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Abstract

In this work we proof the local differentiability of the stress tensor in the Prandtl Reuss
and Hencky model of perfect plasticity in dimensions n = 2,3,4. The first differentia-
bility ressults for the Hencky model are due to Seregin [Ser90]. Bensoussan & Frehse
[BF93|[BF96] showed the differentiability result for the Hencky and Prandtl Reuss model
by the Norton-Hoff approximation. Recently Demyanov [Dem07] was able to show the
differentiability of the Prandtl Reuss model with methods similar to Seregin.

In this paper we use the Perzyna approximation to show the interior regularity of the stress
tensor. For the Perzyna approximation Miersemann [Mie80] showed the local differentia-
bility of the stresses for fixed viscosity coefficient. We obtain uniform estimates for the
Perzyna model in the passage to the limit.

We also derive a certain regularity of the strain tensor in the Perzyna model needed for the
differentiability proofs. From the original problems in perfect plasticity one has a priori
only € € BD(Q) for the strain tensor.

Keywords Prandtl Reuss model, Hencky model, perfect plasticity, Perzyna model
regularity of solutions

Subject classification(2000) primary: 74C05 secondary: 49N60, 74G40, 74G65, 74B20
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Chapter 1

Introduction to plasticity

We give a brief introduction into the theory of perfect plasticity and Perzyna viscoplasticity
used for the approximation of the Hencky and Prandtl Reuss model.

All models introduced have in common that the behaviour of the matrial is separeted into
two kinds. There is an elastic and a plastic part of the material behaviour.

We assume, that all displacements u are small, therefore we use the linearized strain tensor
e(u) = 3(Du+ DuT).

1.1 Yield function and yield surface

Definition 1.1 (yield function) Let F : R}" — R be a continuous, conver function.
F is called a yield function.
The set

{c e R F(o) =0}

sym

is called yield surface. The set Z = {o € Ry | F(o) < 0} is called the set of all admissible
stresses. (Z is closed und convezx)

Sometimes the yield surface is written in the form

{0 € R F(0) — & = 0}

sym

with F': REZT — R continuous, convex and £ > 0. The constant « is called the yield limit.

Remark The definition of the yield function is adopted from the book by Duvaut and
Lions [DL76], other authors may define the yield function in a different way. All the proofs
in this work require that the set {o € R | F(o) < 0} is closed and convex.

Sym



Chapter 1. Introduction to plasticity

(a) (b)

Figure 1.1: von Mises yield surface in 2 and 3D in principle stress axis

Examples for most common used yield functions:

von Mises yield criterion

For o € RIS op =0 — Ltr(0)Id denotes the deviator of o.

n
E 2

4,j=1

Flo) = lon] — k=

Tresca yield criterion

F(o)= max |\ —\|—k

ij=1,..n
i#]
where {)\Z-|i =1,... ,n} are the eigenvalues (principal stresses) of the symmetric matrix o.

1.2 The Prandtl Reuss law of perfect plasticity

The parameter t has the character of a memory taking the prior deformations into account.
The Prandtl Reuss law is a quasi-static law.

Define Z = {0 € RY; | F(0) < 0}, the set of admissible stresses. Let A € hom (R, REXT)
be a symmetric, elliptic fourth order tensor. That is 3a > 0Vn € RET nAn > aln)?.
The tensor A describes the elastic material behaviour and is an inverse Hookean law. Let

Q C R™ be a bounded domain with Lipschitz continuous boundary and 909 = Ip UIy

2



1.2. The Prandtl Reuss law of perfect plasticity

0

(a) (b)

Figure 1.2: Tresca yield surface

/V.Mis&

Tresca

Figure 1.3: Intersection of the plane perpendicular to the axis o1 = 09 = 03, in principle
stress axis



Chapter 1. Introduction to plasticity

where I, has positive (n — 1)-dimensional Hausdorffmeasure. Let
f:Qx[0,T] — R" body force density in 2
g : Iy x [0,T] — R" surface force density on Iy

we abreviate z = %x

Definition 1.2 (Prandtl Reuss law) The classic Prandtl Reuss law is:

Find

with X\ the plastic part of the strain

Ai(t—0)<0 V7r(z)e”Z

Ao =
The equilibrium of forces holds in €
dive+ f=0
with boundary and initial values
o-n=gqgonly
uw=U on Ip
00)=0,€K
u(0) = u,

(1.1)

(1.2)

(1.3)

The inequality A : (1 — o) <0 V7 F(7) <0 is the principle of maximum plastic work by

Hill.

If the function t — o(¢) is differentiable in ¢ (which we assume) the principle of maximum

plastic work implies A : ¢ = 0.

Let At > 0, take 7 = o(t + At) respective 7 = o(t — At) and the principle of maximum

plastic work delivers

) <0(t+AAtz)f — o(t)) <0 resp.
N (a(t—A;)t—a(t)> <0.

thus A:6<0and A: 6 >0 for At — 0 hence \: 6 =0.



1.2. The Prandtl Reuss law of perfect plasticity

The classic formulation of the Prandtl Reuss law is too restrictive, there need not ex-
ist any solutions.
We give now a weak formulation, there the displacement velocities are only elements of
BD(f2). For the derivation of the weak formulation we take a closer look at the plastic
part A of the strain €. Write

e=¢€e+¢ (1.4)

with an elastic part € and a plastic part €’. The elastic part € is given by the linearized
strain tensor £(-) and the plastic part € is just A.

The classic Prandtl Reuss law reads
e(u) —Ad = \.
The principle of maximum plastic work yields
(e(u) — Ad) : (1 —0) <0. (1.5)

In a weak formulation the product in (1.5) between () and o is problematic because ()
will only be a bounded measure.
Consider the product (5(@),0 — 7') and apply formal Green’s formula.

(e(@),m — o) = — (i, div(T — o)) + /F U(t — o) -fdl (1.6)

BD(Q) is continuously embeded into L#-1(Q,R") (theorem A.3) so we require divo €
L™(Q,R™) for fixed t.

We abbreviate v = @

Let © C R" be a bounded domain with Lipschitz continuous boundary 0Q = InyUIp
and Ip has positive (n — 1)-dimensional Hausdorffmeasure.
We assume for the body and surface forces

feL>0,T;,L"(2,R"))
g€ C°0,T;C°(Iy,R")).
The stress o is assumed o(x,t) € L?(0,T; L*(2, R™%™)). The derivative ¢ is defined in the

Sym
sense of distributions as the divergence div o.
Define

K = {0 € L*0,T; L*(Q,R:")| F(o) < 0 pointwise almost everywhere }

sym

M = {r e L*0,T; L*(Q,RLM)| divr € L0, T; L™(Q,RL)), 7+ =g on Iy x [0, 7]}

Sym Sym
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Definition 1.3 (weak formulation Prandtl Reuss) Find (o,v) € (MNK)xL'(0,T;BD(%)),
such that VT e MNK

(46,7 — o) + (v, div(T — o)) > / V(r—o)-nadl (1.7)

Ip

T
(o, Vw) = (f,w) + // gwdl'ds VYw € L'(0,T; H, (2, R"))
0 JIy
(1.8)

o(0)
(0

v

(1.9)

o
U,
V oonTp x (0,7

In chapter 4.2 we will show the existence of the time derivative.
The assumption of a safe load condition (4.2) gives us the existence of solutions.

Theorem 1.1 Under the assumption of a safe load condition (4.2) on page 26 in chapter
4, there exists a solution (o,v) € L>=(0,T; L*(Q,R2%™)) x L1(0,T; BD()). The stress o

sym
1S UNLquUe.

For the proof see Johnson [Joh76], Suquet [Suq81], Ionescu & Sofonea [IS93] or Anzellotti
[Anz83].

1.3 Perzyna viscoplasticity

Let Z = {0 € Ry F(o) < 0}, Pz : RET — RET denotes the projection onto Z.
Define

Glr) = iwd— Py (7))

The mapping G, is Gateaux differentiable[Zar71] with derivative
G(1) = —(Id — Pz)(7).

1
W
For the von Mises yield criterion we have G, () explicitly (cf [DL76],[Tem85]).

1(|TD|—“)+
G(r)= —~—"—""7
“<> 2 17p| P
with
(a), = a ifa>0
Y7o ifa<o



1.3. Perzyna viscoplasticity

Definition 1.4 (strong formulation Perzyna viscoplasticity)

e(vy) = Ady + G, (0,) (1.10)
—dive, = f in Q x [0,T] (1.11)

o,-n=g onIyx|0,T]
v, =V onIp x[0,T]

1.12
0,(0)=0,€ K (1.12)
Uu(o) = Vo
The the convexity and Gateaux differentiability of G, yield
Gu(1) = Gulo) > G (o) : (T —0) VT eRLYT (1.13)

Inserting 7 € Z in (1.13) delivers
—Gulo) 2 Gl (o) : (T—o)VT e Z

thus
G, (0): (T—0)<0VTEZ.

This is just the principle of maximum plastic worky by Hill. The Perzyna model can be

stated as follows.
s(vu) = Ao, + G;(o)

Gu(r) — Gulou) > G;L(UH> (1 —o0) (1.14)

We want to show that, by letting the viscosity coefficient p tend to zero, the limit of the
Perzyna model is the Prandtl Reuss law. The following conclusion is only formal because
the solutions depend on p.(cf [DL76])

We write A = G (0,). For x € Z we have G,(x) = 0 and A = 0, for x ¢ Z we have
lim,\ o G.(x) = +oo. This gives that G,(x) tends to ind(Z) the indicator function of Z.

