MINIMAL SURFACES IN SIMPLICIAL COMPLEXES

ILYA DOGOLAZKY

ProLOGUE

In this paper we introduce the concept of a minimal surface in a
simplicial complex.

In the classical case of a smooth minimal surface embedded in a
Riemannian manifold the curvature of the surface is bounded from
above by the curvature of the manifold. In particular any minimal
surface in a manifold of non-positive curvature (for example in a
Euclidean manifold) is non-positively curved itself.

We shall define the minimality property in the context of simplicial
complexes in such a way, that the minimal surface in a non-positively
curved metrical two-dimensional piecewise Euclidean simplicial com-
plex is of non-positive curvature itself. We study the properties of
minimal surfaces in simplicial complexes, in particular the existence
of such surfaces. Furthermore, we obtain estimates on the Euclidean
characteristic of minimal surfaces in some special cases.

This paper is organized as follows. First we consider an arbitrary
simplicial complex K with a finite family of disjoint simple closed
edge pathes in its 1-skeleton. The “minimal surface problem” in this
situation is to find a (minimal in some sence) simplicial complex S
whose geometrical realisation is a compact 2-dimensional topological
manifold and to find a simplicial map f : S — K, which maps the
boundary 0S exactly onto the given family of edge loops in the 1-
skeleton of K.

A simplicial map f: S — K is the same as a mapping of the vertex
set Vs of S to the vertex set Ky of K fulfilling the following additional
property: for any 2-simplex {a, b, c} C Vs there exists a 2-simplex o €
K, with {f(a), f(b),f(c)} C z. Let us widen the classes of complexes S
and K. Instead of the simplicial complex K we consider an arbitrary
set F called a colour set, which plays the role of the edge set Ko,
together with a subset Z of the set of all triplets of elements of F

called the set of admissible triplets, which plays the role of Kj.
1
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On the other side let us consider a compact (not necessarily con-
nected) 2-manifold S together with an embedded graph I', which plays
the role of 1-skeleton in the simplicial settings, fulfilling some addi-
tional properties (see Definition 17), which are obviously satisfied in
the simplicial case.

Instead of the simplicial map S — K consider the map Vi — F (see
Definition 20), which is called colouring of the surface S triangulated
by the graph TI'.

From now on we consider the triplets (S, T f) consisting of a com-
pact topological surface S, an embedded graph I' and a proper F-
colouring of the vertex set of I'. Such a triplet is called a (F, Z)-
coloured surface. See Definitions 20 and 22 for details.

Definitions 8, 9, 12, and 16 formalize the notion of the bound-
ary condition in the class of coloured triangulated surfaces in both
oriented and non-oriented cases. In other words the boundary con-
dition is a finite family (one element for each component of the sur-
face boundary) of finite cyclic sequences of neighbour (in sence of Z)
colours from F, where all the colours of given boundary condition are
unique.

Now we define a minimal surface as a coloured triangulated surface
with a given boundary condition that firstly has the maximal Euler-
ian characteristic in the class of surfaces with the same boundary
condition and secondly the minimal number of edges of the embed-
ded triangulating graph in the class of surfaces with given boundary
condition and the maximal Eulerian characteristic. See Definitions 25
and 26 for details.

In the second section we study some properties of the minimal sur-
faces — see Theorem 27. We show that a minimal surface can not
contain certain configurations such as leaves (i.e. vertices of valency
one), looped edges (i.e. edges attached to the same vertex with both
ends) or multiple edges (i.e. several edges with the same pair of end-
points). These properties show, that a minimal surface is “regular”™
it is a geometric realisation of some simplicial complex, while the
triangulating graph is the 1-skeleton of this complex.

Moreover, two vertices of a minimal surface can not have the same
colour if they are contained in the same edge. This property says,
that the simplicial map S — K is “non-degenerated”, i.e. the image of
any simplex has the same dimension as the pre-image. This behaviour
is analogous to the embedding property for smooth maps, it allows
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to induce a metric on the pre-image space using the metric on the
target space as done in Section 5.

The last property of Theorem 27 says that the opposite vertices
of a pair of triangles with a common edge can not have the same
colour. It follows that the locally Euclidean metric induced on the
minimal surface in a 2-dimensional complex of non-positive curvature
is of non-positive curvature itself, see Section 5 for details.

The proof of these properties is by explicite construction. If a
coloured triangulated surface does not satisfy one of these properties,
we construct from this surface by means of contracting subsets, cut-
ting subsets out or gluing another coloured triangulated surface which
is less complex in the sence of Definition 25. Then the construction
implies that the original coloured triangulated surface is not minimal.

In the third section we study the existence problem for minimal sur-
faces in simplicial complexes. The existence question in the smooth
case is a rather complicated problem. In out combinatorial setting it
is almost trivial. Because of the discretness of the complexity function
(see Definition 25) there exists a minimal surface with given boundary
condition if and only if there exists at least one triangulated coloured
surface with the same given boundary condition. Theorem 46 states
that the existence of a minimal surface in a simplicial complex with
given boundary condition is equivalent to the purely topological prop-
erty of the family of boundary loops to be a zero co-bordant family.

In the forth section we construct a map from the space of finite loop
families in a topological space into the first homology group of the
space (with coefficients in Z/27Z in the non-oriented case). Then we
prove that the loop family considered in the third section is zero co-
bordant if and only if its image in an appropriate homology group van-
ishes. We prove these statements in both oriented and non-oriented
cases.

In the fifth section we discuss the applications of out results to two-
dimensional simplicial complexes with a piecewise Euclidean metrics
of non-positive curvature. We first prove an inequality among the sum
of link lengths over all boundary vertices, the number of boundary
edges and the Eulerian characteristic. We then use this to estimate
the Eulerian characteristic in several special cases (Theorem 71).

The author is grateful to Professor Werner Ballmann for constant
attention to this work and useful discussions.
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1. BASIC DEFINITIONS

Definition 1. Let {A; | 1 € I} be an indexed family of sets. By Ll;c1A;
we denote the set {(i,a) |i€ I,a € A}

Definition 2. Let a and b be two integer numbers. By [a,b] we
denote the set {x € Z | a < x < b}, which can be empty. In some rare
cases we shall denote by the same symbol the interval

xeR|a<x<b}
in the set of real numbers.

Definition 3. Let X be a finite set. By #X we denote the number of
elements of X.

Definition 4. Let K be a simplicial complex, i > 0 an integer. By
K; denote the set of simplicies of K of dimension i. By |K| denote the
geometric realisation of the complex K. For a simplex o € K denote
by |o] the subset of |[K| defined as the convex hull of the vertices of o.
By |K|; denote the i-th skeleton of K as a subset of |K|:

Ki= {J lol.

o€eK
dim o=1i

Definition 5. Let N be a non-negative integer. Let K be a non-empty
simplicial complex. Let us call K thick N-dimensional (or just N-
thick) complex if every simplex in K is contained in an N-dimensional
simplex in K.

Remark 6. The dimension of an N-thick complex is automatically
equal to N.

Definition 7. Let X and Y be two topological spaces. By C(X,Y) we
denote the set of all continuous maps from X to Y.

