

ad ΩE(T)
)

jetF(T̃) (7.10)
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This equation plays a key role in the third step of our calculation of the heat kernel coefficients
of twisted Laplacians ∆∆�,F with potential, which in analogy to the special case of twisted
Laplacian will eliminate the sum over hook maps and compatible feedback by judiciously
choosing the order of multiplication of the different End EM–factors. Changing the point
of view to begin with let us ask for the conditions a hook map h has to satisfy in order to
be compatible with a given feedback f avoiding the labels of the twin buds of a red–white
jet forest F. Clearly if f(T) < ∞ labels a leaf in a red or white tree in F, then h(T) must
be this red tree or ∞ respectively. Similarly if f(T) <∞ labels a leaf in a black tree T̃ in F

necessarily with higher bud label than T, then we have equality h(T) = h(T̃). In other words
the value h(T) of the hook map h on a black tree T with f(T) <∞ is uniquely determined
by f alone. In a sense this means that summing over compatible feedback f and hook map h
is essentially redundant except for the additional summands arising from black trees T with
f(T) = ∞, but h(T) 6= ∞. In light of equation (7.10) these summands provide exactly the
additional commutators we need in order to cancel the summation over both feedback and
hook maps by rearranging the multiplication.

Fixing a red–white jet forest F and the values for feedback f and compatible hook map
h for all black trees in F except for the black tree T with minimal bud label we want to sum
over the possible values for f(T) and h(T) making f and h compatible. Unless f(T) = ∞
the value of h(T) is uniquely determined by f(T) and the values of h on the other black
trees in F with larger bud label. Comparing this with the argument used in the special case
of twisted Laplacians without auxiliary potential we can use the summation over f and thus
h in decreasing order to commute ΩE(T) past the different endomorphisms arising from the
twisted trace tr� as long as we do not hit upon an endomorphisms jetF(T̃) arising from the
potential. However at this point the summand arising from f(T) = ∞ and h(T) = T̃ allows
us to commute ΩE(T) past the potential and the directly preceeding twisted trace over the
twin buds of T̃, which is merely a multiple of the identity, recall that the feedback map f
avoids the labels of twin buds of red vertices in F. Summing in this way over all compatible
values for f(T) and h(T) we can shuffle ΩE(T) between the two twisted traces

. . . tr�( α2s−1 ⊗ α2s ) ΩE(T) tr�( α2s+1 ⊗ α2s+2 ) . . .

where 2s − 1 or 2s is the bud label of T as before. Continuing this way with the other
black trees in T in turn in increasing order of bud labels we eventually remain with the
summation over compatible feedback f and hook map h eliminated in favor of shuffling
the endomorphisms on EM arising from the twisted trace, the potential and curvature
judiciously before multiplication. More precisely the twisted traces tr�(α⊗β) are multiplied
in their usual order with interspersed endomorphisms jetF (T) appearing directly to the right
of the twisted trace over the twin buds of T as in the sorted application appsort while the
curvature terms are shuffled into the product like a deck of cards in such a way that ΩE(T) is
shuffled between the twisted trace over the pairs of leaves labelled 2s−1, 2s and 2s+1, 2s+2
respectively, where 2s− 1 or 2s is the bud label of T.

With the three critical steps in the calculation of the heat kernel coefficients settled the
remaining arguments generalize mutatis mutandis from the special case of twisted Laplacians
to the general case. Summarizing these arguments we define red–white Laplace forests F with
marked leaves L as Laplace forests with additional red vertices subject to the condition that
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every red vertex is a root with at least two incoming edges and a twin bud. In other words the
two leaves of maximal labels in a red tree connect directly to the root and take consecutive
labels. Moreover the subset L ⊂ Leaf F \ Twin F of marked leaves avoids the twin buds of
both red and transparent vertices such that the complement Leaf F \ (Twin F ∪ L) is the
disjoint union of pairs of leaves with consecutive labels. A given decoration of the leaves of
a red–white Laplace forests F by vector fields X1, . . . , Xk can be turned into a decoration of
all vertices in F using the rules that white or black vertices are decorated by

Φr(X1 · . . . ·Xr)Y ΩE
r (X1 · . . . ·Xr)Y

respectively, where Y and X1, . . . , Xr are the decorations of the bud and the sources of the
remaining incoming edges. Likewise transparent and red vertices are decorated by

−Ωr(X1 · . . . ·Xr)YZ − 1

dim M
〈Y, Z〉 jetF(X1 · . . . ·Xr)

where Y, Z and X1, . . . , Xr are the decorations of the smaller and larger of the twin buds and
the source vertices of the remaining incoming edges. In this way every tree in a red–white
Laplace forest F defines a multilinear form in the vector fields decorating its leaves written say
Φ(T) or jetF(T) for a white or red tree. For white trees including trees with a transparent
root this multilinear form will take values in TM , while for red and black trees it will take
values in End EM and holEM respectively. With this notation in mind our considerations
above culminate in the following explicit formula for the heat kernel coefficients of a twisted
Laplacian ∆∆�,F with potential F ∈ Γ(End EM):

