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On Regularity for plasticity with hardening

Dominique Lobach

Abstract
In this paper we show the regularity of the strain tensor and local differentiability
of the stress tensor and hardening parameters in plasticity with hardening using a
viscoplastic type penalisation in the case of von Mises yield criterion. The regularity
of the strain tensor was first shown by Johnson [Joh78] by constructing a bijection
between the strain- and stress tensor. The local differentiability was shown by Seregin
[Ser94] with a dual method. In this paper we can bound the strain tensor of the
penalized problem on the unit sphere in I?(I?) and obtain uniform results in the

passage to the limit. This is shown in a more direct way.

Keywords : plasticity with hardening, kinematic hardening, isotropic hardening
regularity of solutions
Subject classification(2000) : primary 74C05 secondary: 35B60, 35K85
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1 The hardening problem

Let Q C R™ be an open bounded and connected subset of R” with Lipschitz boundary 052
and 02 = FNUFD.

We consider the functions

o:Qx[0,T] — RGY

£:Qx[0,T] - R™
u:Qx[0,7)] —R".

Where o represents the stress tensor, £ the internal hardening parameters and u the dis-

placement field. The variable ¢ has the character of a loading parameter.

Let A€ L™ (Q; hom(Rx" R"X")) be an uniformly elliptic, symmetric fourth order tensor

Sym 7 Usym

field with ellipticity constant ay > 0. That is:

(A(z)m) : m > aalm|> Vm e RLI.

sym

This tensor describes the elastic material properties and is an inverse Hookean law (for
example the inverse Lamé-Navier Operator).
Further let the hardening modulus H € L*°(€; R™*™) be an symmetric, uniform elliptic

second order tensor field with ellipticity constant ag > 0.

We define the linearized strain tensor e(u) = £(Vu + VuT).

Let F : R X R™ — R be a continuous convex function. We call F a yield func-

tion. The yield function F models the behaviour of the material, that means decides if the

material is in an pure elastic respective plastic state.

We assume that € is subjected to the following body- and surface force densities

f e L>0,T; L"(Q,R")
p € L™(0,T; L (69, R")).



We consider the following sets of admissible stresses and hardening parameters :

K={(r,n) € I*(0,T; L*(, R x L*(0, T; *(Q,R™) | F(r,m) <0 ae. in Qx[0,T]}

Sym
M={(7,n) € IZ(0,T;L*(Q, REXM) x [*(0, T;L*(Q,R™)) |77 = p on Ly, div € L=(0, T;L" (Q,R™)}

Sym

Let BD(£2) denote the space of functions with bounded deformation, that is
BD(Q) = {u € L'(,R") |e(u) € (Co(,R™))"}.

This means the strain tensor ¢(u) is only a bounded measure. The space BD(f2) can
be continuously embedded into L%(Q,Rn). For further information about BD({2) see
Temam [Tem85].

[e)

We write v = s u(x,t) for the "displacement velocity”.

Definition 1.1 The variational inequality of plasticity with hardening is to find ((a, £), v) €
(MNK) x LY0,T; BD(Q)) such that &,& € I2(I?) and for all (1,1) € K N M holds

(Ao,m — o) + (HEm — €) + (v,div(T — o)) >0 (1.2)

(o, Vw) = (f,w) —I—/ pwdl' Vw € HL (L R") a.e. with respect to t
In

(0,6)(0)=0in Qx R™ x {t =0} (1.3)
v=0onlIpx|0,T].

In this paper we investigate the case of (linear) isotropic and kinematic hardening in the

case of von Mises yield criterion.

F(o,§) =|op| — (k+ &) isotropic hardening, £ € R
F(o,8) =lop —&p|l — & kinematic hardening, £ € RI'"

Sym

with & > 0 the yield limit and op = o — £ tr(c)Id the deviator of o.

The isotropic hardening describes an uniform expansion of the yield surface, and the yield

function takes the form: F(o,&) = F(0) — k(£), where F' is a continuous, convex and k a

3



continuous, concave function.

By kinematic hardening the yield surface undergoes a translation but no change of size or
it’s shape. The yield function can be written as F(o,£) = F(o0 —§) — k with F' continuous

and convex.

(a) Isotropic

)

/

(b) Kinematic

Figure 1: Isotropic and Kinematic hardening



2 The penalized hardening problem

We will use a viscoplastic type approximation to the hardening problem (1.2). Let us
assume, that our yield function F(o,§) is (weak) differentiable. Let p > 0, we define our

viscoplastic potential G,(o,§) as

1
GM(Uv 5) = @(f(o-v 5))3_ (21)
a if a>0
where (a); =
0 if a<O0.

The term G, (0, ) is almost everywhere (weak) differentiable and convex. Thus the deriva-
tive G,(,§) is a monotone operator.