Definition 8. Let F be an arbitrary set. Let SeqF be the set of all
triplets (k, a,f), where

(1) k is a natural number;

(2) aisamap [1,k] - {x e N|x > 3};

(3) fis a map ¥ ,[0,a(i)— 1] = F.
SeqF is the set of finite families of finite sequences (of length at
least 3) in F. Let us denote an element (k,a,f) € SeqF by the k-
tuple of sequences of elements of F: (k,a,f) = (f(l,O) (1, a(1) —
1),...,f(k,0)---f(k,a(k) —1)).



MINIMAL SURFACES IN SIMPLICIAL COMPLEXES 5

Definition 9. Let F be a set, s = (k,a,f) and s’ = (k’,a’,f’) two
elements of Seq F. We shall say that s and s’ are oriented equivalent
(and denote this by s ~ s') if the following conditions hold:

(1) k=K'

(2) there exists a permutation T € Sy such that a’ =aoT;

(3) there exist integer numbers b; (i € [1,k]) such that

f'(i,n) =f(t(i),n+b; mod a’(1))

for any n € [0,a’(i) — 1].
We shall say that s and s’ are equivalent (and write s ~ s’) if together
with properties (1) and (2) the following weaker condition holds:
(3') for any i € [1,k] there exist integers ¢; € Z and €; € {—1,+1}
such that

f'(i,n) =f(t(i),em +c¢; mod a’(1))

for any n € [0, a’(i) — 1].
Hence two families of sequences from Seq F are oriented equivalent if
and only if they consist of the same sequences up to permutation of
sequences and shifts in the sequences. They are equivalent if we also
allow for the shifts to be preceeded by reflections in some sequences.

Proposition 10. The both relations ~ and ~ are equivalence rela-
tions. Suppose that s,s’ € SeqF satisfy s ~ s’, then s ~s'.

Proof. The first claim is obvious. To proof the second claim set
ci:biand €i:+1. O

Example 11. Let F be the finite set {a,b,c,d, e, f,x,y,z}. By s
denote the element (dyf,ezx) € SeqF. By s’ denote (xze,yfd) €
SeqF. It holds s ~s', but not s~ s’.

Definition 12. For any set F denote the quotient sets Seq F/ ~ (resp.
Seq F/ ~) by B(F) (resp. by B°(F)).

Definition 13. Let F be a set. Let F; be the set of all 3-element
subsets of F. Let Z be some subset of F;. Let us call the pair (F, Z) a
colouring system, the elements of F colours, and the elements of Z
admassible triplets.

Definition 14. Let (F, Z) be a colouring system. Let us call an ele-
ment (k, a,f) € Seq F admassible, if the following conditions hold:
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(1) for any i € [1,k] and n € [0, a(i) — 1] there exists z € Z such

that
{f(i,n),f(i,n+1 mod a(i)} C z,

i.e. all the pairs of colours appearing as consequent elements
in one of the sequences of (k, a, f) are contained in admissible
triplets;

(2) the mapping f is injective.

By Seq(F, Z) denote the subset of all admissible elements of Seq F.

Proposition 15. Let (F,Z) be a colouring system. Let s,s’ be
elements of SeqF. If s is admissible and s ~ s’ (or even s ~s'),
then s’ is also admaissible.

Proof. The proof is trivial. O

Definition 16. Let (F, Z) be a colouring system. Denote by B(F, Z)
(resp. B°(F, Z)) the subset of B(F) (resp. B°(F)) consisting of equiv-
alence classes of admissible elements of Seq F. Because of Proposi-
tion 15 the sets B°(F,Z) and B(F,Z) are well-defined. Because of
Proposition 10 there exists a natural projection fr, : B°(F,Z) —
B(F, Z).

Definition 17. Let S be a compact (not necessary connected) two-
dimensional manifold. For any component S; of S let the boundary
0S1 be a non-empty set. Let I' C S be an embedded graph. Let us
call the pair (S,T') triangulated surface, if the following conditions
hold:

(1) the boundary 9S of the surface is contained in I';

(2) each component of S\I' is a topological 2-disc;

(3) each component of S\I" is bounded by a cycle of edges of I' of
length at most 3;

(4) each component of 0S is a cycle of edges of I' of length at
least 3.

Definition 18. Let (S,T") be a triangulated surface. Let V be the
vertex set of I'. Let F be an arbitrary set. Let uscallamapf:V — F
an F-colouring of the triangulated surface (S,T').

Definition 19. Let (S,I") and f: V — F be as above. Choose first a
numbering of boundary components of S by integers from [1, k]|, where
k = #m,(0S). Then choose for any component C; of 0S a numbering
of the vertices from C; NV by integers from [0, a(i) — 1] (where a(i)
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is defined as #(C; NV)) in such a way that the consequent vertices
are numbered by consequent (modulo a(i)) integers. By v(i,n) de-
note the n-th vertex on the i-th component of 9S. By s denote the
element (k, a,fov) of SeqF. The element s depends on the choice of
the component and vertex numberings, but its class [s] € B(F) does
not. Let us call [s] € B(F) the boundary condition for the coloured
triangulated surface (S, T, f) and denote it by 0(S, T} f). Let S be now
an oriented surface, and we suppose that the vertex numbering re-
spects the orientation of S. In this case the class [s] € B°(F) does
not depend on the both choices. Let us call this class the oriented
boundary condition for (S,T,f) and denote it by 0°(S, T, ).

Definition 20. Let (S,T') be a triangulated surface, V the vertex set
of I, (F,Z) a colouring system. Let us callamap f: V — F an
(F, Z)-admissible colouring, if the following conditions hold:

(1) for any component U of S\I" there exists an admissible triplet
z € Z, which contains the boundary vertices of U: f(VN u) c
z;

(2) for any two vertices on the surface boundary x,y € 9SNV it
holds f(x) # f(y), i.e. the colouring map is injective on the
surface boundary.

Proposition 21. Let (S,T") be a triangulated surface, (F, Z) a colour-
ing system. If f is an (F, Z)-admaissible colouring of (S,T"), then
o(S,I,f) € B(F,Z). In the case of oriented surface S we have
0°(S, T f) € B°(F, Z).

Definition 22. Let (S,I") be a triangulated surface, (F, Z) a colouring
system. If f is a (F, Z)-admissible colouring of (S,T'), then the triplet
(S, T, f) is called an (F, Z)-coloured surface.

Definition 23. Let us define the lexicographical ordering on the
set Z? of pairs of integers by

(x1,y1) < (x2,42) &= x1 <x2V (x1 =x2 Ay1 < Y2).
Definition 24. By x;I" denote the number of edges of the graph I'.

Definition 25. Let (S,T") be a triangulated surface (either oriented
or not), xS the Eulerian characteristic of the surface S. Call the pair
kK(S,T) = (—xS,x1T") (considered as an element of the lexicoraphically
ordered set Z?) the complezity of the triangulated surface (S, T).
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Definition 26. Let (F,Z) be a colouring system. Let (S,T,f) be
an (F, Z)-coloured triangulated surface (either oriented or not). It
is called minimal if the inequality k(S,T") < «(S’,T’) holds for any
(F, Z)-coloured surface (S’, T, f') with

e 0°(S,If)=0°(S', T, f') in oriented case, or

e O(S,If)=0(S', I, f') in non-oriented case.