Theorem 7.8 (Heat Kernel Coefficients of Laplacians with Potentials)

The explicit formula for the generating series j
1
2a(t) of the heat kernel coefficients of a

twisted Laplacian ∆∆�,F with potential F ∈ Γ(End EM) can be stated as an equality between

e−t∆j
1
2a(t) and a sum over all red–white Laplace forests F with marked leaves L ⊂ Leaf F:

∑
F red–white Laplace

L marked leaves

t
|F|−#L

2
−#White F

2#White F ( |F|+#L
2

)!
m∗◦tr

|F|−#L
2

� ◦mL

( ⊗
T⊂F black

ΩE(T)⊗
⊗

T⊂F red

jetF(T)⊗
∏

T⊂F white

Φ(T)]

)
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Chapter 8

A Combinatorial Proof of the Local
Index Theorem

There are various reasons to think that the formulas given in Theorems 7.5 and 7.8 for the
generating series j

1
2a(t) of the heat kernel coefficients of generalized Laplace operators ∆∆

have not yet found their proper formulation. As far as the Local Index Theorem in the
form of Theorem 6.2 is a reliable approximation we would rather expect to find a formula
in terms of an exponential of some sort. Moreover it may not be readily clear to the reader
how explicit these formulas really are. For this reason we will discuss some aspects of the
formulas given in Theorems 7.5 and 7.8 in greater detail in this final section. In particular
we will see that the formulas are explicit enough to give a combinatorial proof of the Local
Index Theorem simply by summing the relevant summands of Theorem 7.8.

Perhaps the most profound difference between the combinatorial proof of the Local Index
Theorem given in this section to other proofs is that it makes no reference to Mehler’s formula
at all in one way or other. In a sense the purely combinatorial interpretation (8.2) of the
Taylor series of the hyperbolic tangens given in an excursion into combinatorics in the first
part of this section can be seen as compensation for not using Mehler’s formula in that it
explains the appearance of the hyperbolic tangens in equation (6.1) for the Â–genus say.
At the same time of course this interpreation of the Taylor series of tanh z turns into a
beautiful combinatorial interpretation of the Bernoulli numbers B2k, k ≥ 1 in light of the

classical Taylor series tanh z =
∑

k>0
4k(4k−1)

(2k)!
B2k. In the second part of this section we will

sum the contribution of all Laplace forests consisting entirely of black trees with two vertices
to the formula given in Theorem 7.5, the expected exponential will reemerge in this process
of summation through the combinatorial identity (8.10).

Before we begin let us make a few philosophical remarks about the combinatorial meaning
of the summation over Laplace forests. The contribution of each forest is a product of the
multilinear forms Φ(T) and ΩE(T) associated to the Laplace trees T, which essentially depend
only on the isomorphism class of the trees in the category of budding trees with morphisms
respecting the budding edges. The labelling of the leaves of the trees T in a given Laplace
forest F on the other hand is relevant for the way these multilinear forms are assembled
into the contribution associated to the forest F. It seems possible to sum this contribution
of a given jet forest F over all automorphisms of F as a budding tree or equivalently over
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all possible labellings of its leaves preserving the budding condition in order to simplify the
appearance of the formulas given for the heat kernel coefficients. In a sense this section can
be seen as vindication of this idea in that the Local Index Theorem is a statement about a
single isomorphism class of Laplace forests, namely the isomorphism class of Laplace forests
consisting entirely of black trees with two vertices.

Recall that a cycle γ ∈ Sr+1 in the symmetric group acting on {1, . . . , r+1} is a permutation
with a single orbit on {1, . . . , r + 1} or equivalently a permutation conjugated to the right
shift defined by shift(µ) := µ+ 1 for µ ≤ r and shift(r+ 1) := 1. Conjugation thus defines

a bijection Sr

∼=−→ Γr+1, σ 7−→ σ ◦ shift ◦ σ−1, between the subset Γr+1 ⊂ Sr+1 of all cycles
and the subgroup Sr ⊂ Sr+1 of permutations fixing 1. Excluding the trivial case r = 0
and thinking of a cycle as a walk on {1, . . . , r + 1} we may say that a cycle γ ∈ Γr+1 with
r ≥ 1 never rests γ(µ) 6= µ and thus goes ahead γ(µ) > µ or steps back γ(µ) < µ. What
links this point of view to heat kernel coefficients is that the signs of particularly interesting
summands in Theorem 7.5 depend on the parity of the number of backwards steps

Back γ := # { µ | γ(µ) < µ }

of associated cycles γ. The concept corresponding to backward steps under the bijection

Sr

∼=−→ Γr+1 is known as a “run” in the classical merge sort algorithm. Namely a run in a
given permutation σ ∈ Sr is a maximal subset of consecutive numbers in {1, . . . , r + 1} on
which σ is (necessarily strictly) increasing. Evidently the number of such runs is given by:

Run σ := 1 + # { µ | µ 6= r + 1 and σ(µ) > σ(µ+ 1) }

Under the bijection Sr

∼=−→ Γr+1 the number of runs of a permutation σ becomes the number
of backward steps of the cycle γ := σ ◦ shift ◦ σ−1. Presumably it is simplest to verify this
statement graphically, a formal proof notes that the cycle γ necessarily steps backwards at
σ(r+ 1), because γ(σ(r+ 1)) = σ(1) < σ(r+ 1) with σ fixing 1, and checks that σ induces
a bijection between {µ|µ 6= r+1 and σ(µ) > σ(µ+1)} and {µ|µ 6= σ(r+1) and µ > γ(µ)}.

Definition 8.1 (Counting Polynomials θr+1(w))
In order to count the cycles γ ∈ Γr+1 with a given number of backward steps or equivalently
the permutations σ ∈ Sr with a given number of runs we introduce the counting polynomials

θr+1(w) :=
∑

γ∈Γr+1

wBack γ =
∑
σ∈Sr

wRun σ

for r ≥ 1 and their generating formal power series θ(z, w) :=
∑

r≥1
θr+1(w)

r!
zr. The first few

counting polynomials read θ2(w) = w, θ3(w) = w + w2 and θ4(w) = w + 4w2 + w3.

The apparent symmetry wr+1θr+1(
1
w
) = θr+1(w) of the coefficients of the counting poly-

nomials θr+1(w), r ≥ 1, is evidently due to the involution γ 7−→ γ−1 on Γr+1 satisfying
Back γ−1 = r + 1− Back γ. Using the alternative interpretation in terms of runs of permu-
tations however makes it slightly simpler to write down the following recursion relation:

θ2(w) := w θr+1(w) :=

[
w(1− w)

d

dw
+ rw

]
θr(w) r > 1
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In fact given a permutation σ ∈ Sr−1 acting on {1, . . . , r} fixing 1 with k runs there are
exactly k different positions to insert r + 1 without breaking any of the runs of σ in two,
namely the k positions at the very end of these runs. In this way every σ ∈ Sr−1 with k
runs gives rise to exactly k permutations σnew ∈ Sr with k runs and r − k permutations
σnew ∈ Sr with k+1 runs. On the other hand the recursion operator w(1−w) d

dw
+rw maps

wk to kwk + (r − k)wk+1. Writing the recursion relation in terms of the generating formal
power series θ(z, w) of the polynomials θr+1(w), r ≥ 1, we find the differential equation:[

(1 − zw)
∂

∂z
− w(1− w)

∂

∂w

]
log ( 1 + θ(z, w) ) = w (8.1)

Actually θ(z, w) is the unique solution to the differential equation (8.1) with an expansion of

the form
∑

r≥1
θr+1(w)

r!
zr with formal power series θr+1(w), r ≥ 1, in the origin z = 0 = w.

Integrating the flow lines of the vector field (1−zw)
1−w

∂
∂z
− w ∂

∂w
away from its singularities we

see that in the domain w 6= 0, 1 the general solution to (8.1) can be written in the form
1 + θ(z, w) = (1 − w)ϑ( z(1 − w) + logw ) with an arbitrary function ϑ. Clairvoyantly
anticipating (8.2) we can use this presentation to find the solution we are interested in:

Lemma 8.2

θ(z, w) = −1 +

(
1 − w

ez(1−w) − 1

1− w

)−1

Indeed expanding the expression stated for θ(z, w) into a formal power series we see that

it has an expansion
∑

r≥1
θr+1(w)

r!
zr of the required form with polynomials θr+1(w), r ≥ 1.

More precisely it is possible to invert the series 1−
∑

r>0
zr

r!
w(1− w)r−1 explicitly to get

θr+1(w) =
∑

p1+2p2+...+rpr=r

r!

1!p1 2!p2 . . . r!pr

(
p1 + . . .+ pr

p1 p2 . . . pr

)
wp1+...+pr(1− w)r−p1−...−pr

where the summation takes the typical form of a summation over all partitions of r involving
in particular the multinomial coefficients

(
p1+...+pr

p1 p2 ... pr

)
. As we know that θ(z, w) is the unique

solution to the differential equation (8.1) with such an expansion it remains to calculate[
w(1− w)

∂

∂w

](
1 − w

ez(1−w) − 1

1− w

)
= − (1− zw)w ez(1−w) + w

(
1 − w

ez(1−w) − 1

1− w

)
which is equivalent the differential equation (8.1) in the form:[

(1 − zw)
∂

∂z
− w(1− w)