The limit of the Perzyna model is

e(v) =Ac+ A
Ai(t—0o)<0VreZ

and this is just the Prandtl Reuss law.
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Figure 1.4: Convergence of G, to ind(Z) with p — 0 ([Sug81])

Definition 1.5 (weak formulation) Find (0,,v,) € M x L'(0,T; BD(R)), such that
for all T e M

(AdM,T - O'M) + (G:L(O'M),T - UM) + (v, div(T —0y,)) = / V(r—o)-ndl (1.15)

Ib

(0, Vw) = (f,w>+/

T
/ gw dIds Yw € LI(O,T;leD (Q,R™)
0/

N

0,(0) =0, K

v,(0) = v, (1.16)
v=V onIpx|0,T]

We have now a variational equality instead of an inequality.
The existence of the time derivative of the stress tensor is demonstrated in chapter 4.2.

Theorem 1.2 Under the assumption of a safe load condition (4.2), on page 26 in chapter
4, there exists a solution (o,,v,) € L=(0,T; L*(Q,R2™)) x L*(0,T; BD(Q)).

sym

For the proof see Suquet [Sug81] or Tonescu & Sofonea [1S93].



1.4. Hencky model

y/ o ///

(a) Hencky model (b) Prandtl Reuss model

Figure 1.5: loading and unloading [Suq81]

1.4 Hencky model

The Hencky Model is a static model. It has no memory taking prior deformations into
account ([Sug81]). Temam [Tem85] and Necas & Hlavacek [NHO1] describe the Hencky
law as a special case of nonlinear elasticity .

Definition 1.6 (Hencky model) Find (o,u): Q — R " < R?

e(u) = Ao + X with F(o) <0 (1.17)

Ai(t—0)<0 V7 F(r)<0 (1.18)
—dive = f in Q)

o-n=gonly (1.19)

u=U onlp

The difference to the Prandtl Reuss model can be seen in the diagramms of the tension
test (figure 1.5) by relief/compression.

We assume for the body and surface forces

feL"(QRY)
g c CO(FN,Rn) .

Definie the sets

K = {o € L*(Q,R>") | F(o) < 0 pointwise almost everywhere}

sym

M= {r e L*(QRY™) | divr € L"(Q,R"), 7-7 = g on Iy}

sym

MVZMH{T] —divr = f in Q}
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Definition 1.7 (weak formulation of Hencky’s law) Find (o,u) € L*(Q,R}x")x BD(Q),
o€ MNK, such that for all T € MNK

(Ao,m — o) + (u,div(T — o)) > /1“ U(tr—o)-ndl (1.20)
(0, Vw) = (f,w) —|—/ gwdl' Vw € Hp (Q,R") (1.21)
u=U onlp (1.22)

The existence of a stress solution ¢ can be shown easily by direct methods in the calculus
of variations.(cf [Lan70],[DL76]) The question of the existence for the displacements u is
much more difficult to show by direct methods.

Define the energy functional

1 R

E(x) = 5(Axx) —/ Ux - @dl
Ip

which is the functional of complementary potential energy from linearized elasticity.

Theorem 1.3 The Hencky problem has a unique stress solution o € M N K which is the
unique minimizer of E(-) on M N K.

Proof 7=7 . .
Let o be a stress solution then ¢ € M N K and we have for all y € M NK

(Ao,x — o) + (v, div(x —0)) > /r U(x—o)-ndl

g

=0

this gives

(Aa,x—cr) > / U(x—o)-ndl.

Ib

But this is the Euler Lagrange equation of E(-).
7«<” The quadratic form %(Ax,x) is strict convex and coercive because of the ellipticity
of A. The set B NI is closed and convex, this implies the existence of a unique minimizer
o of E(-) on M N K. This minimizer satisfies the Euler Lagrange inequality which is just
the Hencky law in MNK.

The existence of the displacement © and the connection between displacements and stresses
o was examined by Anzellotti, Giaquinta, Kohn and Temam.

Theorem 1.4 Under the assumption of a safe load condition (2.2), on page 13 in chapter
2, there exists a solution (o,u) € L*(Q,Rix") x {v € BD(Q)|dive € L*(Q)}. The
displacement u and the stress o are linked together by a saddlepoint condition.

For the proof see Anzellotti and Giaquinta [AG80, AG82] for existence of the displacement,

Kohn and Temam [KT83|[Tem85] for the saddlepoint condition.

10



1.5. The Perzyna penalized Hencky model

1.5 The Perzyna penalized Hencky model
We define the penalty terms like in section 1.3.

Golo) = iwcz— Py) (o)

Gi() = (1= P2)(e)

Definition 1.8 (Perzyna static) Find (o,,u,): Q — R x R”

sym
e(uy) = Aoy + G,(0,) (1.23)

—dive, = f in Q
o, -n=g only (1.24)

u, =U onlp

Definition 1.9 (weak formulation) Find (0,,u,) € L*(Q,R}<") x BD(Q)o, € M,
such that for all T € M

(AO’M,T - JM) + (G;(Uu),T — CT,u) + (uy,, div(t —0,)) = / U(r —o,)-ndl (1.25)
Ip
(o4, Vw) = (f,w) —|—/ gwdl' Vw € Hp (Q,R")
I
u, =U onlIp (1.26)

Analogously to theorem 1.3 the existence of a stress solution can be shown by direct
methods in the calculus of variations.

Theorem 1.5 Under the assumption of the safe load condition (2.2) there exists a unique
solution (o, u,) € L*(QL, R ™) x {v € BD(Q)| dive € L*(Q)}. The solution is linked by
a saddlepoint conditon.

For the proof see Temam [Tem85].

11



Chapter 2

Regularity for the static Perzyna
model

We now consider the Perzyna penalized Hencky model. We first show the convergence of
the sequence o, of stresses to the stress solution o of the Hencky model. Then we show
the local regularity of the stress tensor o, for the Perzyna model.

Remark: For the estimates and convergence we can take the material tensor
A € L>*(Q, hom (R R,

sym 7 T Usym

2.1 Estimates for the static Perzyna model
We assume for the body force density f

fe L' (Q,RY
Df € L (Q,R™™) (2.1)

loc

Af e Ll (QR

loc

We define the sets

Z = {0 € RV | F(o) < 0}

Sym

K= {0 e L*(Q,R>") |o(x) € Z pointwise almost everywhere in 2}

Sym
and the set of admissible stresses

M ={o e L*(Q,R>") | dive € L"(Q,R"), 0-7 = g on [y}

sym

M=Mn{oe L2QR”") | —dive = f in Q}

Ssym

An important hypothesis needed for the estimates (and existence ) is the safe load condi-
tion. Cf. Johnson [Joh76], Suquet [Suq81] and Temam [Tem85].

12



2.1. Estimates for the static Perzyna model

safe load condition:
There exists 7 € L>®(2, R2<") and § > 0 with

Sym

—divr = fin Q
T-nm=gonly (22)
F(1) < — 6 < 0 pointwise a.e. in €.

Because we consider the mixed problem with arbitrary dirichlet boundary condition we
have to assume further the existence of an admissible displacement.

existence of an admissible displacement:
There exists a displacement @ € H' (2, R") satisfying

u=UonlIp. (2.3)
Theorem 2.1 For the solution (0, w,) of the static Perzyna model we have

lou|| 2 < Const
|Gu(0,)|| 2 < Const (2.4)
”G;/L<UM)’|L1 < Const.

Proof Let 7 satisfy the safe load condition
and 4 and be an admissible displacement. Test the weak formulation (1.25) of static
Perzyna plasticity with g, — 7.

(Aoy,0, — 7) + (GL(O’M),UM —7) + (v, div(o, — 7)) = / Ulo, —7)-ndl (2.5)
I'p
Equation (2.2) gives us —divr = f in  and
(v, div(o, — 7)) =0.

Consider now the tested penalty term. G,(-) is convex and Gateaux differentiable which
leads to

/Q Go(0) — Gu(r) da < (C(0)50 — 7) - (2.6)

We have G,(7) = 0, because 7 satisfies the safe load condition. The definiteness of G,
gives us the definiteness of the tested penalty term.

(GL(UM),UN - T) >0

This result gives the possibility to obtain further estimates of (2.5).

(Ag,,0, — 7) < / Ulo, —1)-ndl (2.7)

Ib

13



Chapter 2. Regularity for the static Perzyna model

On the left hand side we introduce a zero addition with (AT,U# — 7') and on the right with
(5(11),0“ — 7'). This brings a variational inequality without the boundary integral over I'p.

(Ao, — 7),0, — 7) < (e(@),0, — 7) — (ATy0, — 7) (2.8)
Using the ellipticity of the tensor A.
allo, — 7|° < (e(@) — Ary0, — 7) (2.9)

Young’s inequality on the right side with 0 < v < « yields

1
(o =llo —7I* < Ellﬁ(ﬁ) — Ar|*.