2. REGULARITY OF MINIMAL SURFACES

Theorem 27. Let (F,Z) be a colouring system. Let (S,T,f) be a
minimal (F, Z)-coloured triangulated surface (either oriented or
not). Then the following properties hold:

(1) Every vertex of I' is an end-point of at least two edges.

(2) The graph T' does mot have loops, i.e. edges whose ends
coincide.

(3) If two vertices a; and a, of I' are connected by an edge,
then f(a1) 75 f(az).

(4) For any two vertices of I' there is at most one edge con-
necting them.

(5) Let b and c be two vertices of I' connected by an edge. Let
a; and a, be two other vertices, and assume that both of
them are connected to b as well as to c. Assume that there
are components U; resp. U, of S\I' spanning the triangles
(a1bc) resp. (azbe). Then f(ay) # f(ay).

Definition 28. Let (S,I') be a triangulated surface. It is called sim-
plicial, if there exists a simplicial complex X and a homeomorphism
h:S — |X| such that h(I') is the 1-skeleton of X.

Corollary 29. Any minimal triangulated surface is simplicial.

Proof. The claim follows from the statements (1)—(4) of Theorem 27.
U

In the remaining part of this section we shall prove Theorem 27.
The proof will be done by reductio ad absurdum. For any of the five
properties we shall assume the converse and construct some other
(F, Z)-coloured surface (So, Iy, fo) with the same boundary condition
as for (S,T,f) and with smaller complexity: k(So, o) < «(S,T'). The
construction of Sy will be done by cuttings along some edges of the
graph I" and consequent gluing along some edge pairs with match-
ing end-point colouring. The colouring of the new vertices will be
inherited from the vertices of T'.
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Definition 30. Let M be a topological manifold. Suppose ] be a
subset of M homeomorphic to S'. Let 7t : M, — M be the orientation
covering of M. The pre-image 7w~ '] C M, of the loop ] is either a
single loop in M, or the union of two disjoint loops. In the first case
we shall call the loop ] orientation inversing. In the second case it
is called orientation preserving loop.

Remark 31. Let M be a surface, i.e. topological manifold of dimen-
sion 2 and ] a loop as above. Let U be a tubular neighbourhood of J.
The loop ] is orientation inversing if and only if U is homeomorphic
to a Mdobius strip.

2.1. At least two edges at a vertex. Let a be a vertex of I, let
e be the only edge of I' connected to a. Let Sy be the same surface
as S. Remove both a and e from the graph I and call the resulting
graph I'p. Let fo be the restriction of f to the vertex set of ). We
have x1Io = x1I"'—1 and thus «(Sp, I'h) < (S, T'). This proves the first
statement of Theorem 27.

2.2. No loops. Let a be a vertex of I', let e be an edge connecting a to
itself. Let us cut the surface S along the edge e and call the resulting
surface S;. We have four topologically different cases depending on
two parameters: either or not the edge e is orientation preserving,
and either or not a € 0S (in any case e ¢ 0S by property (4) of
triangulated surfaces). Let a; (where i € [1,2] for a ¢ 0S, and i €
[1,3] for a € 9S) be the new vertices of I'y C Sy. Let e; and e, be the
new edges. See Figure 1 for details.

Let us construct the surface Sy. If the edge e is orientation inversing
(the cases 2 and 4) just contract the edges e; and e, and all the
vertices a; to a new vertex ay. Let us call the resulting surface So.
In the case 2 we have xSo = xS1 = xS + 1. In the case 4 we have
xSo = xS1+ 1 = xS + 1. This proves the second statement of the
theorem for the case of orientation inversing edge e.

Consider the case 3. For i € {1,2} let us contract the edge e; to-
gether with the vertex a; to a new vertex a;. Let us call the resulting
surface S;. We have xS; = xS1 +2 = xS + 2. It is possible that
the points aj and aj belong to two different components of S{, and
one of these two components (but not the both of them) is a closed
surface. In this case define Sy by removing this closed component of
the surface S;. Because the Eulerian characteristic of a surface can
not be greater than 2, it follows from xS} = xS + 2, that xSo > xS.
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The edge e is. ..
...orient. preserving ...orient. inversing

€1 €1 )

0S a; a as 0S a; az as
Case 1 a€ oS Case 2
ay az
ay
(5 €1 €2
Case 3 a¢ oS Case 4

FicURE 1. The surface S cutted along the loop edge e.

Therefore k(So, o) < «(S,T),as x1To < x1T". In other case (none of a/
belongs to a closed component) just define Sy = S§. This concludes
the proof for the case 3.

As for the case 1, let us contract a;, as, e; to af, and ay, e; to aj.
After the optional removing of the closed component containing aj,
it defines (analogous to the case 3) an appropriate surface Sp. This
concludes the proof of the second statement of the Theorem.

2.3. Neighbours have different colours. Let an edge e of the graph
' connect two vertices a;, a, with f(a;) = f(a,). As the vertices a;
and a, can not both belong to 0S (because of f(a;) = f(a;)), we may
assume that a, ¢ 0S. Let us define the graph Iy by removing the
vertex a, and the edge e and connecting the loose ends of the edges
directly to the vertex ai, as shown in Figure 2. Obviously we have
X110 = xaI' — 1. The proof of the third statement of the Theorem is
now completed by defining Sy to be S.
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Graph I' . - Graph o

o8 az > ¢y

Ficure 2. Contraction of an edge connecting two ver-
tices of the same colour.

2.4. No double edges. Let a and b to be two different vertices of I'
connected by two distinct edges e; and e,. In order to construct the
surface Sy we consider four different cases:

(i) a€0S,b€0S, e; £ 0S, e, ¢ 0S;

(ii) a € 0S, b € 0S, e; C 0S, e, ¢ 0S;

(iii) a € 3S, b ¢ 0S;

(iv) a € 0S, b & 0S.
The case (i): a,b € 0S, e, e, ¢ 0S. Consider a small neighbourhood
of the point a. The edges e; and e, cut it in three areas: &, adjacent
to both e; and e;, and «; (for j € {1,2}) adjacent to e; only. Denote
by Bo, B1, B2 the analogous areas in the neighbourhood of b — see
Figure 3 for details.

9S b
B B2

€1 €2

X1 X2

35S o

FiGure 3. Case (i): two inner edges connecting the
same pair of boundary vertices.