We further impose a linear growth condition on the viscoplastic potential derived from the
yield function F. Let F, such that

Vo) (F(0,6))%] < calo| + esle] + Const . (2.2)

We now formulate the penalized problem of hardening.

Definition 2.1 Find ((0,,&,.),v,) € M x L*(0,T; BD(Q)) such that (6,,&,) € I?(I?) and
for all (T,m) € M holds:

(Ame - Uu) + (Hémn _gu) + (GL((O}M gu))’(T —Ou, 7 _gu)) + <Uua div(r _UM» =0 (2.3)

(o, Vw) = (f,w) +/ pwdl' Vw € HE (Q,R") a.c. with respect to t
I

(0,€,)(0) = 0 in Q@ X R™ x {t = 0} (2.4)

Uy = 0 on FD X [O’T]

The existence of solutions (o, ¢,) will be shown in section 4.
For y — 0 the sequence ((%fu)a Uu) converges to the solution of the original hardening
problem (1.2). (For the proof see section 6. )

In this paper we consider the von Mises yield criterion and we have:

1

G0, &) = ﬂ(‘UpD‘ — (K + 5%‘))1 isotropic hardening
1

G,(04, &) = ﬂ(\aﬂp —&up| — m)i kinematic hardening



Our viscoplastic potential (2.1) extends the idea of an associated flow rule. In the context

of the Prandtl-Reuss flow rule of perfect plasticity
e(t) = Ao + 11 (2.5)

where II denotes the plastic strain and I = 0 if F(0) < 0 with F : R?* — R a continuous

Sym

convex yield function.

Attention: The presentation of perfect plasticity in the form (2.5) is common
among engenieers but only formal in the strict mathematical sense. In perfect
plasticity the (elastic) strain tensor () is in the worst case only a bounded
measure, thus & € BD(1).

Using formal Green’s theorem for ¢ and by the principle of maximum plastic

dissipation (2.7), we derive the variational inequality
(46,7 — o) + (i, div(r — 0)) > 0. (2.6)

This inequality lacks the boundary and initial conditions, but is the basis for
the mathematical formulation of perfect plasticity. (For more details about

perfect plasticity see Suquet [Suq81].)

The engenieers introduce a plastic potential ® such that

..

X is a nonnegative (infinitesimal) scalar.
The plastic strain IT satisfies the the principle of maximum plastic dissipation (or maximum
plastic work [DL76, HR99])

II:(r—0)<0 V7:F(1)<0. (2.7)
In the context of plasticity with hardening we have ([KL84))

. .9
1= ~®(0,). (2.8)

The flow rule (2.8) is called asssociated if ® is given by the yield function F

. .0



In the case of von Mises yield criterion (which we only consider in this paper) a potential

of the form

1

U=
24

2
(%)
is called associated to the Hohenemser-Prager model (see Lubliner [Lub90]). In the frame-

work of Han and Reddy [HR99], we consider generalized stresses ¥ := (0,&) and plastic

strains Il = (7,, m¢), the associated flow rule
I =\VF(E)
reads componentwise

Ty = Aa—if(a, £)
. 0
e = Aa—gf(a, £).

(2.9)

In this context the derivative G, of our viscoplastic potential (2.1) satisfies the extended

principle of maximum plastic dissipation

II:(Ir'-%)<0 VYT: F(T)<O0.
The monotonicity of G, gives for (7,7) € MNK
(G;:(O-a 5)?(7 —0,n— 6)) <0.

The choice (2.1) is an extension of the potential associated to the Hohenemser-Prager

model.



3 A priori estimates for the penalized problem

If we make the assumption of a safe load condition (see Johnson [Joh76, Joh78]) one can
obtain the existence and estimates for the solutions of the penalized problem independent

of u.

safe load condition:
There exists a (7,7) € Wh°(0, T; L=®(Q, R2<")) x WH>(0,T; L>=(Q,R™)) and ¢ > 0 such

sym
that
—divr = fin Q x [0,T]
-in=pon Iy x[0,7T] (3.1)
. .

in 2 x R™ x{t=0}

/
We can now give the following estimates for the sequence of solutions (o, &,) of the penal-

ized hardening model. The solvability is shown in section 4.