(. J/

< Const

We gain ||, — 7||* < Const and the boundedness of o, independent from the viscosity

coefficient pu.
|oullz2 < Const (2.10)

Consider the equation (2.5), zero addition with (Ar,0, —7) and (£(@),0, — 7) leads to the

uniform estimate
(G,(ou)s0, — ) < Const . (2.11)

Inequality (2.6) for G/,(0,) gives the uniform bound
/ G,(0,)dz < Const
Q

in LY(Q).
|G ()|l < Const (2.12)

These estimates (2.2) and lemma 2 from Suquet [Sug81] yield the boundedness independent
of u

1G(g) |21 < Const. (2.13)
Because the safe load condition implies
1
G ()l =5 sup_ (G (0), )
X/l oo <6
1
< S<GL(UM>7X +T = Uu> + <G;,¢(Uu)> Op — 7)
1
< 5 (Const + /ngu(X +7)dz 4 (G, (0,), 0 — T>)
1
< SC’onst because of x + 7 € K we have G,(x +7) = 0.

We now demonstrate that the displacement solutions u, of the static Perzyna model are
better than BD((2).

14



2.1. Estimates for the static Perzyna model

Theorem 2.2 For fived viscosity coefficient p we have e(u,) € L*(Q,R0x") and
u, € HY(Q,R™).

Proof The Lipschitz continuity of Id — Pk (theorem C.2) and ||0,||2 < Const allows us
to estimate G, (0,).
G0l < Const(n) (2.14)

After zero addition from (e(@),x — 0,) in (1.25) we get

(AO'M,X — a#) + (uy, div(x — 0,)) + (GL(UH),X —0,) = (e(ﬁ),x = a#) . (2.15)
Choose x € L*(, RL) with
—divy=finQ
X-1n=gonly (2.16)

X-n=o,-nonlp.

For such a x we have

div(y —o0,) =0
) (X — ) (2.17)
(E(v),x - UM) =0.
Inserting x into (2.15) gives
(AUM + G;:(%)’X - UM) =0
for all x with the properties (2.16). Theorem D.4 implies
Aoy + G (0,) = €(uy) (2.18)

pointwise almost everywhere in L*(Q, R2") which results u, € H'(Q2,R") for u fixed.

Sym
Korn’s inequality, (2.14) and (2.10) deliver the non uniform estimates

1
le(uu)|lzz < ;C’onst

| (2.19)
luullgrr < —Const.
1
Theorem 2.3 With the preceeding results we obtain
e(u < Const
e, 12 < 220

Juull, 2y < Const.

Proof The pointwise Perzyna law (2.18), [|o,[|z2 < Const and ||G},(0,,)[|z1 < Const deliver
le(u)|[1 < Const. Korn’s inequality yields for the displacements [[u,||, -2, < Const.

15



Chapter 2. Regularity for the static Perzyna model

2.2 Convergence of the penalized model to the Hencky
law

We are now able to show the convergence of (o,,u,) to (o,u) solution of the Hencky
model. First we will demostrate the convergence of the stress tensor and afterwards of the
displacements.

Theorem 2.4 Let u — 0, there exists a subsequence o,,, converging weakly in L? to o,
solution of the Hencky model.

Proof From |0,/ < Const we deduce the existence of a subsequence o,, — ¢ for a
g € L*(Q,Rx"). We have to show that & = o holds. Consider the energy functional E of
O

Claim: For all 4 > 0: E(0,) < E(0).

We test the pointwise equation (2.18) with 0, — o and apply Green’s formula.

(Ao,,0, — 0) + (GL(U!L),O'H —0) = / U(o, — o) -ndl
Ip

>0

(Ao,,0.) < (A0y,0) + | Ulo, — o) -iidl
Ip
using Young’s inequality:
1(Aau,au) < %(Aa,a) + | U(oy—o) -ndl

2 o
= (Aa#,a#) —/F Ug, -ndl' < (AU,O’) _/r Uo-ndl
E(0,) < E(0). (2.21)

The energy functional E,, for the Peryzna law: E, = E + fQ G, dz. Inserting the subse-
quence 0, in E,, one gets with estimate (2.13) of G/,(0,) and (2.6)

E(Uuz) +MZ/ Gm(%l)dﬂﬁ < E(U) + p; - Const .
Q

With sy — 0, [, G (0,,)dx < py - Const — 0, we deduce F(6) < 0 almost everywhere,
thus & € K. The energy functional F(-) is convex which gives the lower semi continuity.
One obtains for the limit &

E(6) <liminf E(0,,) < E(0).

H—0

The solution o of the Hencky model is the unique minimizer of E(-) on K N M, hence
o=o0.

16



2.3. Local differentiability of the stress tensor

Theorem 2.5 Let 1 — 0, there exists a subsequence u,, converging weakly in LT (Q,R™)
to u, displacement solution of the Hencky model.

Proof By theorem 2.3 we know ||u,[[, =, < Const, extracting a suitable subsequence
(0> Uy, ), there exists a @ € L#-1(Q, R") such that

(Uumuuz> - (0->ﬂ) as pyy — 0.

It remains to show that u = @. Test the pointwise almost everywhere Hencky law (2.18)
with (o, —7), where 7 € X N M. Then

—(um,f — div 7') = (Aam,am — 7') + (GL(O’HZ),O'M — 7') ) (2.22)

Using the inequality for convex differentiable functions

(GZL(UNI)’UNI - T) > Gu(gm) - GM(T)
——

——
>0 =0
thus we obtain the variational inequality
(> divr — f) < (Aoy, —04,) - (2.23)

By a lower semicontinuity argument we have u = .
By uniqueness and a routine argument the whole sequence (o,,u,) converges.

2.3 Local differentiability of the stress tensor

We know show the local differentiability of the stress tensor using finite differences. The
estimates for the finite differences are not uniform in .

Theorem 2.6 For fized viscosity coefficient i we have o, € H}}

loc

(Q,Rnxn)'

sym

Proof Let 6 € C(2) be a cutoff function. Let 0 < h < 3 dist(supp 6, 9Q). We test
the pointwise Perzyna law (2.18) with the difference quotient —Dj_h<92D§LUM). The rule for
discrete partial integration gives

(D?&(u“),QQD;LO'#) = (QAD?U#,QD?O"M) + (QD?GL(UH),QD?O'#) :
With theorem C.3 the term (HD?GL(UH),GD?O'M) is bounded from below.
(HD?GL(UM),QD;LUM) >0
The ellipticity of the tensor A leads to
OéHQD;LO'““2 < (D;lg(u“),mD;LJH) .
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Chapter 2. Regularity for the static Perzyna model

Apply Green’s formula and the discrete product rule

(Dje(uy),0°Dlo,) = —(Dluy, grad 6°D}o,) — (D)w,,0° D! f)
Where Ej_hgp(x) = p(z — hej)
—(Djut D5 f) = (wus D5 "0° D5 ) + (wun BN )

N f = Dj_h(D;’ f) is the finite difference approximation to the Laplace operator Af. The
assumptions (2.1) for the body force density f allow us to use the Holder inequality.

(s D0 DY f) + (s B "2 A" f) < ]| IDF"6* D3 fll e + |E7"0* A" f]| )

L

With (2.1) we deduce
—(D}u,,0*Dlf) < C.

The term —(D;luu, grad €2D§LO'H) can be estimated by Young’s inequality
1
—(Dguu,grad 62D;-La#) < EHD;‘UMHZ + 7|12 grad 6]|* - HGD?O'MHQ
1
< @HDJWHZ +7Co||0D] 0,
The norm ||D;u,|| is estimated by Korn’s inequality and (2.19).
1 2 hop2 o L 2 h 112
E”DJUHH +7Col|0Djou]|” < @Cxornﬂduu)ﬂ +7Col|0Dj |

Choose 0 < vCy < « and it follows
(& = ACo)||0D" 0, < Const(u)
for HD?O'M.

6D}0, | < Const(y)
All together we have g, € H. (2, R2") for fixed viscosity coefficient p.

Sym

18



Chapter 3

H 1106 regularity for the stress tensor in
the Hencky model with von Mises
yield criterion

In this chapter we show that o € H.,
rion.

The local differentiability of the stress tensor was first shown by Seregin [Ser90] and then by
Bensoussan & Frehse [BF93] . Bensoussan and Frehse used a dual method, they penalized
the Hencky model with the Norton-Hoff model and were able to show a uniform bound for
the derivatives of the stress tensor in the Norton-Hoff approximation. Their proof works
in arbitrary dimensions, whereas our proof only works in dimensions n = 2, 3, 4.

Our proof is inspired by Bensoussan & Frehse [BF93, BF02|, but we use the Perzyna pe-
nalization as approximation of the Hencky model. This problem was discussed in [Pai02].
From chapter 2 we already know the local differentiability of the stress tensor o, of static
Perzyna model, but the estimates are not uniform in the viscosity coefficient .

(€, R2%™) holds in the case of von Mises yield crite-

sym

We make the same assumptions as in chapter 2.

We assume for the body force density f:

fe L (Q,R")
Df e L} (Q,R™") (3.1)

loc

Af e L (Q,R)

loc

19



Chapter 3. H} regularity for the stress tensor in the Hencky model with von Mises yield

loc
criterion

We already know

lle(uy)||Lr < Const
Oy c Hi (QjRan)

loc sym

e(u,) € L2(Q,R™XT

sym

) }estimates dependent on p

The term G),(-) takes by von Mises yield criterion the form

1 (|9un] = )
G(o) = —~F—0,p.
S ounl g

For fixed viscosity coefficient p the pointwise penalized Hencky model holds.

1 (loup| — K)+
e(u,) = Ao, + —~+=—0,p. 3.2
( u) H [ ’UyDl uD ( )
We differentiate equation (3.2) with D; and test with §2D,0,,, where 6 € C>(2).