Let us cut the surface S along the edges e; and e, and call the
resulting surface S;. Denote by a; resp. b; (for j € {0,1,2}) the
new vertices adjacent to «; resp. ;. Denote by e! and e! two new
boundary edges in place of e; for 1 € {1,2}. Choose these notations
in such a way that by € ef Nel, by € ef, by € e}. For every pair
(e, €;'), where j € {1, 2}, there are two possible connections between
{ao, a;} and {bp, b;}. These two possibilities are denoted by dotted
resp. dashed lines in Figure 4. Thus we have to consider four subcases:
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(1) a1 €eq, ap€ef; ar€e), ap€ef;
(i2) ap€e, a1 €ef; as€e), ay€ef;

: ! n. ! n.
(i3) ar€ej, as€ef; ap€e) ay€ey;

: ! n. ! .
(i) ap€ef, ar€ey; arz€e) ao€ey;

Sl
_— T

For symmetry reasons the subcase (i4) follows from the subcase (i),
therefore we shall consider only the first three subcases.

oS by by b
B1 B2
Bo
e e ey e)
N A
| \ ! 1
\ \ / 1
\ \ ! K 1
\ \ I !
\ s\ 1 /
v R Ly
Xo
X1 X2
0S ay ap az

F1GURE 4. The surface S cutted along two inner edges
connecting the same pair of boundary vertices.

The subcase (i;). Define the surface S} by identification of the edges
e; with e} and ef with e). Denote by a;, resp. by, the common image
of a; and a, resp. by and b, (see Figure 5). Now proceed as in the
cases 1 and 3 of 2.2: remove the component containing a, if it is a
closed surface. Call the resulting surface Syo. If we have removed a
component, we have xSo = xS, and x1Io < x1I'— 1. In the other case
(So = S§) we have xSo = xS + 2. Thus «(So, o) < k(S,T).

The subcase (i,). Let us define the surface So by identification of
edges e to e} and e} to e). Denote by a;, resp. bj; the common
image of a; and a, resp. by and b, (see Figure 6 for details). We
have k(Sy, Ih) < k(S,T'), as xSo = xS + 2.

The subcase (i3). Let us define the surface Sp by identification of
edges ef to e, and e to ej. Denote by ap;; the common image
of ap, a7 and a,, by by, the common image of by and b, (see Fig-
ure 7 for details). We have k(So, o) < k(S,T), as xSo = xS + 1. This
concludes the proof in the case (i).

The cases (ii), (iii), and (iv). Denote by ] the loop e;Ue, and cut the
surface S along the loop ] (in the case (ii) along the edge e, only,
since the edge e; already belongs to the boundary 9S).
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S oS bpn bo
B1(B2
e
erlej ef ey
X1 X2
0S 0S ars Qb

F1cGUuReE 5. Case (i1): the surface cutted along eq, e;
and glued by indentifications e} ~ e}, ef ~ e7.

0S by by b oS b1z
B2 B1/B2
e ey el e1/e) Bo
bo
a
"o ey /el
(06) X1 /X2
0S ay ay az 0S a2

FIGURE 6. Case (i,): the surface cutted along eq, e
and glued by indentifications e; ~ e3, e{ ~ €.

The loop ] is either orientation inversing or orientation preserving.
Let us first assume that ] is orientation preserving. In the cases (iii)
and (iv) identify the edges e; ~ e} and e} ~ e} (see Figure 8 for
details). In the case (ii) just identify e; ~ e; (see Figure 9). After
the gluing remove a closed component if it occures. Call the resulting
surface Sy. After removing a closed component, it holds xSo > xS
and x1lo < x3I7. If there was no closed component to remove, we
have xSo = xS + 2 (in the case of orientation preserving J).

Now assume that J is orientation inversing. In the case (ii) identify
e” ~ ey (see Figure 10). In the cases (iii) — see Figure 11 — and (iv)
— see Figure 12 — identify e] ~ e) and e} ~ e5. Call the resulting
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0S

0S

Ficure 7. Case (i3): the surface cutted along eq, e;
and glued by indentifications e] ~ e}, ef ~ e7.

b>
e ( )eé e
0S

a; ap az

FiGURE 8. Cases (iii) and (iv): the surface cutted along
two inner edges with orientation preserving e; U e;.

0S a; az b1 bz

FIGURE 9. Case (ii): the surface cutted along an inner
edge with boundary end-points; e; U e, is orientation
preserving.

14

surface So. It holds xSo = xS + 1. This concludes the proof of the

4-th statement of the Theorem.
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by
n !
e/ [e} .
e €
!
e ) €2
0S aj az b1 b, 05 ay, b

FiGurE 10. Case (ii): gluing in the orientation invers-
ing subcase.

0S

aop12

FiGURE 11. Case (iii): gluing in the case of orientation
inversing J.

b,

F1GUurE 12. Case (iv): gluing in the case of orientation
inversing J.

2.5. The opposite vertices of adjacent triangles differ. Assume
that in the setting of the 5-th statement of the Theorem we have
f(a;) = f(az). Remove the interior of the triangles (a;bc) and (a,bc),
remove the edge (bc) and identify the edges (a;b) to (a,b) and (ac)
to (azc) (see Figure 13). The resulting surface Sy is homeomorphic
to S and we have x;Ip = x;I" — 3. This completes the proof of Theo-
rem 27.
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b b
S: So:

Qaq az Qa2

Ficure 13. Cutting out adjacent triangles.
3. EXISTENCE OF MINIMAL SURFACES

Definition 32. Let X be a topological space. By PX denote the set
L%, C(LX ;ST X) of finite sequences of loops in the space X.

Definition 33. For two elements p; = (kq, d1),p2 = (kz, d2) in PX
denote by p; Lp; the the element (k; +k;, d12) € PX, where the map
®12 maps the first k; circles as ¢, does, and the remaining k, circles
are mapped according to ;.

Definition 34. For an element p = (k,$) € PX denote by p~' the
element (k,$’) € PX, where the map ¢’ is defined by ¢'(i,() =
¢(i, ") for any i € [1,k], (€ ST c C.

Definition 35. Let X be a topological space, (k, $) and (k', d’) two
elements of PX. Assume that k = k' and there exists a homeomor-
phism 1 of the space L¥ ;S to itself such that ¢’ = ¢ op. Then the
elements (k, ) and (k’, d') are called equivalent. We denote this by
(k,d) ~ (k', d'). If the homeomorphism 1 can be choosen orientation
preserving, these elements are also called oriented equivalent. We
denote this by (k, d) = (k', d’).

Definition 36. Let X be a topological space. Let LX denote the
quotient space PX/ ~. Let us call the elements of LX (finite) loop
families in X. Let us denote by L°X the space PX/ X of oriented
finite loop families in X. Since the relation ~ implies the relation ~,
there is a natural projection Ax : L°X — LX. The operators LI and
- ~1 defined on PX clearly can be pushed down to the quotients LX

and L°X.
Proposition 37. Let X be a topological space. The operator Ll is
commutative on both LX and L°X. For z € LX we have z7' = z,

but for an element of L°X this equation holds only in trivial cases.

Definition 38. Let K be a simplicial complex, consider the colour-
ing system (Ko, K;): the colours are the vertices of K, the admissible
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triplets are the vertex sets of all 2-simplicies of K. Let s = (k, a, )
be an element of Seq(Ko, K;). Let 1(s) be a continuous map from
Lk ;ST to K| such that the restriction of this map to the i-th cir-
cle is a homeomorphism on the image, the image is the closed path
f(0),f(1),...,f(a(i) —1),f(0) in |K| and this path is parametrized by
the arc length. This path is well defined: the vertices f(j) and f(j+1)
do not coincide and are connected by an edge in K; because s is
(Ko, K3)-admissible.