Theorem 3.1 Under the assumptions of section 1 and the safe load condition (3.1), the
solutions (0, &,) of the penalized hardening model satisfy the following estimates indepen-

dent of u

0|l oo 12y < Const .
1€l L2y < Const. -

proof We choose in equation (2.3) (g, — 7,&, — n) where (7,7) satisfies the safe load
condition (3.1)

(Admo'u - 7_) + (Hé/ngu - 77) + (G;;((O-m gu))a(oﬁ - T, Su - 77)) =0.
Sorting terms
(AGusa) + (HEwE) + (Grl(0 €))s(0n — 76 = 1)) = (AGusm) + (HEm) - (3.3)

Write (Adu,au), (H ¢ mgu) as time derivative



and integrate (3.3) from 0 to ¢

1 1 L b :
B (AUM7O-M) +§ (ngagu) +/0 (Gu((O’u, Su))a(UM_Ta €u—77)) ds < /0 (AO-M?T) ‘l'(Hfmn) ds. (3.4)
The tested penalty term is definite, using the inequality for convex differentiable functions
we obtain
t t
| (Gt =& =)ds > [ Gl )~ Gullrm)as. (35)

~~

>0 =0

We use partial integration on the terms of the right hand side of (3.4). (note that
(04,€,)(0) =0 and A, H are symmetric)
t t t
/ (A6,7) + (HEwm)ds = (0, A7) + (€sHir) — / (0, A7) ds — / (6, Hi)ds (3.6)
0 0 0

Using Young’s inequality gives

t t
(0, A7) — /0 (s A7) ds + (€, H) — /O (6, Hil)ds
1 t t )
<Al + AT+ [ s+ [ arPds
2 0 0

1 t t )
ol + P+ [ dras+ [ alPds. @0
4p 0 0
We choose v, p such that we can absorb terms, using the ellipticity of A and H, equations
(3.4) and (3.7) yield

oA

t t
g
(G =Dl + (=Pl < Const+ [ alds+ [gas. @)

The Gronwall lemma implies that ||g,|| and [|£,|| are bounded.

This proofs the statement of the theorem. O
These results lead to

Theorem 3.2 Under the assumptions of theorem 3.1, we have

G0y, &) || L1y < Const

(3.9)
1G (0, E)l| L1 (z1y < Const.

proof The results from theorem 3.1 and lemma 2 from [Sug81] yield the estimates. [



4 Existence of solutions of the penalized hardening

problem

We will now show the existence of solutions ((Uw £), Uu) and time derivatives of the stress

tensor and hardening parameters in the penalized hardening model.

Theorem 4.1 Under the assumptions of section 1 and the safe load condition (3.1), there
exists a solution ((UM,SM),UM) of the penalized hardening problem (2.3). The time deriva-
tives of the stress tensor 0, and the hardening parameter éu exist and we have the estimates

independent of the penalty parameter p

oullrzizy < Const

Hé;LHL?(L?) < Const.
proof
1) We discretize the weak formulation (2.3) of penalized plasticity with hardening in time
with finite backward differences.

Let N € N*, k = L the step size in time direction and ™ = n(m - k). Write

for finite backward differences in time. The time discretized formulation is now

(AD;*o 0 = X™) + (HD &0 — w™) + (GL((077, 67))5(a7" — X, € — w™)
+ (v, div(a]" —x™)) = 0. (4.2)

The balance of forces (1.3) is altered in the following way:

1 (m+1)-k
divo," = E/ fds

m-k
U,:”-ﬁ:E/ pds on Ty .
m-k

We approximate the pair (7,7) in the safe load condition(3.1) by

1 (m+1)~k‘
T = E/ Tds
mk (4.4)

1 (m+1)~k‘
n" = z / nds,

m-k

10



and as in (4.3) we let (7™, ™) satisfy the altered balance of forces. By the convexity of K

the altered a discrete analog of the safe load condition still holds

F(r™,n™) <0 a.e. inf. (4.5)
The existence of a solution (", ) on every time step m, of the discretized formulation
(4.2) for p, k fixed can be shown by direct methods in the calculus of variations.
We consider the energy functional J:

! (AO’

1 1
T &) = o L (Ao o) o (HEE) 1 (HEE ) +Gulol &)

k
(4.6)
The Euler-Lagrange equation of (4.6) is just the time discretized equation (4.2) without
the term (v, div(ay" — x™)).
The existence of the displacement velocity v]" € Hy, (2,R") can be shown in a similar

way to Anzelloti & Giaquinata [AG80, AG82] since J" is a perturbed Hencky like energy

functional.

2) We now introduce the operator II’f of piece wise constant interpolation in time as

1 (m+1)k‘
Ika(t)::—/ o™(s)ds, m-k<t<(m+1)-k, m=1,...,N. (4.7)

m-k
With similar methods as exposed in the non-discrete case in section 3 we obtain L*(I?)

estimates for (I;fau, I;f@)

||I;]f%||Loo(L2) < Const s
||Ik§m||Loo 2y < Const. :

As in section 3 choose (g — 7™, " —n™) in equation (4.2) and then argue as in [Joh76].

3) Let ¢ = g, — 7 and £ = £, — 1, where (7,7) satisfies the safe load condition. Test
the discretized equation (4.2) with D;*(@™ ™).