1 —
(Dl€(u#),92DlUu) = (AD[O’H,HZDKTM) + (Dl (;w%p> ) QZDIO'N) (33)
~ ~~ D

(%) (;)

One can bound (x) from below using the ellipticity of A.
CY||9DlUM||2 S (ADlO'M,HQDlUM) (34)

The tested penalty term (xx) can also be bounded from below. First we compute the
directional derivative D; of the the penalty term.

1 — 1 —
p (Mmelony ) Loy,

K |0up| |0

1 |oup|Di|ouple — (loup| — k)1 Diloup|

1 (lo,pl — K 1 Dlo '

Lol =Ry 1 Dilols,

u |up |oun|

1 (|JMD| - “)+Dl|guD’
_ - . D

u |OMD|

For i fixed the expression (|o,p| — K); is weakly differentiable.

We have
Dilo,p| a.e. in {x € Q| |o.p| > K}

0 a.e. in {x € Q| |oup| < K} .

Dl(‘UuD‘ —K) = {

20



write

D|0’ ’ _ Dl‘UyD‘ if ’UuD’>H
HERPIE 0 it |oup| < K

For the following calculations we remark!:

oup : Do, = o,p : Dioup
1

= 3 Dlouwl (3.

= |oupl| - Diloup|

After taking the scalarproduct for matrices of D, <%—(‘Jﬁg l;f i 0“D> with 62D, and using
m
(Dilouple)? < (Diloup|)? (3.7)
we obtain
1 (lo.p|l — K 1 (lo,p| — kK 1
D (——(| uD| )+UHD) : 92Dl0:uD = _M’DZO—MDFQ? 4= Dl’O',uDkBDl‘O:uD‘ 2
1z loup| I oD L )

~
E(Dllo'uDl@)2

1 (| = 0 (D))

¥ ’%Dl
> 192(’@@’ — Ky |Dl%D|2
v ‘O_MD|
1 oup| — K
+_92(DZ|O_MD|@)2 (1_ (‘ MD| >+) ‘
M 5]
>0
This leads to the estimate
1 —
/ —W—R)JFWDZJ#D\de < (%) . (3.8)
QM |JuD|
Green’s formula applied to the lefthand side of (3.3) yields
(Die(uy),0>Dyo,) = —(Dyuy, grad 6>Dyo,) — (Dywy,6° Dy f) (3.9)
Using partial integration and Hélders’s inequality
_(Dlu/uQQle) = (uuaDl<02)le) + (U“,92Af)
< Mgl oy (CLIDU || 2 4 Col|Af ] 27) (3.10)

<C

'Here we use Mp : N = Mp : Np, cf appendix B

21



Chapter 3. H}

1oc regularity for the stress tensor in the Hencky model with von Mises yield
criterion

Now we consider the term (Dluu, grad 92Dlau) and symmetrize to obtain better estimates.
recall: £(u) = 3(Du + DuT)
We now use the summing convention.

—(Dlum,DlamjDi92) = _2(5(uu)jlaDlUuijDi92) + (Djuul,DlamjDﬂz) (311)

l (|U;LD|_H)+

i JouplOuD yields

Using the constitutive pointwise law (3.2) e(u,) = Ao, +

2 (loup| — K
(311) = _2\(<A0)ujl?DlO.,uijD’i02)l_ (E%JMDJZ’ DlO'MijDiGQ)
g [

E ~~
Es

+ SDjuul,DlUuijDi92)

Es

We estimate the term Ej.

2(Ad,,Dio,6 - 2grad ) < c/ Aa, | - 61| Dy da
Q

Youn; 1
ggC—/ |Aau\2dx+70/92\Dlau]2dx
4y Jq Q

< C(7) +7C|l0Dya,|*

(3.12)

The term F, can be estimate as follows using D;0? = 0 - 2D,0

9 _ 2
(_<|aw| m>+%DM7DZ%Di92)§ | 2ol = 01Dl 0]- Code (313
Q

H (5]

Now we have a problem because the indexpairs in this equation do not match.
We have to estimate |D,0,| by |D;0,p|. Therefore we take a closer look at the definition of
the deviator.
oup =0, — —tr(o)ld
n

1
o, = oup + —tr(o)ld
n

1
Do, = Dyo,p + —D;tr(o)ld
n

This gives
1
|Diou| < [Dioupl + |HDI tr(o)1d|
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where

1 1
|EDZ tI'(O‘M)]C” = %|Dl tI'(O')|
thus ]
IDiou] < |Digi] + =] Ditr(ai)] (3.14)

The following inequality is due to Bensoussan & Frehse [BF93].

Proposition:
We have the inequality

01%| D tr(o,)|> dz < 2n? 0|?| Do, p|? dz + 2n 01| f|* dz . 3.15
Q ! Q g Q

Inserting (3.14) into the righthand side of (3.13).
2
—(loup| = &)+ | Diois] - |0]Co da
oM

2 2 1
< \/Q ;(|%D| — £)1]0] - [D10,p|Cy dl‘l+/Q ;(\%D\ — £)1Cp - ﬁlDz tr(oy)| - 0] da

J/

b T,
(3.16)
For T one gets with Young’s inequality
2 (|o,
e |DlouD| Coloyo da
|UMD|
|UuD| 2 1
<< ID oup |10 dz + — (I%DI k)eloupdz. (3.17)
|U;L | ZC

Where one can show analogously to the estimates of the penalty term that

1
/ —(|loup| — K)+|oup| dz < Const.
QM

The term T is split into

1 1 2 1
Ty < — — k) Cyd - — K)+—|0D; ¢ *d
< 50 [ lloun] = RCidato [ (o] = r)urDrtx(o,) o

J/ (. S/

g

~
<Const T

using Young’s inequality. With the use of inequality (3.15) from Bensoussan & Frehse we
obtain for T5;

4 4
Ty < .Q/ ;(|%D| - ’f)+n|9DlUuD|2diU+Q/ ;(|%D| - /<;)+]6|2|f|2dx .
Q

(. /
~~ ~

T3 Ty
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Chapter 3. H}

1oc regularity for the stress tensor in the Hencky model with von Mises yield
criterion

The assumptions (3.1) (Af € L) yields f € LS, thus

loc locy

Ty < Const.

To obtain final estimates for Fy we choose ( = }L, 0= m. This yields
n

1 (jon] — 1 (ool -
_/ Llowpl =K | Dios Dit? da < / LUounl = K g1y o P dat Const. (3.18)
QM 0.p] QM |0up|

Ej5: partial integration gives

(Dju#l,DlO'm'jDiQQ) = —/quDZHQleZ- dLL’—/UHZDlO'mjDiDj92 dz

Q Q
= —/u,ulDiQQlei dl‘+ / diVUNO'W'jDZ‘Dj02 dz (319)
Q Q
+/uu10'/“'leDiDj92 dz .
Q
W h : . R . 1 (|0-HD| - K/)'i‘
e have divu, = tr Ao, because tre(u,) = divu, and tre(u,) = tr Ag,+tr EW@D :
wD
~

By 0, € L* we have Ag,, € L* and therefore divu, = tr Ag, € L*.

/le U,MO'MZ']'DiDjQQ dr = / tI'(AO'M)O'HijDZ’DjQQ dz
Q Q
<C.

By the assumptions (3.1) made for D f and Hoélder’s inequality
- / U D2 Doy dz < Clluy |, oy | Difille
Q
<C.

There remains the term fQ uulamleDiDjW dz. For dimension n=2 we have u, € L1
thus u, € L? and it follows

/ uulam-jDiDleQQ de < Cllugllrz - loulle < C.
Q

We now consider dimensions higher than n = 2.
We know that o, € H], for u fixed and g, € L?, the Sobolev inequalities yield:

loc
1 _2n_
Ou € Hloc = Ou € Ln->2
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For n = 3 we have g, € L%, u, € L3

For n = 4 we have g, € L*, u, € L3

but for n = 5 we have g, € L%, u, € L1 so the expression Jo w0 Dy D;D;6° d is
welldefined in the case of dimension n = 3, 4.

In the cases n = 3,4 we substitute 6 by 9% where ¥ € C>®(Q).
n=3:
6 Holder 3
/ Ui DiD;D° doe < C’||uu||L% 1970, L3
Q
< C|19° 0| o
with Sobolev

[90ls < 1 D100, 2 < 1D 0|z + [19° Dioy | 12
< C+ [0 Do,

we have
Cll[9°Dioy |12 < icz + pl[*Dya, |7
finally
LWNWQDmﬁ%m§C+$C+MWQM@
for n=4

/uulam-jDiDleﬁ?’ dz S C||Q93O'M||L4
Q
< Clp) + pll0* Digy I3

Now we choose p, 7, such that we can absorb terms containing ||6D,a,,|>.
This yields:
(a —yC — p) |9 Dyo,||> < Const + Const(v) + Const(p) (3.20)

Thus
|9° Dya,||* < Const.

The sequence (6D,0,,), is bounded uniformly in L?. By the weak convergence o, — o in
L? we obtain §D;0,, — 0Dyo in L*.

The stress tensor o of the solution of the Hencky model is in H. (Q, R
n=2234.

nxn

4m) for dimensions
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Chapter 4

Regularity for quasi-static Perzyna
viscoplasticity

We show analogously to the static case, the regularity for the quasi-static Perzyna model.
First we give estimates for the stress tensor and the penalty term. Then we show the
existence of the time derivative ¢, using finite differences.