∂

∂w

]
log

(
1 − w

ez(1−w) − 1

1− w

)
= −w

At the end of this brief excursion into combinatorics we are now in the position to
derive the result we will need in our discussion of the Local Index Theorem. Namely the
hyperbolic tangens enters the calculation of the index density as the generating series of the
special values θr+1(−1), r ≥ 1, of the counting polynomials θr+1(w), which in turn can be
interpreted as the difference between the number of cycles in Γr+1 stepping back an even and
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an odd number of times respectively. Evaluating the generating formal power series θ(z, w)
for the counting polynomials θr+1(w), r ≥ 1, at w = −1 results in the identification:

θ(z,−1) =
∑
r≥1

θr+1(−1)

r!
zr = −1 +

2

1 + e2z
= − tanh z (8.2)

Note that the hyperbolic tangens is odd and indeed the special values θr+1(−1) = 0 vanish
for even r by the symmetry wr+1θr+1(

1
w
) = θr+1(w). Comparing the coefficients in equa-

tion (8.2) with the classical Taylor series of the hyperbolic tangens featuring the Bernoulli

numbers tanh z =
∑

k>0
4k(4k−1)

(2k)!
B2kz

2k−1 we get a formula for the special values θr+1(−1)
for odd r

B2k = − 2k

4k(4k − 1)
θ2k(−1) = − 2k

4k(4k − 1)

∑
σ∈S2k−1

(−1)Run σ k ≥ 1

which interpretes the Bernoulli numbers B2k combinatorially as the difference between the
number of permutations in S2k−1 with an even and an odd number of runs respectively.

Coming back to the heat kernel coefficients of the trivially twisted connection Laplacian
∆∆ = ∇∗∇ on sections of a vector bundle EM with connection over a manifold M we
note that in the trivially twisted case tr�(α ⊗ β) = 〈α, β〉idE always results in multiples
of the identity. Eliminating these multiples of the identity reduces the delicately chosen

multiplication m∗ to the multiplication
−→
m of the curvature terms ΩE(T) in increasing order

of bud labels while the trace becomes the iterated trace trr :
⊗2rT ∗M −→ RM over suitable

pairs of forms. With these simplifications Theorem 7.5 reads

j
1
2 a(t) = et∆

 ∑
F Laplace forest
L marked leaves

t
|F|−#L

2
−#White F

2#White F ( |F|+#L
2

)!
tr

|F|−#L
2 ◦mL

(
−→∏

T⊂F black

ΩE(T) ⊗
∏

T⊂F white

Φ(T)]

) 
(8.3)

for trivially twisted Laplacians. Looking more closely at this explicit formula for the heat
kernel coefficients we see that a jet forest F contributes to the value ad(0) of the heat

kernel coefficient ad along the diagonal only for d = |F|−#White F
2

provided #White F and
|F| have the same parity. In particular jet forests with more than d trees are irrelevant

to ad(0), because every tree T will increase |F|−#White F
2

at least by 1. Moreover black trees

contribute a factor linear in holEM to the summands in (8.3) while white trees only contribute
scalars. Consequently the value of the d–th coefficient ad along the diagonal is a section
ad(0) ∈ Γ(U≤dholEM) for all d ≥ 0 and its symbol class [ad(0)] ∈ Γ(Sym dholEM) only
depends on jet forests F, which have exactly d black trees with two leaves and no white trees.

A more sophisticated argument to the same end bridges the gap between the explicit
formula (8.3) for the heat kernel coefficients of connection Laplacians ∇∗∇ and the consid-
erations in Section 5. Note first that the bundle SymT ∗M ⊗ UholEM of Taylor series of
universal heat kernel coefficients is actually an algebra bundle. At the time we introduced the
filtration F •(SymT ∗M ⊗UholEM) in Definition 5.2 we were more interested in the induced
filtration on the space of operators on SymT ∗M ⊗ UholEM than in the algebra structure,
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nevertheless the filtration F •(SymT ∗M ⊗ UholEM) is an algebra filtration by the trivial

inequality bd
2
c+ b d̃

2
c ≤ bd+d̃

2
c. Consequently the extended filtration

Fr(
⊗

T ∗M⊗SymT ∗M⊗UholEM [[
√
t]] ) :=

∑
d≥0

√
t
d⊗

T ∗M ⊗Fd+r( SymT ∗M⊗UholEM )

turns
⊗

T ∗M ⊗ SymT ∗M ⊗ UholEM [[
√
t]] into a filtered algebra bundle as well. Quite

surprisingly every single piece of the explicit formula (8.3) for the heat kernel coefficients
of ∇∗∇ can be interpreted in this filtration. To begin with the multilinear forms Φ(T) and
ΩE(T) associated to a tree T in a Laplace forest F scaled by appropriate powers of t

t
|T|
2 ΩE(T) ∈ Γ( F2−|T|(

⊗|T|T ∗M ⊗ SymT ∗M ⊗ UholEM [[
√
t]] ) )

t
|T|
2
−1 Φ(T)] ∈ Γ( F1−|T|(

⊗|T|T ∗M ⊗ SymT ∗M ⊗ UholEM [[
√
t]] ) )

are sections of the algebra bundle
⊗

T ∗M⊗SymT ∗M⊗UholEM [[
√
t]] and so is their product

t
|F|
2
−#White F

−→∏
T⊂F black

ΩE(T) ⊗
∏

T⊂F white

Φ(T)] (8.4)

which is a section of F2#Black F+#White F−|F|(
⊗

T ∗M ⊗ SymT ∗M ⊗ UholEM [[
√
t]] ). As every

black tree has at least two, every white tree at least three leaves the symbol class of (8.4) in