Proposition 39. Let K be a simplicial complez, s1,s> € Seq(Ko, K3).
If s1 ~s;, (resp. sy ~s3), then U(s1) ~ 1(s2) (resp. {(sy) 2 T(sz)) n
PIK].

Definition 40. Let K be a simplicial complex. By lx denote the map
B(Ko, K») — L|K| taking an equivalence class [s] to [I(s)]. Analogously
define the map 1§ : B°(Ko, K;) — L°[K|.

Proposition 41. Let K be a simplicial complex. Then the maps
lx and 1y are injective and the following diagram commutes:

B° (Ko, K2) —% Lo[K|

BKO,KZl l?\nq

B(Ko,Kz2) — LK
Proposition 42. If K is a thick simplicial complex of dimension

at least 2, then the images of the maps lx and 1} consist exactly
of the famalies of distinct closed simple pathes in the graph |K|;.

Definition 43. Let X be a topological space. An element (k, ) € PX
is called zero co-bordant if there exists a compact two-dimensional
manifold S without closed components, a homeomorphism T : 0S —
I_I{‘:1S], and a continuous map f : S — X satisfying flos = ¢ o T.
The map f is called co-bordism. If the surface S is oriented and the
map T is orientation preserving, the element (k, ¢) is called oriented
zero co-bordant. Because the property to be zero co-bordant (resp.
oriented zero co-bordant) depends only on the equivalence class of
the element with respect to the relation ~ (resp. ~), this property is
well defined on the set LX (resp. L°X).

Example 44. A family x consisting of a simple null-homotopic
curve 1s oriented zero co-bordant. For any family z the element
zUz' is oriented zero co-bordant, while the element zLlz is zero
co-bordant, but not necessarily oriented zero co-bordant.
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Definition 45. Let X be a topological space. Let x € LX be a zero
co-bordant loop family. It is called minimal if there are no zero co-
bordant elements y,z € LX with x =y U z. Obviously if f: S — X is
a co-bordism for x then the surface S is connected. We shall say that
x is minimal zero co-bordant of characteristic x if

x =max {xS | f: S — X is a co-bordism for x}

Obviously it holds x < 1.

Theorem 46. Let K be a simplicial complex. Let [s] € B(Kp, K3)
be an (oriented) boundary condition. Then there ezxists an (ori-
ented) (Ko, K;)-coloured triangulated surface (S,T,f) satisfying the
giwven boundary condition 0(S,T,f) = [s] if and only if the element
l[s] € LIK| is (oriented) zero co-bordant.

Proof. We shall prove the non-oriented case of the theorem, the proof
for the oriented case is similar. The “only if” direction of the theorem
is obvious.

Let us proof the “if” direction. Assume that lk[s] is zero co-bordant.
Let g : S; — [K| be the co-bordism such that glss, is mapped according
to a given element [s] € B(Ky, K;). We have to construct a triangu-
lated surface, which is coloured by the vertex set of K with the given
boundary colouring. We shall construct even more: a simplicial com-
plex E together with a simplicial map h: E — K having the desired
boundary behaviour.

Let us start with the compact two-dimensional manifold S;. We
may assume that S; does not have closed components (if it has closed
components, we just remove them). Furthermore, assume that S; is
triangulated (S; = |D| for a simplicial complex D) in such a way that
the map g is a simplicial homeomorphism on the boundary subcom-
plex of D.

Now we apply the simplicial approximation theorem. Let D’ =
B*D be the k-th barycentric subdivision of D and g, : D’ — K the
simplicial approximation for g. The map g, almost has the desired
behaviour on the boundary of D,. We have to adjust it a little to sat-
isfy the given boundary condition. Let (xy) be a boundary edge of D.
It is subdivided in 2* edges of the complex D’ by the vertex sequence
X = zp,21,...,2Zx =Y. By the definition of simplicial approximation,
the images g,(z;) of these vertices belong to the edge (91 (x)gq (y)) of
K. Since the map g, is a simplicial map, we get g>(z;) € {g1(x), g1(y)}
for all i € [0, 2.
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Now let us add to the complex D’ edges (zozi,1) and 2-simplices
(zozizi41) for i € [1,2% — 1]. See Figure 14 for details (there k = 2).
In the Figure the new edges are shown by dashed lines and the new

FiGuRE 14. Attaching of new 2-cells to the barycentric
subdivided complex.

2-cells by asterisks. Let us repeat the same construction for any
boundary edge of D. Let us denote by E the simplicial complex
obtained by this procedure. We now define a simplicialmaph: E — K
by h(z) = g,(z) for all vertices z of E. Let us observe that the
image of the new edges (zoz;;1) and the new simplices (z¢z;z;,1) for
i € [1,2% — 1] are contained in the 1-simplex {gix, g1y} of K;. The
same observation holds for any boundary edge of D; hence the map
h: E — K is simplicial. The theorem is proved. U

4. HOMOLOGICAL CRITERION

Definition 47. Let X be a topological space, x € L.°X an oriented loop
family. Let (k,$) € PX be an element representing it: x = [(k, d)].
For each i € [1,k] let us define the element s; of the first homology
group H;X as the homology class of the map S' — X : { — (i, ().
The sum of these elements Y | s; does not depend on the choice of
the representing element (k, ¢) € x. Let us denote this sum by h§(x).
In the non-oriented case denote the element of H;(X,Z/2Z) defined
analogously for y € LX by hx(y)-

Proposition 48. Let X be a topological space. Let p:7 — 7/27 be
the natural projection, p, : HiX — H;y(X,Z/27) the induced map in
the first homology and Ax : L°X — LX the natural projection. Then
the horizontal arrows in the following diagram are surjective and
the diagram commutes:

[oX —%,  H,X

| |-

IX ™ Hy(X,Z/22)
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Proposition 49. Let S be a compact surface. Then the class of
the boundary [0S] is equal to zero in the first homology group
H:(S,Z/2Z). If the surface is oriented, then [0S] is zero (with
induced orientation) even in Hy(S,Z).

Theorem 50. Let X be a topological space, x € L°X a family of
oriented loops. Then the element x i1s oriented zero co-bordant
if and only if the equation h$x = 0 holds wn the homology group
H; X.

Proof. First note that the “only if” direction is trivial: if f: S — X is
an oriented co-bordism for x, then we get hyx = f.[0S] = O because
of [0S] =0 in H;S.

Let us prove the “if” direction. First we may assume that the space
X is arcwise connected and non-empty. Let us choose a representative
(k,d) € PX of x € L°X. Let us choose some base point ay € X and
connect it to the base points of the loops of our family ¢(i,1) by
pathes vy; : [0,1] — X: vi(1) = (i, 1), vi(0) = ap, where i € [1,Kk].
Consider the loop

K
y=]]vidovi’,
i1

where the path ¢; : [0,1] — X is defined by ¢i(t) = d(i, e?*). The
homological class [y] € H;X is equal to hyx = 0. Hence the homotopy
class [y] € m(X,ap) is an element of the commutator [ X, 7t1X],
according to the well-known theorem. Thus the loop 7y is homotopic
to a product of commutators

N
v =] B 85",
=1

where «; and (3; are some loops in X.