Remark: As in the case of the penalized Hencky model, for the estimates, existence and
convergence we only need the material tensor to be measureable and bounded

A € L=(Q, hom(R™X®, RxnY),

Sym 7 sym

4.1 Estimates for the stress and the penalty term

We make the following assumptions on the body force density f.

f e L®(0,T; L"(Q,R™))
Df € L®(0,T; L. (2, R™™)) (4.1)

loc

ANfe L*0,T; L (22, R"))

loc

Like in the static case assume:
safe load condition:
There exists a stress tensor 7 € W1°°(0, T; L>=(, R2%™)) and § > 0

sym

F(r(z,t)) < —6 <0 for almost all (x,t) € Q x [0,7]
—divr = fin Q x [0,T]

4.2
7.1 =gon Iy x[0,T] (4.2)

7(z,0) = o,
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4.1. Estimates for the stress and the penalty term

existence of an admissible displacement:
There is a displacement @ € W1*(0,T; H*(Q2, R™)) with

@=UonTp x [0,T]

i =U onTp x [0,T] (4.3)
(0) = u,
Sa, V=U

; . _ 0 N
We abbreviate: v, = gu,, v = 3,4,

Theorem 4.1 The sequence (0,,v,) of solutions of quasi-static Perzyna law holds
|0l (z2) < Const
|G| L1ty < Const (4.4)
G ()| 1oy < Const .

Proof Test the weak formulation (1.15) of Perzyna law with o, — 7, where 7 satisfies the

safe load condition (4.2).
(A('I“,UH — 7') + (GL(O‘M),JM — T) + (v, div(g, — 7)) = / V(o, —7)-ndl (4.5)
Ip
We have (v,,div(g, — 7)) = 0 because 7 satisfies the safe load condition. Introduce zero
addition with (A7,0, — 7) on the left and with (£(9),0, — 7) on the righthand side of the
equation.
(A(6, — 7)y0, — 7) + (GL(UM),UM — 1) = ((9),0, — 7) — (ATy0, — 7) (4.6)
We write (A(6, — 7),0, — 7) as time derivative.
L. 1d
(A(Uu —7)s0u — T) = __(A<‘7u —T)y0u — T)
2dt
Integrate (4.6) from 0 to t
(4.7)

1

¢ t
Z(A(U“ — 7)o —7) + /0 (G,L/L(O-ﬂ>’o-ﬂ —7)ds = /0 (s(0) — At,0, — 7) ds
The convexity and the Gateaux differentiability of G, leads like in the static case (2.6), to

the definiteness of the tested penaly term.
(4.8)

/Ot/QGu(Uu)dxds < /Ot (G!(0.)0, — 7) ds

t
/ (G‘Z(O‘M),O‘M —7)ds >0
0
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Chapter 4. Regularity for quasi-static Perzyna viscoplasticity

Using the ellipticity of A

t
%HUH—TH?g/ (c(6) — Aty — 7) ds. (4.9)
0

Young’s inequality on the right hand side

1 t t
Sl =7l < o= [ 1@ = At ds+y [ = 7l ds (4.10)
2 4y Jo 0
and
@ 2 ' 2
EH@—TH < Const(y) + v i o, — 7]|“ds. (4.11)
The Gronwall lemma finally implies
lo, — 7| < Const
and (g, —7) € L>(0,T; L*(Q,RZx")) therefore

|0yl poer2y < Const.

We get 0, € L*>(0,T; L*(Q,R2%")) independent from the viscosity coefficient p. The

sym
estimate for o, leads with (4.7) to

t
/ (Gi(0,)50, — 7) ds < Const (4.12)
0

and using (4.8) implies
/ / '(0,) dr ds < Const . (4.13)
G, is bounded in L'(0,T; L*(2)) uniformly in p. The lemma 2 of Suquet [Suq81] delivers

||GL(UM>||L1(L1) S Const . (4.14)

4.2 Existence of the time derivative ¢, and estimates
for the strain tensor

We now show the existence of the time derivative ¢, € L*(0,T; L*(2, R2%")) and uniform

Sym
estimates in the viscosity coefficent.

Theorem 4.2 The time derivative 6, of the stress tensor exists and satisfies 6, € I*(0,T;LAS2, RE )
with
H(j'uHLQ(LQ) < Const .
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4.2. Existence of the time derivative g, and estimates for the strain tensor

Proof We discretize the weak formulation (1.15) of Perzyna viscoplasticity in time with
finite backward differences.
Let N € N*, k = L the time stepwidth and ™ = n(m - k). Write

77m _ 77m—l
k

for finite backward differences in time. The time discretized formulation is now

(AD o = x) (G = x™) G divlo? = x™) = [ V(o= ).

1 -
(4.15)

On every time step m for p, k fixed we have a Hencky like problem. The existence of the

stress tensor of the Hencky like problem can be shown in the same way as for the Hencky

Problem in theorem 1.3.

Let 7 satisfy the safe load condition and © be an admissible displacement (4.3). Write

" = o — 7™ then divg = 0. Test the discrete formulation (4.15) with D, ke,

(AD; %0, D;*5™) + (G, (o)), D; *5™) = / V™D i dl (4.16)
Ip
After sorting terms
(AD;*o"",D;*0")+(G,(0)"),D; ™) = /F VDR e i dD+(AD; "o, D ™) (4.17)
D
Introduce zero additions (e(9™),D; *a™) and using the ellipticity of A.
al| D a2+ (Gl (0),D; Fa™) = (e(0™),D; *a™) + (AD; %o}, D 7™) (4.18)

Consider (ADt_kOﬁn,Dt_kTm) on the right hand side. The tensor A is symmetric A* = A
we can write
(ADt_leln,Dt_kTm) = (Dt_kcr;”,ADt_kTm) .

Apply the Schwarz und Young inequality on (5(@m),D[ kﬁm). We exploit, that for k
sufficiently small || D;*7™|| < ||7™|| holds.

~m —k_m ~m —k,_m 1 ~m —k _m ~m -m
(e(@™),D ") = (e(0™),Di*r )§4—p||€(’v W+ I Do 2 + le(@™)I - 177 (4.19)

We have ||e(0™)|| < Const und ||7™]| < Const. Using Young’s inequality for (Dt_kaﬁ"‘,AD[krm)

1
(DyFa ADS ™) < || Do |1* + @I\ADZ'“T’”HZ (4.20)
With ) )
EIAD ™ < | AJ - D7
K ) 421)
<l .
< Const
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Chapter 4. Regularity for quasi-static Perzyna viscoplasticity

These estimates and the choice 0 < v + p < a yield
(a0 —~ — p)HD;kU:LHQ + (G "(0."),Dy kam) < (G' "),D;F7™) + Const. (4.22)

Futhermore

(G.(a7"), D *7™) / G(o) - (D ™) da

< /ﬂ G (o™ - |D; e da

(4.23)
< [ 16ulomI- 77| do
Q
< c/ G (o™ dz
Q
We get
(a =y =p)ID*0|* + (G0, D o) <C’/|G/ )| dx + Const . (4.24)

We multiply this equation by k£ and sum over m from 1 to N and remember
k- Dyt = =gt

N N
(a—vy—p) Z k~HD;ka:”‘H2+Z (G ()50 — :”‘ Y Zk Const—l—CZk/ G (0)")] da
m=1 m=1

-~

(%)

(4.25)
The term (x) is definite, using the inequality for convex differentiable functions we get
/ G,( Ndx < (G(0)),00" — o)
Summing from m = 1,..., N gives a telescope sum.
N N
=Y (Gl —ar ) =) / Gu(o)") — Gu(o ") dx

_ / Gyu(0) = Gy(0®) dz > 0
Q

By assumption a/? = 0, € K holds and Zr]\rizl k-Const = N - % - C'onst. We know that
G (0,) € L'(0,T; LY (Q,RZr)) is uniformly bounded in g For k sufficiently small enough

Sym

C’Z k - / G (o) dx < C||Gl(Ix) || i (z1y < Const . (4.27)
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4.2. Existence of the time derivative g, and estimates for the strain tensor

Where [I’f denotes the piece wise constant interpolation in time.

N
(a—y—p)Zk:- HDt_’I“JZL"H2 < Const + Const - T . (4.28)
m=1
The sequence (D;*(I¥,))) is bounded in L*(0,T; L*(€, RE:)) for k sufficiently small.
The uniqueness of the solution follows from a monotonicity argument, the existence of the
derivative g, € L*(0,T; L*(Q, RZx")) follows with the estimate

6.l 2(r2) < Const(T) . (4.29)

Like in the static case the solutions v,, of quasi-static Perzyna model are more regular than
BD(9).

Theorem 4.3 For fized viscosity coefficient 1 we have £(v,) € L*(0,T; L*(Q,R7x")) and
v, € L*(0,T; HY(Q,R™)).

Proof In the weak formulation (1.15) we get after a zero addition of (£(d),x — g,) the
equation

(A(j'“,x — O'M) + (v, div(x — g,,)) + (GL(O‘M),X Uu) ( 0), 0“) ) (4.30)
Choose x € L*(0,T; L*(, RZX")) with

—divy = fin Q x [0,7T]
x-1m=gonlyx]|0,T] (4.31)
X:fi=a,-1onlpxI[0,T].

For such a x and all t € [0, 7]

div(y —o,) =0
' (X = ) (4.32)
(e(9),x — 0,) = 0.
We get
(A, - G, ()X — 0,) =0.
The application of theorem D.4 yields
Acy, + GL(UM) = ¢e(v,) (4.33)

for almost every = € Q and it follows that e(v,) € L*(0,T; L*(Q, R2™)).