F0(
⊗

T ∗M ⊗ SymT ∗M ⊗ UholEM [[
√
t]] ) / F−1(

⊗
T ∗M ⊗ SymT ∗M ⊗ UholEM [[

√
t]] )

vanishes unless the Laplace forest F consists entirely of black trees with exactly two leaves.

On the other hand the operator t−
#L
2 mL and the iterated trace tr

|F|−#L
2 are both filtered of

degree 0 as is the operator et∆. This is clear for the iterated trace, because the contracted
tensor factor

⊗
T ∗M does not really participate in the definition of the filtration. For the

multiplication mL of marked leaves the increase in the degree in the polynomial factor is

compensated by multiplication with t−
#L
2 . Eventually the operator t∆ is filtered of degree 0

and hence so is et∆, because the multiplication by t, which is filtered of degree 2, is countered
by decreasing the degree of the polynomial factor by 2. The latter property is ultimately
the justification for the Definition 5.2 of the filtration F •(SymT ∗M ⊗ UholEM) of course.
Consequently the generating series a(t) =

∑
d≥0 t

dad for the heat kernel coefficients is a

section of the filtration subbundle F0(SymT ∗M ⊗ UholEM [[
√
t]]) and its symbol class

[ a( t, · ) ] = et∆

 ∑
F special Laplace
L marked leaves

t
|F|−#L

2

( |F|+#L
2

)!
( tr

|F|−#L
2 ◦mL )

(∏
T⊂F

( 1
2
RE )·,·(T) ⊗ 1

)  (8.5)

in Γ(SymT ∗M⊗Sym holEM [[t]]) only depends on special Laplace forests, i. e. Laplace forests
consisting entirely of black trees with two leaves. In particular the symbol class is a polyno-
mial in the curvature tensor RE alone not involving any covariant derivatives.

In order to get a combinatorial interpretation of the iterated trace tr
|F|−#L

2 appearing in
formula (8.5) we recall that the set L of marked leaves for a special Laplace forest F needs
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to be chosen in such a way that the unmarked leaves Leaf F \ L come in disjoint pairs of
leaves with consecutive labels. Contracting these distinguished pairs of unmarked leaves into
new vertices we get a bipartite graph with two different kinds of vertices, black roots and
white leaves, the latter coming in two subvarieties either marked or contracted. Instead of
the original labelling we will only retain the induced total ordering on the set of leaves. A
not too simple example of such a contracted graph arising from a special Laplace forest of
order 14 looks like

ac r
�� Q

QQa r
�

��
AA ac r

�
��

Q
QQa r
�� @@a ac ar�� @@ a r

�
��

Q
QQa r
�� AA ac (8.6)

where the total ordering of the leaves, a remnant of the original labelling, is indicated by
sorting the leaves in ascending order from left to right. Pictures like (8.6) by the way imply
that the number of sets of marked leaves in a Laplace forest of order k without transparent

vertices is given by the Fibonacci numbers
∑b k

2
c

r=0

(
k−r

r

)
, expanding r arbitrary “contracted”

in k− r leaves into a pair will see the remaining leaves form a legal subset of k− 2r marked
leaves in k. In a general Laplace forest the number of sets of marked leaves is a product of
Fibonacci numbers depending of the position of the twin buds.

Studying picture (8.6) we observe that the contracted graphs decompose into two kinds
of connected subgraphs, closed circles with black roots alternating with contracted leaves
and paths starting and ending in marked leaves with a chain of black roots and contracted
leaves in between. For convenience we will refer to these subgraphs as closed and broken reels
respectively, their length is the number of white leaves. The sample graph in picture (8.6)
has thus a closed reel of length 2 and three broken reels of length 2 and twice 3 respectively.