Let S be the direct product of the unit interval and the circle:
S=1[0,11xS"and f: S — X be a homotopy between y and y’: see
Figure 15 for details. Let us tag the boundary intervals by labels
Yi, %, B; as illustrated in Figure 15. Let us identify the boundary
intervals tagged by the same labels. The resulting surface S’ together
with the induced map f’: S’ — X is the needed oriented co-bordism
for the element x € L°X. The theorem is proved. O

Let us formulate a claim, which is a special case of the last theorem.
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491
/H%B] ‘B]\/
[31 \

B2 o /V
\Q/I

3

b2

FiGURE 15. The homotopy between v and vy’ and the
construction of S’ (here k =3, N =2).

Proposition 51. Let ¢ be a null-homotopic loop in a topological
space X. Let x. € LX be the family consisting of the single loop c.
Then x. 18 minimal zero co-bordant of characteristic 1.

Theorem 52. Let X be a topological space, y € LX a family of
(non-oriented) loops. The element y is zero co-bordant if and
only if hx(y) = 0 wn the homology group H,(X,Z/27).

Proof. As in the proof of the last theorem, the “only if” direction
follows from Proposition 49. Let us prove the “if” direction. Consider
the short exact sequence

0—7Z-572-272/272—0,

where the arrows are defined by «(n) = 2n and p(m) = m + 2Z =
[m],z. This short exact sequence induces the long homological exact
sequence. Consider just a small part of it:

HiX =5 Hy X 25 Hy(X,Z2/22).

Let us choose an element y° € L°X with Axy°® =y (in other words,
choose an arbitrary orientation on the loop family y). Because of
Proposition 48 we get p.h%y° = hxAxy® = hxy = 0. It follows

xU° € ker p, = im«,. Since the map h§ : L°X — H;X is surjective,
we can choose an element z € [°X with

. hyz = hyy°.
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By definition of « it holds «,(hyz) = 2 - h§z. Taking into account
this equality we obtain

(*) xy°® =2-hyz
Define an element x € [°X by x =z ' Lz T LUy°. It follows
hyx = —2h§z + hjy°.

Taking into account (*) we obtain h§x = 0. Hence by Theorem 50,
the element x is oriented zero co-bordant, thus there exists an ori-
ented surface S and a continuous map f : S — X such that flzs is a
representative for x = z' LUz ' Uy°. Now identify the components
of S mapped along the loop family z='. The resulting (possibly not
oriented) surface S’ together with the induced map f’ is the needed
co-bordism for Axy°® =vy. O

5. METRICAL APPLICATIONS

Definition 53. Let (X, d) be a metric space (we shall allow the dis-
tance function d to have the value +oco on some pairs of points). Let
I be a connected subset of R (the subset I can be either bounded or
not, it can as well either contain its boundary or not). Let us call a
continuous map c : I — X a shortest curve if for any a,b € [ the
length of the curve c|,y) is equal to the distance d(c(a),c(b)) and
c(a) #c(b) for a # b.

Definition 54. Let (X, d) be a metric space, I an interval in R. Let
us call a (not necessary shortest) curve ¢ : I — X geodesic if for any
x € I there exists a neighbourhood U C I of x such that the curve c|y
is a shortest curve.

Definition 55. A metric space (X, d) is called a length space if for
any x,y € X with d(x,y) < +oco there exists a shortes curve connect-
ing them.

Definition 56. Let [ be a connected subset of R. For any integer
i € Z denote by I, the (possibly empty) subset of I bounded by
the consequent integers:

Ii,i—H =1InN [l,1+]] :{XE I | 1<X<1+]}
Let us call a curve c : I — |K| in a simplicial complex K strict piece-
wise linear if the following conditions hold:

(1) for every i € Z there is a simplex o € K such that c|r, ,,, is an
affine map from I;;;; to |of;
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(2) for every integer i from the interior of the interval I there
does not exist a simplex |o| C K| containing both c¢(I;_;;) and
c(Liit1)-

The curve c fulfilling only the first property is called piecewise linear.

Definition 57. Let K be a simplicial complex, ¢ € K an n-dimensional
simplex in K, sgp,...,s, the vertices of 0. Let by,...,b, € R* be
a generic (n + 1)-tuple of points in R™ (it means, these points are
not contained in an (n — 1)-dimensional affine subspace of R™). Let
t : |o] <= R™ be the affine map taking s; to b; for i € [0,n]. Let us
call the distance function d, on |o| defined by d,(x,y) = dgn(1x,1y) a
Euclidean metrics on the simplez o.

Definition 58. Let K be a thick N-dimensional complex. Let D =
{ds}oek, be a family of Euclidean metrics on every top dimensional
simplex of K. Let us assume that the following properties hold:

(1) the metrics of the family D are compatible: d, (x,y) = do, (X, y)
for every two simplicies 0y, 0, € Ky and any x,y € |o7]| N |o3);

(2) the completness property: for every infinite path a;,a,...
(where a; are vertices of K such that {a;, a;;1} are edges of K)
holds ) %, do, (ai, ai+1) = +oo, where o; is some N-simplex
containing the edge (a;a;i 7).

Such a family D is called a piecewise Euclidean metrics on the
complex K.

Remark 59. Let K be a two-dimensional thick complex. To define
a piecewise Euclidean metrics on K it is sufficient to define a posi-
tive length function £ on the set K; of the edges of K fulfilling the
strict triangle inequality. In the case of a one-dimensional complex (a
graph) it is sufficient to define an arbitrary positive length function
(even the triangle inequality is not needed).

Now we shall introduce a metrics on the geometric realisation of a
complex induced by a piecewise Euclidean metrics.

Definition 60. Let K be a thick N-dimensional complex with a piece-
wise Euclidean metrics D = {ds}oeck,- For any x,y € |K| denote by
Sxy the set of all finite sequences of points in [K|

z=(x=20,21,...,2Zn, = Y)
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such that both z;_; and z; are contained in the same N-simplex |o;_ i
for any i € [1,n,]. Define the function Lp : Sy, — R by

LD(Z) = Z d0'171,i(z’i—1 ) Z’L)
i=1

Define the distance function dp on the set |K| induced by the family
D by
dp(x,y) = inf Lp(z).

ZE€Sxy

Here are some obvious properties of the just defined metrics dp.

Proposition 61. Let K be a locally finite N-thick simplicial com-
plex with a piecewise Fuclidean metrics D = {ds}ocky- Let dp be
the induced distance function on |K|.
(1) The inequality dpls < do holds for every N-simplezx o.
(2) For any point x € |0]° in the interior of an N-simplez |0
there exists a neighbourhood U C |o| of x with dply = dolu-
(8) The length of a curve in |K| with respect to the metrics of
the family D coincides with the length of the same curve
with respect to dp.
(4) The metric space ([K|,dp) is a length space.
(5) Any geodesic in the metric space (|K|,dp) s (up to re-
parametrization) a strict piecewise linear curve in the sence
of Definition 56.

Definition 62. Let K be a simplicial complex, o € K a simplex. Let
Ly be the vertex subset of K defined by

Loo={x€Ko|x ¢ o A{x}Uo €K}
Let L, be a simplicial complex with the vertex set L, defined by
Ls={0' CLs | cUG" € K}.