Sym

From the Lipschitz continuity of /d — Px and |0,z (r2) < Const we deduce
|G (0u) |22y < Const(p)
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Chapter 4. Regularity for quasi-static Perzyna viscoplasticity

like in theorem 2.2 we obtain

1
le(vu)||L2(r2) £ —Const
| (4.34)
vl 221y < —Const.
L
Theorem 4.4 We have
lle(vu)|| 21y < Const )
HUMHLQ(Lnﬁl) < Const . :

Proof By ||0,||r2z2) < Const and |6, 2(z2) < Const we obtain form equation (4.7) that
fOT (G,.(04)50, — 7) ds is bounded in L*(0, T;R). Using again lemma 2 from Suquet [Suq81]
we obtain [|G},(0,)|[z2(z1) < Const. With these estimates we deduce from the pointwise

Perzyna law (4.34) |le(vu)||z2(ry < Const. Korn’s inequality gives HUN”H(Lﬁ) < Const.

4.3 Convergence of the penalized model to the Prandtl
Reuss law

With the estimates of the preceeding section we are able to show the convergence of the
Perzyna penalized model to the Prandtl Reuss model. Frist we show the convergence of
the stress tensor.

Theorem 4.5 There exists a subsequence o, such that
— o in L*(0,T; L*(Q,R}))

— ¢ in L*(0,T; L*(Q, R™%M))

sym

Oy

Oy

Where o denotes the weak stress solution of the Prandtl Reuss model.

Proof By the boundedness of g,,d, in L*(0,T; L*(Q,RL")) we can extract a suitable
subsequence o, such that

for 5,6 € L*(0,T; L*(Q,R%)) . The weak limit satisfies & € M N {o| — dive = f} since
it is closed and convex. Test the pointwise almost everywhere penalized Prandtl Reuss law
(4.33) with 0, — 7 where 7 € XN M and —div7 = f. We have a.e. in [0,T]

0= (46,00 — 7) + (Gl(04)s00 — T) - (4.36)

0
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4.3. Convergence of the penalized model to the Prandtl Reuss law

The tested penalty term is positive semi definite using the inequality for convex differen-

tiable functions.
(A6,,00, —7) <0 (4.37)

We have 6 € K because for a.e. t € [0,7] we have

T
/ / |(Id — Pz)(0,,)| dzds < gy - Const.
o Jo

If we insert 7 = & into equation (4.37), we obtain

1d .-
5@(140#170#1) — (Aam,a) <0. (4.38)
Integrating in time from 0 to ¢ and bearing in mind, that (AO'M,O'M)(O) = (Aao,ao) =

Const > 0. .
1 L
§(Aam,am) (t) < /0 (A6,,,6) ds (4.39)

Letting the the penalty parameter ;1 — 0 and using the weak covergence of o,

t
lim %(Aam,am)(t) < / (A,5) ds
0

m—0

=0

_ %(A&,&) < %(A&,&) (t).

Note that &(0) is defined, since & € L? implies o € C(0, T; L2(Q,RL)).
Thus 0,, — ¢ strongly in L? and therefore we can pass to the limit in the variational
inequality (4.37).

(Ag,6 —7) <0

Hence o is a solution of the Prandtl Reuss law.

Theorem 4.6 There exists a subsequence v, converging weakly in L*(0, T L#1(Q,R"))
to v displacement velocity solution of the Prandtl Reuss model.

Proof The know that v, , oy S Const so we can extract a suitable subsequence
(0,,,v,,) converging weakly to

(01> V) = (0,0)
with o € L?(0,T; Lﬁ(Q,R")). Test the pointwise almost everywhere penalized Prandtl
Reuss law with o, — 7, where 7 € M N K.

—(vm,f —div T) = (AO';”,O'M — 7') + (GL(O'M),O'M — 7') ) (4.40)
Again the tested Penalty term is definite and we have
0 < (A6,,,m — o) + (Ve dive — f). (4.41)

A lower semicontinuity argument gives us the desired result.
By uniqueness and a routine argument the whole sequence converges.
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Chapter 4. Regularity for quasi-static Perzyna viscoplasticity

4.4 Local differentiability of the stress tensor

With the estimates of the preceeding sections we are now able to show the local differen-
tiability of the stress tensor.

Assumption 0,(0) = g, € Hj. .(Q,R2<™)

Sym

Theorem 4.7 For fized viscosity coefficient . we have g, € H*(0,T; HL (Q,R2%")).

sym

Proof Let § € C°(2) be a cutoff function and 0 < h < 3 dist(supp6,99). Test the
pointwise Perzyna law (4.34) with the difference quotient —Dj_h (0°D’a,). Using discrete
partial integration

(D;Lg(vﬂ),92D?U“) = (HAD;L(j'M,GD;LO'M) + (QD?GL(O'#),QD?O'H) (4.42)
Theorem C.3 gives the definiteness of the term (OD?GL(au),QD?UH).
(6D} G (0,),0 D" a,) > 0.
We have the inequality
(0AD"6,,0D"a,) < (Dle(v,),0°Dha,) . (4.43)

Write (GAD;-Z&M,HD;?UH) as time derivative

1d
(0AD"6,,0D"a,) = EE(QAD?%,QD?JM) :

Integrate equation (4.43) from 0 to t.

t
(0AD!0,,6D"0,) + (9AD" 3, (0),00,,(0)) < /0 (Dle(0,),6°Dka,) ds (4.44)

(Q,R2x™) lead to

sym

The ellipticity and the assumption o, € H}

loc
h Yo h
2 2
all0Djo,||” < /0 (Djs(vu),ﬁ Dj 0,) ds + Const . (4.45)
Consider the right hand side and apply Green’s formula.
t t t
/0 (D'e(v,),6?Dlay) ds = — /0 (D0, grad 62Dl ds — /0 (D0, 62D f) s (4.46)

Discrete partial integration gives

t
— /0 (D}v,,0°Dl f) ds = /0

t

t
(vus D02 DY f) ds + / (v B2 A f) ds
0
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4.4. Local differentiability of the stress tensor

Using the Holder inequality and (4.1)

vy - (1D Dy fllon + | B0 A f ) ds

Ln—1

t t
@Dy DL 1) (0o 20 s < [

< Const

t
—/ (Dj’hvu,HQD?f) ds < Const
0
We estimate — fot (D?vu, grad 02D§-‘0M) ds with Young’s and Korn’s inequality.

1

t t t
—/0 (D;‘vu,gradQZD;?J“) ds < B/o ||D?v#||2ds+7/0 ||2grad0||2.|]9D§la“||2ds

1 t t
< 4—/ HD;%UHHQdSHOQ/ 10Dka, | ds
Y Jo 0

1 [t K
< — CKoran(’U,u)szS—i—’)/Cg/ ||9D§‘au||2ds
4’}/ 0 0

Altogether
t
a||0D%a,||> < Const + t - Const(y) + ’ng/ 16D g, || ds .
0
The Gronwall lemma implies
16D a,||* < Const(p) .

We have for 4 fixed o, € H(0,T; H}.

loc

(Q,RxM).

sym
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Chapter 5

H l10c regularity for the stress tensor in
the Prandtl Reuss model with von
Mises yield criterion

We show Analogously to the Hencky model the local differentiability of the stress tensor
in the Prandtl Reuss model. The first differentiability results are due to Bensoussan &
Frehse [BF94, BF96].

They used the Norton-Hoff model as approximation. We use the Perzyna model as ap-
proximation.

The quasi-static Perzyna model will be discretized in time and we obtain a system of
Hencky like problems.

The assumptions for the bodyforce density f are the same as in chapter 4.

F e L0, T; L*(Q,RY))
Df € L®(0,T; L} (Q, R™™)) (5.1)

loc

Af e L=(0,T; L (€, R"))

loc

Initialvalue of 0,: 0,(0) = 0, € H. (Q,R2X")

Sym

Pointwise penalized Prandtl Reuss model for 1 fixed.

1 (ounl — R
e(v,) = Ag, + -~ _F6 .
T el
We already know
le(uu)llprrry < Const

ol e, < Const

Gullr2(z2y) < Const
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5.1.