The definition of contracted graphs is set up in such a way that the iterated trace tr
|F|−#L

2

sums the pairs of forms in
⊗

T ∗M corresponding to a pair of contracted leaves over a local
orthonormal base {Xµ} of the euclidian vector bundle TM . This description of the action
of the iterated trace is very similar to the definition of the trace trB :=

∑
µBxµ,xµ and

the multiplication (BB̃)X,Y :=
∑

µBX,xµB̃xµ,Y on the space of bilinear forms on a euclidian

vector space T with values in Sym holE we introduced in the course of calculating the symbol
classes of the heat kernel coefficients in Section 6. Comparing both definitions we easily see
that the contribution of a closed or broken reel in the contracted graph of a special Laplace
forest F with marked leaves L to the summand associated to F and L in formula (8.5) can
be written in terms of multiplication and trace on the space of bilinear forms, say:

tr(
1

2
RE )4 = ac

1

��
r
AA ac
2

��
r
AA ac
3

��
r
AA ac
4

r
�
�

H
HH

=
1

24

∑
µ1 µ2 µ3 µ4

RE
Xµ1 ,Xµ2

RE
Xµ1 ,Xµ4

RE
Xµ2 ,Xµ3

RE
Xµ3 ,Xµ4

(8.7)

(
1

2
RE )4

X,X = b��r
AA ac

1

��
r
AA ac

2

��
r
AA ac

3

��
r
AA b =

1

24

∑
µ1 µ2 µ3

RE
X,Xµ1

RE
Xµ1 ,Xµ2

RE
Xµ2 ,Xµ3

RE
Xµ3 ,X (8.8)

Of course the numbers on the contracted leaves refer to the associated summation index and
not to any labelling of the leaves. In general the summand associated to a special Laplace
forest F with marked leaves L in equation (8.5) is the product of the factors ±tr(1

2
R)r

or ±(1
2
R)r−1

X,X contributed by the closed and broken reels respectively of length r in the
contracted graph of F, for the moment there is no need to worry about the proper sign.
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Evidently the contracted graph allows us to recover the special Laplace forest F with its
set of marked leaves L only up to an ambiguity arising from the two possible ways to connect
the two leaves in a contracted pair of unmarked leaves to black roots. A superficial glance
may make one believe that each closed or broken reel of length r contributes the factor 2r

and 2r−2 respectively to the number of preimage forests. However the closed reel of length 2
is anomalous in that the four ways to expand the two contracted leaves only results in two
different special Laplace forests. Avoiding this problem for the moment we are content to
simply assert that the number of preimage forests with marked leaves of a given contracted
graph is the product of the numbers of preimages of its reels while the number of preimages
of reels only depend on their length and whether they are closed or broken.

This factorization of the number of preimage forests of a contracted graph over the
number of preimage forests of its reels as well as the corresponding factorization of the term

(tr
|F|−#L

2 ◦mL)(
∏

(1
2
RE)·,·(T)⊗ 1 ) in (8.5) into factors ±tr(1

2
RE)r and (1

2
RE)r−1

·,· associated
to reels is the conditio sine qua non for using the key combinatorial identity (8.10) making
summation over all special Laplace forests with marked leaves feasible. In passing we note

that even the factor t
|F|−#L

2 in (8.5) factorizes into contributions tr and tr−2 associated to

closed and broken reels of length r respectively, because |F|−#L
2

and |F|+#L
2

are the numbers
of contracted leaves and leaves respectively of the contracted graph arising from a special
Laplace forest F with marked leaves L.

The upshot of the preceeding considerations is that the summation over special Laplace
forests F with marked leaves L can be turned into a summation over all contracted graphs
weighted by the number of preimage forests with marked leaves in such a way that the
summand associated to each contracted graph factorizes completely into contributions from
the reels except for the factorial factor ( |F|+#L

2
)!, which only depends on the total number

|F|+#L
2

of leaves of the contracted graph. Up to sign the contribution of each reel in turn
depends only on its length and on whether it is closed or broken. Schematically the resulting
summation over all contracted graphs makes formula (8.5) for the heat kernel coefficiens read

[ a( t, · ) ] = et∆

∑
k≥0

1

k!

∑
G contracted graph

with k leaves

∏
reel in G

( . . . )

 (8.9)

A fundamental philosophical tenet of working with forests says that the sum over all forests
is the same as taking the exponential of the sum over all trees. In order to make this principle
sufficiently precise for our needs let us consider a function W from the finite subsets of N to
a commutative algebra with 1 such that W (∅) = 1 and W (I) = W (Ĩ) for all subsets I and
Ĩ of N of the same cardinality. In this case the following identity holds true∑

k≥0

1

k!

∑
P partion
of {1,...,k}

∏
I∈P

W (I) = exp

(∑
r≥1

1

r!
W ({1, . . . , r})

)
(8.10)

where the inner sum on the left is over (unordered) partitions of {1, . . . , k}, i. e. partitions
thought of as subsets ∅ /∈ P ⊂ P({1, . . . , k}) of the power set of {1, . . . , k}. Identity (8.10)
is essentially a reformulation of the statement that there are exactly k!