The simplicial complex L, is called the link of the simplex o¢. For a
vertex x € Ky let us call the link of the O-simplex {x} the link of the
vertex x, denoted by L,.

Proposition 63. The following properties of a simplicial complex
K are equivalent:

(1) K is locally finite;

(2) K 1is locally compact,

(8) the links of all non-empty simplicies in K are finite;

(4) the links of all vertices of K are finite.



MINIMAL SURFACES IN SIMPLICIAL COMPLEXES 25

Now we define a piecewise Euclidean metrics for the links of vertices
in a two-dimensional simplicial complex with a piecewise Euclidean
metrics.

Definition 64. Let K be a thick two-dimensional complex with a
piecewise Euclidean metrics D = {ds}ock,- Let x € Ko be a vertex
of K. Let us define a piecewise Euclidean metrics on the graph L, by
defining an edge length function { on L. Let y,z € L,y C K, be two
vertices connected by an edge e = (yz) in L. Let « be the angle at
the vertex x in the 2-simplex o = {x,y, z} of K with respect to the
Euclidean metrics d,. Define the length of the edge e in the graph L,
by £(e) = «. The piecewise Euclidean metrics on the graph defined
in such a way induces a well-defined distance function on the link of
the vertex x. Denote this distance function by D], .

Definition 65. Let K be a thick two-dimensional complex with piece-
wise Euclidean metrics. The complex K is said to be of non-positive
curvature, if for any vertex x € K the metric graph L, does not have
a simple loop of length less than 27.

Definition 66. Let I C R be a connected subset, t; € I a real number
such that ty < sup I (it means, the interval I goes further than t, in the
positive direction). Let ¢ : I — [K| be a piecewise linear curve in the
two-dimensional thick simplicial complex K with piecewise Euclidean
metrics D = {ds}oeck,. Let x = c(to) be a vertex of K. Let o ={x,y, z}
be a 2-simplex containing the image of c|j, t,+¢) for some small e > 0.
For v € {y, z} let «, denote the angle between the edge (xv) and the
curve c|i, +,+¢) With respect to d,. Obviously we have &+, = £(yz),
where { is the length function on the link L, induced by D as defined
above. Let ¢(ty) be the point on the edge (yz) of the link L, at the
distance «, from y € L, and «, from z € L, — see Figure 16 for
details. We shall call the element ¢(ty) € L, the direction of the
curve c at to. In non-ambiguous context we shall use the notation c,
(recall that x = c(to)) instead of ¢(to).

Definition 67. Let the interval I and the complex K be as above.
Let to € I be a point with to > infI such that x = c(ty) is a vertex
of K. Define the inverse direction —¢(to) by —¢(to) = ¢(0), where
the curve ¢ is defined by ¢(t) = c(to — t). We shall use the notation
—cy as well where non-ambiguous.

Remark 68. If ty is a point in the interior of the interval I, then both
directions ¢, and —c, are defined.



MINIMAL SURFACES IN SIMPLICIAL COMPLEXES 26

The simplex The edge (yz)
lo| C |K] in the link L,
z L1z
o
N " e
Y vy

FicUure 16. Definition of the direction c, € L, of the
curve c.

Proposition 69. Let K be a two-dimensional thick compler with
piecewise Euclidean metrics, ¢ : 1 — |K| a strict piecewise lin-
ear curve, to € I° a point in the interior of the interval 1 such
that x = c(ty) s a vertex of K. Then c s a geodesic in a small
neighbourhood of to if and only if di (cx, —Cx) = .

Definition 70. Let K be a two-dimensional thick complex with piece-
wise Euclidean metrics, c : I — |K| a piecewise linear curve, t, € I° a
point in the interior of the interval I such that x = c(t) is a vertex
of K. Let us call the real number k(to) = ky := m— di (cx, —Cx) the
curvature of ¢ at the point x. The curvature k, is non-positive in
case of a geodesic c.

Let K be a thick simplicial complex of dimension at least 2. Let
(S,T,f) be a minimal triangulated (K, K;)-coloured surface. As we
have seen in Section 2, the surface S can be described as the geometric
realisation of some simplicial complex D

(S> r) f) = (|D|> |D|1af)

and the colouring map f : Dy — Ko is a simplicial map (because the
colouring is (Ko, K;)-admissible), which takes any three vertices of a
2-simplex of D to three different vertices of the complex K.

Now let K be a complex with a piecewise Euclidean metrics and
let £ : K;i — R be the edge length function. The colouring map f
induces a function {p : D; — R by setting {p(xy) to be equal to the
length £ (fx,fy) of the image in K; under the map f. Because of
the property (3) in Theorem 27 the number {p(xy) is positive and
the strict triangle inequality holds. In such a way we introduce a
piecewise Euclidean metrics on the minimal surface S = |D|.
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Now let K be a 2-dimensional complex of non-positive curvature.
Because of the property (5) in Theorem 27 the induced piecewise
Euclidean metrics on the minimal surface S = |D| is also of non-
positive curvature. Let x € 0S be a vertex of the complex D. There
exists a neighbourhood of x, which is homeomorphic to R2. Thus the
link L[, is homeomorphic to a compact interval in R. Let £, be the
length of this link with respect to the link metrics as described for
two-dimensional complexes in Definition 64. Let the vertices x1,x, €
0S be the neighbours of x on the boundary of the complex D. Let ¢
be the curve connecting x; to x, along the edges (x1x) and (xx,). In
this setting we have the obvious inequality

(**) ex 2 dex((fOC)fx»_(foc)fx)y

where the right hand side is the distance between the directions of
the curve f o c in the complex |K]|.

Theorem 71. Let D be a finite two-dimensional stmplicial com-
plex with a piecewise Euclidean metrics of non-positive curvature.
Let the geometric realisation |D| of this complex be a connected
manifold with non-empty boundary. Let L > 0 be the number
of boundary edges in |D|. Let R be the sum of the link lengths
{, taken over all boundary vertices x of |D|. Then the following
inequality holds: 2
p <L-2-xDl.

Proof. Let w be the sum of the lengths of all edges of the links of
all vertices in D (of the inner as well as of the boundary vertices).
Let a; = #D, be the number of 2-simplicies of D. Because the angle
sum in any Euclidean triangle is equal to 180°, we have

(1) W =17"-Qy.

Let ap = #Dy — L be the number of inner vertices of D. Since the
metrics on |D| is of non-positive curvature, the length of any non-
trivial circle in any inner link is at least 27, so we have

(2) w > 2m-ap+ R.

Let a; = #D; — L be the number of inner edges in D. Since
ao — ar = (#Do — L) — (#D1 — L) = #Do — #D;

we have

(3) X|D|l =#Do — #D1 + #D;, = ap — a4 + ay.
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Obviously we have
(4) 3-ay=2-a;+1L,
because any triangle has exactly three sides, any inner edge is con-
tained in exactly two triangles, and any boundary edge is contained
in only one triangle. Combining (1) and (2), we get

2m-ap+ R< - as.
Multiplying both sides by 1/7t, we get
200+ R/t < aj.