Discretisation in time

5.1 Discretisation in time

Let N € NT and k = % the time stepwidth. We discretize ¢, by finite backward differences

in time.

g, =0\ | 1(loupl = r)+ )
A H H S \PpD o 1
(B )+ oo =t
2 —o!\  1(o%|—r),
A+ e =)
o
_ 5.2)
o =N bl =R, <
o
n (O‘N _gle1> . l(la‘%‘ —RK)4 N )
N
k poolopl " ")
5.2 H} for pu, k fixed
On every timestep m we have o7 € Hy, .(Q,RZr) for fixed k, u > 0.
Proof By induction over the timesteps
Let m = 1. Test the equation with —Dj_h(HzD;-LUl}) where 6 € C(Q).
D 92Dh 1 1 ADh 02Dh 1 Dh (l ‘ ) 02Dh 1
( i€ )_E( J_U) )+ ](M | N D>’ 3 Ou
>0 by monotonicity
(5.3)
Where
1 h h 1 h h 1 h h
—(AD] (0, = 0,),6*Dj0,) = E(A@DJ o,,0D"a)) —E(HADJ oy 0D} 0, (5.4)
> 8 |oD}o 2
and
(Dle(v),),0°Dhay) + (eADgaj,QDh 1) > ||0D (5.5)
Using Young’s inequality for 1(AD]h o) ,QDh 1) we get
1
+(0AD}.0D00) < J10Da I + L |A0D] ol (5.6)
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Chapter 5. H}

1oc regularity for the stress tensor in the Prandtl Reuss model with von Mises
yield criterion

We have o) € Hy,, (€, RZX") by assumption and A small enough that |§AD}o?|| < [[0AD;0]|| <

loc sym

Const holds and we obtain

0% 1
k(eAD;ag,eph 1) < 1||91> 1% + o — Const (5.7)
For p1 > 0 fixed e(v)) € L*(Q,R2) and v, € H'(Q,RLX).
(D}e(v)),0°Dloy) = —(Drv),, grad 6 Dloy) — (Dhv),,0° D) f1) (5.8)

where
—(D}v0? D} 1) = (v, D "0° DY 1) + (v, By 02 A f1)
= HleLn 1(HDj "D} lon + 1B AN 1)
< C(p, (m, k)

Futhermore we have
1
(Dh H,grad QQD?O'HI) < 4_72||D?U;£||2 + 722 grad 6] - ||9D§L0u1||2
1 h, 102 h 1112
< S IDLI? + CloD]o}]
1 1412 h 1112
§4—720Kom|!€(%)!\ + 700D} a,||

1
< 7Ol k) +7:C6D]a} |
2

By a suitable choice of 71,72 > 0 we can absorb terms containing || D} a, ||*.
(% — % —12C)|[|0D% o, ||* < Const

= [|0D}a,|* < C(u, k)
(Q,R2x™) for p, k fixed. By induction over m we obtain for

sym

These estimates yield o, € H},,
p, k fixed o € Hy, (Q,REX).

loc Sym

5.3 H} _ uniform estimates

We are now able to show that 0;" € H L(Q, RZ) independent of the choice of y and k.
We will proceed like in the case of the penalized Hencky model.

Every row j of the discretized system (5.2) is differentiated by D, and then tested with
0°D,.0.

On timestep m we have the equation

(0AD,D;*0;"6D,0,") + (D.G,(0,"),0°D,0") = (Dye(v))),6°D,0)") -
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5.3. H} . uniform estimates

The term (HAD D;*o™,0D, o, ) can be bounded from below by the ellipticity of A.

estimate by Young
7\

%(HADT(ULW 1,0D am) = (HAD a,"0D,a, ) — %,(HAD Umfl,eDTJIT)

ik(eAD o/"0D,0,") — —(0AD, 0" ",0D, 0"~ 1)

Qk(

D 2 D m—11|2 ]

We have now

%aneDram? S ol0D, 7 P+ (DGl ) 2 Dro’) < (8D ) 0Ds0") - (5.10)

Like in the case of the penalized Hencky model we can bound the differentiated and tested
penalty term from below.

[ B, < (DG D7) 5.11)

Consider (D e(v), 62D, o, ) Green’s formula yields
(Dre(v),0?Dy0)") = —(Dyvyt, grad 0°Dyo,) — (Dpv),0° Dy f7) (5.12)
Where

—(Drvust D f) < wull oy (CIDy ™ 1+ CIIAF™ | 10)
< Cllogll, 721 because Df, Af € L*(L}.)

Analogously to the penalized Hencky model we symmetrize the term (Drvu, grad 02DT0[L”).
From now on we use the summing convention

2 2 2
—(Dyv Dol D0%) = —=2(e(v))) jry Dy UWD 0%) + (D;v),Dyo; Dib?) (5.13)
. B . . m\ __ O'lzn—o'u 1 (‘U ‘ K’) m
Using the constitutive law: e(v)') = A+— + m EHD' D
m m—1
_ O'/J — 0, 2 <| | ) 2
() nag) (AP
jr
By By
+ (D UW,D 0 Di 92)

Es
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Chapter 5. H}, regularity for the stress tensor in the Prandtl Reuss model with von Mises
yield criterion

We estimate F; by Young’s inequality.

o (A% =% omog radd) < 10/
k ) T’O-u gra’ —4")/ O

1 -m||2 m||2
< EHAU’* I* +~C6D; 0, ||

2

dz + 70/ 92|D7,0;"|2 dz
0

om — O.mfl

AH [
k

(5.14)
We now estimate E5 and proceed like in the case of the penalized Hencky model.

B2 < [ Z(lofpl = r):l i 161C da
2
< | —(la"5| — k))|0] - |D,c’; C’d:p+/— o’sl — Dtr 0| dx
/Qu(l | = R)D)16] - | Drogp| \Qﬂ(l wpl = R)+ \/—I (9,")] - 16]

v

T1 T2
(5.15)
With Young’s inequality we have
D\ 1.,
1< [ 2UL R o+ 57 [ ol =) doqplds (516)
Where |, i(|aﬁ,| - “)+|U;%| dz < Const and
T, <(/ |DT onp|? dx + CConst (5.17)
We now split T5 into
1
T < g [, bl - 04C¥dat o [ =(lofh| = R rl0Di (o) da
§C’onst 7:;1

using Young’s inequality. Using the inequality (3.15) from Bensoussan & Frehse we obtain
for T21

T <o | L obl = m) Db ar-te [ bl = ORI Pz (515)
By assumption (5.1) (Af € L>®(L},)) we obtain f € L>®(L52,), thus
Ty < Const.
For a final estimate of Fy choose the parameter ¢ = %, 0= 8n|om S We have
E, < /Q%WWDTUJBF dz + Const . (5.19)
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5.3. H} . uniform estimates

Partial integration of E5 delivers:

(D Vs Dy D 92) = /QvﬁDZHQDTfim dz + /lev "o D;D;6* dx

w© pij
pr® pig

-+/vmd"D1)D9%n
Q

1

We have div vy = (AU” i

) and o € L? thus

dive™o™ D, D,6? d i (4% =% D,D;6%d
g v r= : r{ A O iij x

o™ — oM 5.20
I e O
< CllAglIP+C
By assumption Df € L*>(0,T; L]} (2, R™*™)), this yields
— [ v™D,0*D, fmdx < C v, D n
DD < gl DAL 1)
< CvaHLn ;

The term [, V01 Dy Di D 6? dz remains. Like in the case of the penalized Hencky model
we use the Sobolev 1nequahtles
For space dimension n=2 we have v;’ € L»-T thus v)’ € L? and it follows

/ﬂ Mo DD, D, dx < Ol | ello| 12 < C .

We now consider dimensions higher than n = 2.
We already know that " € H, L for p fixed and o, € L? by Sobolev we obtain:

loc
m 1 m 2n_
0, € H,.= o, € Ln>

For n = 3 we have UIT’GLG, v?EL%
Forn—4wehavecr €Lt v eL%

but in the case n = 5 we have 0, € L3, vy € L7 thus the term o V0 i Dr Di D 0% dw is
welldefined for space dlmensmns n=3,4.

Replace in the case n = 3,4 6 by 9% where 9 € C>(1Q).
n=3:
m 6 Holder m 3 m
A U0 Dp DiDy0° dz < CH% ||L%||29 a; || s

< CHQ?%J’”‘HLG
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Chapter 5. H}

1oc regularity for the stress tensor in the Prandtl Reuss model with von Mises
yield criterion

by Sobolev
[0 s < 1Dr(P07) |22 < (|10 |12 + (|0 Droy | 2
S C + |’193D7.O'l:nHL2
and 1
Cl9°Dyo|re < 4—pCz + pl[0° D0 |2
finally

pr pij

/vmom D;D,D;¥*dx < C +1 02 + pl|9*D,a |75
Q
for n=4 we have
/vaUZZJD D, D;9* dx < C||P0,|| 1
< C+ D,
Combining now these estimates we have

a m o} -
10D 1P = S 10Dpo |

< Cllogll a2 + —|!A0m||2 +Cl tr(AgMI* + 7 ClOD 0 |* + pllO Doy |1*

LT

(5.22)

Choose 0 < p, 7, such that vC' 4 p = loz and multiply the equation by k.
«Q m m— m m
§||9DTU# 1% — —HQD o, 12 < nCk|lvy || . +nk||Ag) 17+ nCk|| tr(As," |12
+ /{:§||9DTJ;”||2 + kn - Const

We have now a system of N inequalities. Summing these inequalities from timestep 1 to
m we obtain a telescope sum on the righthand side.

%Hepram? - %Hepmgw <O K|l o+ nZkuAaPH? v nC’ZkH tr(AGP)|?
p=1 p=1 p=1

+ % Z k||0D,a?||* + mkn - Const

p=1

We know
H/UNHLI(L S OonSt

Gull2(z2) < Const
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5.3. H} . uniform estimates

thus
p=1
n Y Kl|AGEI* < n)|Ad,|[7a (2 < n - Const
p=1
nC > k|| tr(Ag)||* < nC|ltr(AG,)|72(.2) < n - Const
p=1
and finally
10D,0."||> < n - Const + Y k[|60D,07||. (5.23)
p=1
By a discrete version of the Gronwall lemma we have
160D,0,"||* < Const . (5.24)

These estimates are independent of x4 and k.
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Appendix A
The space BD(f?)

In the case of perfect plasticity the right functionspace for the displacements is the space
BD(Q) of fuctions with bounded deformation.

The linearized strain tensor ¢ is in this case only a bounded Radon measure.

While the process of plastic deformation slip lines can occur, these are zones in which the
deformation gradient contains discontinuities in its tangential component. An adequate
formulation in the setting of sobolev spaces cannot take account of the mecanical qualities
of the material.