1!p1p1!...k!pkpk!
different

partitions P containing p1 sets of size 1, p2 sets of size 2 and so on.
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Instead of a partition of N every contracted graph with k leaves defines a partition on the
totally ordered set of its leaves given by the subsets of leaves of reels. Identifying the set of
leaves with {1, . . . , k} via the total ordering we see that the summation over all contracted
graphs in (8.9) agrees with the left hand side of identity (8.10) if we define the function W on
subsets I ⊂ {1, . . . , k} with values in the commutative algebra Γ(SymT ∗M ⊗ Sym holEM)
as the net contribution of all possible reels on I to the product over reels in (8.9). In fact the
simplest way to generate all contracted graphs with k leaves is to choose a partition on the
set {1, . . . , k} and a closed or broken reel for each set in this partition independently. The
product of the W (I) over all subsets I in a partition of {1, . . . , k} thus reproduces precisely
the sum over all contracted graph with this prescribed partition.

Clearly for calculating the value W ({1, . . . , r}) of the function W we need to sum the
contributions of the reels on {1, . . . , r} to the product in (8.9), which are made up from the
curvature terms ±tr tr(1

2
RE)r or ±tr−2 (1

2
RE)r−1

·,· for closed and broken reels respectively and
the weighting factor counting the number of different forests we get by expanding contracted
leaves into pairs. Interestingly tr(1

2
RE)r = 0 and (1

2
RE)r−1

·,· = 0 vanish for odd or even r
respectively so that W ({1, . . . , r}) will depend either only on closed or only on broken reels.
Let us have a closer look at the case of closed reels or equivalently r even first. As a graph a
closed reel on {1, . . . , r} is a circle of with r black roots alternating with the r white leaves
{1, . . . , r}. Choosing an orientation associates a cycle γ ∈ Γr to this circle and establishes
a bijection between closed reels and pairs {γ, γ−1} of cycles in Γr. Looking at example (8.7)
we note that moreover the proper sign of the curvature term ± tr tr(1

2
RE)r associated to a

closed reel is given by (−1)Back γ independent of the choice of orientation as r is even. In this
context the anomaly of the closed reel of length 2 reflects the fact that the associated cycle
is the unique cycle with γ = γ−1. Pretending that even in case r = 2 there are 2r different
preimage forests for a closed reel of length r we sum over all cycles and divide the result by
2 to account for the two different choices of orientation to find

W ({1, . . . , r}) = 2r tr
θr(−1)

2
tr( 1

2
RE )r =

θr(−1)

2
tr( tRE )r (8.11)

for all even r ≥ 2. Turning to r odd or equivalently broken reels we observe that the
underlying graph of a broken reel can be closed to a circle with alternating black roots and
white leaves by introducing a ficticious white leaf connected to the unmarked leaves of the
broken reel over two ficticious black roots. Associated to the two orientations of this circle are
two cycles in Γr+1 so that the broken reels are in bijection to pairs {γ, γ−1} of cycles in Γr+1

this time. Example (8.8) tells us that the proper sign of the curvature term ± tr−2(1
2
RE)r−1

is given by − (−1)Back γ independent of cycle γ or γ−1 we choose as r + 1 is even. Counting
the number of preimage forests with marked leaves we conclude

W ({1, . . . , r}) = − 2r−2 tr−2 θr+1(−1)

2
( 1

2
RE )r−1

·,· = − θr+1(−1)

4t
( tRE )r−1

·,· (8.12)

for all odd r ≥ 3 and W ({1}) = 0, because there are no broken reels of length 1. For the
particular function W from the subsets of N to Γ(SymT ∗M ⊗ Sym holEM) determined by
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equations (8.11) and (8.12) the right hand side of the key identity (8.10) reads

exp

(∑
r≥1

1

r!
W ({1, . . . , r})

)
= exp

1

2

∑
r≥2

r even

θr(−1)

r!
tr(tRE)r − 1

4t

∑
r≥3

r odd

θr+1(−1)

r!
(tRE)r−1

·,·


= exp

(
−1

2
(t
d

dt
)−1tr( tRE tanh tRE ) +

1

4t
(
tanh tRE

tRE
− 1)·,·

)
in terms of the interpretation (8.2) of the Taylor series of the hyperbolic tangens. The
combinatorial identity (8.10) thus turns the schematical formula (8.9) for the symbol class
[a(t, ·)] of the heat kernel coefficients of connection Laplacians ∇∗∇ into the explicit formula:

[ a(t,X) ] = et∆ exp

(
−1

2
(t
d

dt
)−1tr( tRE tanh tRE ) +

1

4t
(
tanh tRE

tRE
− 1 )X,X

)
(8.13)

In a final step we have to evaluate the exponential of the flat Laplacian ∆ in (8.13). Contem-
plating this problem for some time the reader will certainly agree that the result of applying
et∆ to the exponential of a quadratic form in X is again the exponential of a quadratic
form. Perhaps it is a good idea to try some toy example first, namely the exponential of the
quadratic form ax2 + b on the real line with a, b ∈ R. In this case we find

e−t ∂2

∂x2 exp
(
ax2 + b

)
= exp

(
a

1 + 4ta
x2 + b − 1

2
log( 1 + 4ta )

)
(8.14)

for t close enough to 0, because the right hand side satisfies the differential equation