Taking into account (3) and substituting x|D| — a, + a; for ay, we
obtain

2-x|D| —2a; + 2a; + R/t < ay.

Adding 2a; to both sides, we get
2-xID[+2a; + R/m < 3a,.

Combining this with (4), we get

2-xD|+2a; + R/t < 2a; + L.
Substructing 2a;, we obtain

2-xDI+R/m< L,

which proves the theorem. O
Corollary 72. Let K be a two-dimensional stmplicial complex of
non-positive curvature with a piecewise Euclidean metrics. Let
[s] € B(Ko,K3) be a boundary condition (see Definition 19). Let
lx[s] be the corresponding loop family as in Definition 40. Assume
that x[s] s minimal zero co-bordant of characteristic x as in

Definition 45. Let k be the sum of the curvatures of the loops of
lx[s] taken over all vertices of this loop family. Then we have

K > 27-X.

Proof. Let D be a minimal surface of Eulerian characteristic x with
the given boundary condition equipped with the piecewise Euclidean
metrics of non-positive curvature induced by the colouring map. Let
R and L be as in Theorem 71. Then we have

K= Z (TE_WX)>

x€9|D|



MINIMAL SURFACES IN SIMPLICIAL COMPLEXES 29

where w, = di (cy, —Cx) is the direction distance of the boundary
loop ¢ at point x. Because of the inequality (**) on page 27, the
number R fulfills the inequality

(5) R> D wy.
By the definition of [ we obtain

Kk =mlL — Z Wy.
Taking into account the inequality (5) we get

kK > ntl — R.

On the other hand Theorem 71 implies

nlL—R > 2m-x.
Combining the last two inequalities we obtain k > 27 - x. O

Corollary 73. In the setting of Theorem 71 assume that the
boundary of |D| is geodesic in all up to g boundary vertices. Then

g > 2x|D|
and this inequality s strict for g > 0.

Proof. The boundary is geodesic in L —g vertices. Combining Propo-
sition 69 with the inequality (**) on page 27 we obtain that the link
lengths in these vertices are at least 7, hence

R> (L—g)n+ R/,

where R’ is the sum of the link lengths taken over the remaining g
boundary vertices. The link lengths in the remaining g vertices are
positive, hence R > (L — g)mt if g > 0. Dividing the both sides of the
last inequality by 7r, we obtain

;[21_—9.

On the other hand Theorem 71 implies
R
— < L—2xD],
- x|D

hence
L—2xID|>R/m>L—g.

The claim of the corollary follows. O
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Corollary 74. Let K be a two-dimensional stmplicial complex of
non-positive curvature with a piecewise Euclidean metrics. Let
c be a null-homotopic simple edge path consisting of g geodesic
segments. Then g > 3.

Proof. Just apply Corollary 73 for a minimal surface spanning the
curve c. Because the curve c is null-homotopic, the minimal surface
will be homeomorphic to a disk, and therefore its Eulerian character-
istic is equal to 1. Corollary 73 implies now g > 2. Moreover, g is
positive, hence Corollary 73 implies g > 2, hence g > 3. U

Now we can give a proof of the following well-known fact.

Corollary 75. In a two-dimensional simplicial complex with a
piecewise Fuclidean metrics of non-positive curvature any two
geodesics connecting given points x and y either coincide or are
non-homotop:c.

Proof. The claim follows directly from the last corollary. U
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EPILOGUE

This work is arisen from a failed attempt to prove the following con-
jecture inspired by a theorem claimed by M. Gromov in [Gro87] and
further discussed by T. Delzant.

Conjecture 76. Let K be a locally compact thick two-dimensional
simplicial compler with a piecewise Euclidean metrics of non-
positive curvature. Let ¢ be a closed geodesic in |K| (it means,
c : R — |K| 2s a geodesics, and there exists a positive number
M € R fulfilling c(t) = c(t+ M) for all t € R), and let x € K,
be a verter on the geodesic c¢ such that the curvature k, at the
point x of ¢ (in the sence of Definition 70) is strictly negative:
ke < —€ <0 (or, equivalently: dr, (cy,—Cx) = T+ € > 7).

Then there exists a natural number m € N such that the min-
imal normal subgroup of the fundamental group m|K| containing
the m-th power of the loop co = cljom) 15 a free group generated by
some conjugates ai[co]‘“kia{] of powers of [co]™ (where a; € m|K|,

ki € N).

The proof idea is based on the construction of a minimal surface
in the complex |K|. Consider a “non-trivial” relation

N
(+) [T ailcd™a;" =1 € mK.
i=1

Let v be a lift of the curve [ | aicgﬂ‘i a; into the fundamental covering
g : X — |K|. The space X is again a simplicial complex with piecewise
Euclidean metrics of non-positive curvature induced by the covering
map. Since the curve q oy is null-homotopic in |K|, the start and the
end points of vy coincide. Now assume that the relation (x) can be
choosen in such a way that the curve y does not have self-intersections
and the elements a; are represented by geodesics. Because of Propo-
sition 51, there exists a minimal surface of Eulerian characteristic 1
in X spanning a polygon consisting of 3N geodesic segments: for any
i € [1,N] we have the liftings of three curves: of cg‘ki and of geodesic
representatives of a; and a; . Apply Corollary 72: k > 27, where k
is the sum of curvatures of the boundary curve. Since the curvature
is non-positive in all inner vertices of geodesic segments, and it is at
most —e in at least m }_k; > mN points, it holds:

2n< k< —e-mN+ 3N«
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(where the last term 3N7t is the upper boundary for the curvature sum
taken over all 3N vertices, in which the different geodesic segments
are connected). It follows

1T 3N-2
e —- .

m N
This inequality can not hold for large m, which would prove that
there are no “non-trivial” relations as in (x).

Alas the author does not know how to define the non-triviality of
a relation in such a way that the injectivity assumption holds.

The metric applications of Section 5 can not be generalized for the
case of complexes of higher dimension. The reason is: the length of a
loop in a vertex link of a higher-dimensional complex of non-positive
curvature is not necessarily bounded from below by 27t. Therefore the
minimal surface in such a complex does not inherit the non-positive
curvature anymore (which is a necessary condition used in the proof
of Theorem 71 — see the inequality (2) on page 27).

To visualize this situation consider the following example. Let o, be
a 2-simplex in R3. Let K; = B*0, be the k-th barycentric subdivision
of the simplex o, and let Ko be the vertex set of K. Let a € R be
an arbitrary point not contained in the plane of the simplex o;.

Let the complex l~<k be defined as

Ky = {o C KnoU{a} | o\{a} C Ky}
— see Figure 17. The bottom face of the pyramid Ky contains O(6%)

n=0(1/m)

FIGURE 17. The pyramid Ky constructed as a cone
over the k times barycentric subdivided simplex o, =
{X] y X2, X3}, here k = 1.

edges. The other three faces — only O(2*) edges. For large values of
k it follows that the bottom face is not a minimal surface spanning ist
own boundary anymore. The minimal surface spanning the boundary
of the bottom face consists of the other three faces of the pyramid.
This surface is not of non-positive curvature anymore because the
link loop of the vertex a is shorter than 27.
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