The literature for this appendix can be found in Suquet [Suq78b], Temam and Strang
[TS78],[TS80] and the book [Tem85].

Let 2 C R™ be an open connected and bounded subset of R"™.
Definition A.1 M;(Q2) denotes the space of all bounded Radon measures on ).

This is a space of distributions y on €2, such that

sup (i, ¢) < 00
PeC ()
l¢llo=1

The pairing (-, -) is defined as the integral with respect to the measure p.

(u,cb):/ﬂédu

The space M;(£2) is isomorphic to the dualspace (G,(€2))* of the continuous functions with
compact support in €.

Definition A.2 By M;,,, we denote the space of all second order symmetric tensor with

values in the space of bounded measures.
m € Mgy = m e R

sym

mijGMl(Q) 1§Z,j§n
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Definition A.3 We define the space BD(2) of functions with bounded deformation as
follows
BD(Q) = {u € L'(Q,R") | e(u) € Myym} - (A.1)

This space endowed with the natural norm

lullsp = llullzr + lle(@) | a1y (A.2)

is a nonreflexive Banachspace. The smooth fuctions are not dense in BD(£2) with respect
to the topology generated by this norm.

If the boundary of €2 is Lipschitz continuous we have the following trace theorem.

Theorem A.1 (trace theorem) Let 052 be Lipschitz continuous. There exists a contin-
uous surjective linear operator v : BD(2) — L'(0Q,R™), such that for all u € BD(§2) N
C'(Q,R")

Y(u) = wjn (A.3)
holds.

Theorem A.2 (generalized Green’s formula) If the boundary 9 is Lipschitz contin-
uous we have for all € C1(Q)

0 0
/ uj—¢ + u,—¢ dz + 2/ ¢e(u) de = ¢ (Y(w) -7 +y(u;) - 1) dl - (A.4)
Q O dz; Q 09
With 7t = (7iy, ..., 7,) the unit outward normal on OS.

Theorem A.3 (Embedding) Let (2 be a bounded domain with Lipschitz boundary. Then
o The space BD(RQ) is continuously embedded into Lw-1 (€, R™).
e For 1 <p < -5 the injection BD(Q) — LP(Q,R") is compact.

We have the following regularity theorem for distributions.

Theorem A.4 (Regularity theorem) If u € 2'(QQ,R") and e(u) € My, then u €
BD(Q).

Together with the embedding theorem A.3 the distribution u lies in Lﬁ(Q, R™).

A Korn type inequality exists in BD(€2). It is defined for the quotientspace BD(£2) modulo
the rigid dispacements, these are the kernel of (-).
Let # = ker(e)

Theorem A.5 (Norm equivalence) On BD() 4 we have by ||e(u)| a,,,, an equivalent
norm to the norm of BD(X2).
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Appendix B

The deviator of a matrix

Definition B.1 (Deviator) The deviator Ap of a matrix A € R72*" is defined as

sym
1
Ap=A— —tr(A)ld.
n

The mapping A +— Ap is linear with kernel ker(-p) = {A- Id| X € R}. The image of the
deviator mapping is the subspace of all matrices with trace zero.

tr(Ap) = tr (A _ %tr(A)[d)

=tr(A) — %tr(A) tr(Id)

=tr(A) —tr(4) = 0.
Theorem B.1 For A, B € R"*"™ we have Ap : B = Ap : Bp.

sym

Proof Consider the identities tr(Id) =n  Id: A=tr(A)

Ap:B— (A - %tr(A)Id) . B
_A:B— %tr(A) tx(B)
Ap: Bp = (A _ %tr(A)Id) ; (B _ %tr(B)[d)
= 4B~ 2 (A tr(B) ~ 5 tx(A) x(B) -

_A:B- %tr(A) tr(B)

It follows Ap : A = |Ap|? and the proof shows that [Ap|* < |AJ*.
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Appendix C

Projections onto closed convex sets
in Hilbertspaces

The proofs of the theorems given in this appendix can be found in the article [Zar71] by
Zarantonello.

Let X be a real Hilbertspace and A C X a nonempty, closed, convex subset. We de-
note by (-, ) the scalarproduct and by || - || the induced norm.

Theorem C.1 Given a nonempty, closed, conver subset A, then there exists a unique
mapping P : X — A with

|lx — P(z)|| = dist(z, A) = in£ |z —y|| Vo € X.
yE
An equivalent characterization of P(-) is the variational inequality
(z — P(x),a — P(z)) <0Vz € A

In the case then A is a closed subspace P is the orthogonal projection z — P(x) € At

Theorem C.2 Let Py : X — A the projection onto A and (Id — Pa4) the complement of
Py. The projection Py and the complement (Id — Pa) are Lipschitz continuous.

Theorem C.3 We have for the projection P4 and the complement Id — Py
° (PAx — Pyy,x — y) > ||Pax — Payl|* Vao,y € X

o ((Id— Pa)x — (Id — Pa)y,x —y) > ||(Id — Pa)x — (Id — Pa)y|* Vaz,y € X
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Appendix C. Projections onto closed convex sets in Hilbertspaces

This statement shows that P, and Id — P4 are monotone operators.

The next theorem characterizes the projection by a differential equation.

Theorem C.4 A Lipschitz continuous mapping Il : X — X is a projection onto a closed
convex subset iff the following differential equation holds.

1
(Id — )z = 5V||(Id—H)g;||2 VreX (C.1)
V denotes the gradient taken with respect to the Gateaux differential.
This result gives the identity for Py
1 o 1 2
5VH$H — §V|](Id—PA)$H =12 — (Id— Py)x = Pax (C.2)

and

Theorem C.5 The projection Py onto the closed convexr subset A and their complement
Id — P, are gradient mappings.

From P, and Id — P4 being monotone operators and gradient mappings we get:

Theorem C.6 ||(Id — Pa)zx||* und ||z||*> — ||(Id — Px)z||* are convex functions.
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Appendix D

Properties of the linearized strain
tensor ¢

We now assume for the displacements u € WP(Q,R") or a least that the derivative Du
exists in the sense of distributions.

Theorem D.1 The kernel of the linearized strain tensor () consists of the so called rigid
displacements.

u(z) € ker(e) € u(x) = Az + b with A € RI)" o)
Al =—A and b e R" :

The proof can be found in [Tem85].

Theorem D.2 (Korn’s inequality) Let Q C R"™ be an open connected subset with Lip-
schitz continuous boundary.

o Forue W (Q,R") 1 < p < oo with a constant ¢, > 0 dependent of
L@+ [ urde = el (D2

o Let u € WI}O’p(Q,R”) 1 < p < oo with ero’p(Q,]R”) = {u € WY Q,R")|u =
0 on I}y in the trace sense} and I'y C O with positive (n — 1)-dimensional Haus-
dorffmeasure. Then there exists constans Cy,Cy > 0 dependent of ) and 'y with

Cillullwrr < |le(u)]lzr < Collullwrp (D.3)

e In the case p = 1, e(u) € LY(Q,R2%") and v(u) = 0 on Ty, there exists a positive

sym

constant C3 dependent of Qand I'y such that
[ull 72y < Cslle(w)]|r (D.4)

L7-T
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Appendix D. Properties of the linearized strain tensor

The proofs can be found in the book of Temam [Tem85].

Theorem D.3 (generalized Green’s formula) Let Q2 C R" be a open connected subset
with Lipschitz continuous boundary. Let u € WIP(Q.R™) 1 < p < oo, p* dual exponent to
P % + # = 1. Let x € LP" (Q,R2") with divy € L (Q,R"). The divergence divx has to

sym
be taken in the distributional sense. Then the generalized Green’s formula holds

/e(u):xdx—i-/udivxdx—/ uy - ndl (D.5)
0 0 o9
For the proof see [Tem85].

The mapping ¢ : WI}O”’ (Q,R") — LP(Q,R2*") is continuous and linear. The Image R(e) of

sym

e is closed in LP(2, RE). The closed range theorem yields
R(e) = ker(e*)*.
How does the adjoint operator * look like? We have: £* : LP" (Q, R™") — (ero’p(Q, R"))*

Sym
<5(u)77—>LP><LP* = <u>5*(u)>wlﬂp wir)*
To X( To )

Using the generalized Green’s formula (D.5) we can compute the adjoint operator.

/s(u) crdr = —/udivrdx—l—/ ur - dl
Q Q o0
Where 7 € LP"(Q,R™") with div T € LP (€, R") (div 7 in the distributional sense)

sym

Theorem D.4 [f for y € LP(Q,RZ*") 1 < p < o0

sym
/X:de:() VreV (D.6)
Q

holds, with V := {1 € LP"(Q,R¥™)| divr =0 in Q, 7-7 = 0 on 00\ Ty} then there exists

sym
a unique u € ero’p(Q, R™) such that

X = e(u).
This means

{e(w)lu e WRP(QR")} =V

The strains are the annihilator of the divergence free tensor fields in LP" (2, R7X").

sym
Proof Let [,x : 7dz = 0 V7 € V. The closed range theorem implies x € R(e) if
x € ker(e*)t. The kernel of £* is

ker(e*) = {7 € LP (Q,R™")| divr =0 and 7 -7 = 0 on 9Q \ [}

Sym

We have y € ker(¢*) and this gives x € R(¢). From Korn’s inequality we obtain the
injectivity of £(-). The injectivity of € yields the uniqueness of the displacement w.
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