∂

∂t
exp

(
a

1 + 4ta
x2 + b− 1

2
log(1 + 4ta)

)
= − ∂2

∂x2
exp

(
a

1 + 4ta
x2 + b− 1

2
log(1 + 4ta)

)
and reduces to exp( ax2 + b ) at time t = 0. Equation (8.14) remains valid if a and b are no
longer assumed constant, but can be functions of t as well. In the argument given above we

need only rename t into τ for a moment and evaluate e−τ ∂2

∂x2 exp(atx
2 + bt) at t = τ in the

end. With this toy model settled it is not too difficult to guess the appropriate generalization

et∆ exp
(

(At )X,X + trBt

)
= exp

(
(

At

1 + 4t At

)X,X + trBt −
1

2
tr log( 1 + 4t At)

)
to symmetric bilinear forms on a euclidian vector space TyM with values in a commuta-
tive algebra like Sym holEy M . Using this identity together with Remark 6.1 in the form

log tanh z
z

= (z d
dz

)−1
(

z
tanh z

− 1− z tanh z
)

we can rewrite equation (8.13) in the form:

[ a(t,X) ] = et∆ exp

(
− 1

2
(t
d

dt
)−1tr

(
tRE tanh tRE

)
+

1

4t

(tanh tRE

tRE
− 1
)

X,X

)
= exp

(
− 1

2
(t
d

dt
)−1tr

( tRE

tanh tRE
− 1

)
+

1

4t

(
1− tRE

tanh tRE

)
X,X

)
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With this equation we have reproved Theorem 6.2 for trivially twisted connection Laplacians
leading via Corollary 6.3 to the Local Index Theorem for the untwisted Dirac operator D$M

on a Riemannian spin manifoldM . A straightforward procedure to extend this combinatorial
proof of the Local Index Theorem to arbitrary twisted Dirac operators considers the square
D2 of a twisted Dirac operator as trivially twisted Laplace operator with potential, whose
precise form is dictated by the general Weitzenböck formula (5.3) for twisted Dirac operators:

F :=
κ

4
+ 2

∑
µ<ν

(Xµ ∧Xν) ? ⊗Rtwist
Xµ,Xν

Evidently this potential is quadratic in UholEM and so the generating series a(t) of the
heat kernel coefficients of D2 will fail to be of zeroth order in general in the filtration
F•(SymT ∗M ⊗ UholEM [[

√
t]]) used above. In Section 5 we found remedy to this prob-

lem in twisting the filtration on SymT ∗M ⊗UholEM to a filtration adapted to the inclusion
UholEM ⊂ UholM ⊗ UholtwistM . Once this twisted filtration is extend in the obvious way

Fr(
⊗

T ∗M ⊗ SymT ∗M ⊗ UholM ⊗ UholtwistM [[
√
t]] )

:=
∑
d≥0

√
t
d ⊗

T ∗M ⊗ Fd+r( SymT ∗M ⊗ Uhol⊗ UholtwistM )

all the pieces of the explicit formula given in Theorem 7.8 can be interpreted again in terms
of the twisted filtration so that a(t) ∈ Γ(F0(SymT ∗M ⊗ UholM ⊗ UholtwistM [[

√
t]])). In

this situation the symbol class [ a(t) ] depends only on special red–white Laplace forests,
red–white Laplace forests consisting entirely of black or red trees with two leaves. Splitting
the curvature RE = R + Rtwist we see that the right hand side of (8.5) generalizes to

et∆

 ∑
F special red–white

L marked leaves

t
|F|−#L

2

( |F|+#L
2

)!
( tr

|F|−#L
2 ◦mL )

∏
T⊂F
black

( 1
2
R )·,·(T) ⊗

∏
T⊂F
red

(−2Rtwist )·,·(T) ⊗ 1


(8.15)

where (−2Rtwist )·,· is short hand for the bilinear form − 2
dim M

〈·, ·〉
∑

(Xµ ∧ Xν) ? ⊗Rtwist
Xµ,Xν

with values in End EM associated to the potential F .
Recall that the sets L of marked leaves in a red–white Laplace forest have to be chosen

in such a way that the iterated trace tr
|F|−#L

2 contracts the twin buds of all red trees. Taking
this observation as a clue an argument almost identical to the argument eliminating aligned
pairs of solitary vertices in Section 7 implies that in the process of taking the iterated trace
the contributions of the red trees to (8.15) completely decouple and split of the exponential
of the potential −2Rtwist. The combinatorial structure of the remaining sum over special
Laplace forests without red trees has been settled already and using the previous result we
calculate the symbol class

[ a(t,X) ]

= exp

(
− 1

2
(t
d

dt
)−1tr

( tRE

tanh tRE
− 1

)
+

1

4t

(
1− tRE

tanh tRE

)
X,X

)
exp

(
− 2 tRtwist

)
of the series a(t) of heat kernel coefficients for the square of a twisted Dirac operator D.
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