(AD;* 0" ,D;*5™) + (HD ¢, D) + (Gl((o, &), D (e, €7)) = 0
sorting terms
(AD;* o ,D o) + (HD D) + (Gl((or, €M), D (@™, E™)
= (AD; ’fa,;“,Dt T )+(HD;k "D ™) (4.9)

11



using on the righthand side the symmetry of A, H and Young’s inequality with
O<p<au O0<y<ag,setcp:=aq—p, co:=ayg—7

cr[| D7 o PHea | DR PG (o) ), D F (@™, E7)) < ||AD e ||HD )
(4.10)

Because (7, 7) satisfies the safe load condition we have

allD oI + e DRI + (GLl(op, €0), Do, €0)
< Const(p) + (G((of".)-DH (™ ™) . (4.11)

We can estimate the tested penalty term as follows
(Gl D) = [ Gl (D7
< / GG, €m)] - 1D (7, ™) e
< / G, €M) - 17, ™) e
S ACREANS

(4.12)

Hence

| Dy ool DA+ (G (o ) D (o, €1) < / Ga(o", &) -+ Const.
(4.13)
Multiply this equation by k£ and sum over m =1,..., N

N N N
ok Y D o 1P ek Y IDTAEIP D (Gullor &)slop — o= g = &)
m=1 m=1 m=1

-~

(*)

N
< Const-T + Ck Z / |G (o, &) dr . (4.14)
m=1 Q
The term (*) is non negative, the inequality for convex differentiable functions yields
[ Gulter ) = Gutor 2 e < (Gulla (e = g = 21).

12



Summing from m =1,..., N gives a telescope sum

Mz

N
(Gulo . &0)s(o — o=t & = &07h) = ZAGM((Uf,€?)) — Gu(a" 7, g7 )da

m=1 1

3
I

Gu((0,,€2)) — Gul(0,,€))da > 0.
(4.15)

o)

By a discrete analogue of theorem 3.2, we have G/, ((0;,, £,,)) bounded in L'(0, T; L' (2, RZ 1)),

Sym

a choice of k sufficiently small enough yields

C'kZ/ G (0", &M)|dx < C||Gy(1¥ (04, &) | 1121y < Const .

N N
EY DM + kY IIDFEH? < Const - T

Hence, for k sufficiently small

113Dy %0, || 22y < Const

. (4.16)
11, Dy "8ull 22y < Const .

4) The boundedness of (Ifo;", IF¢) (4.8) and Dy H(IFom IF ) (4.16) yield the existence

! p%u o dp p%u o Ap
of (6,,&,) and the weak convergene in I*([?)
(Iyon Iy6) (0, 4)
DIy 1) =G, €,)

PM’p

(4.17)

as k — 0.
We will now show for y fixed the strong convergence of (I, kam I 'fgm) Test the discretized
equation (4.2) with (I¥o™ — &, I5Em — €,

0= (AD; " oy o =6,) +(H Dy I 16 =€) (G (Lo, 16 (o =61, 161 =E,)) -
(4.18)

Note that, on can intercange the interpolation operation with the nonlinearity in GL, since

II’f is piece wise constant.

13



We set 2™ = [50’;” — 0y, g7 = I;,“gg% — éﬂ and using the monotonicity of the penalty term

G (I —pFoy, IFem) we obtain

o(1) = (AD* 2", 2", 2") +(H D g™ ™) + (G (I = o) IE)) —G,Q((%fu)),(zm,gm))J-

A wotp
>0
(4.19)
Using Young’s inequality
o(1) > i(Azm 2" — i(Azm_1 2"
~ 2k ’ 2k ’ (4.20)
1 m .m 1 m—1 m—1 '
+ 55 (Ho™g™) = 5 (Hg™ g™ ™)
Summing over m = 0,...,l < N we have
1 1l 1 Il
o(1) > ﬁ(Az ') + %(Hg ') . (4.21)

Where we have use that we define (IFo™,™)(s) = 0 for 0 < s < 8, in order to satisfy the
initial value.

This gives the strong convergene of (I;fa/j”, I;f

&) — (G, éu) and as k — 0 by fixed viscosity

coefficient p .

5) We have now to show, that (5u>gu) are solutions of the penalized hardening problem
. . . . k m k m .

(2.3). Test the discretized equation (4.2) with (Ijo;" — 7, I;§" — n), where (7,7) satisfies

the safe load condition.

0= (AD*Lio Ivo —7) +(HD; F IEET L et —n) + (Gl (Ir ol INEM) (Lo —7, INE —n))

PR TP prp 0Tp p-p
(4.22)
Due to the strong convergence of (INor, IN¢") — (6,4,€,) and the weak convergence
Dy M(IEom, 15€m) — (6, ) we get
0= (A(;T/ua-u - 7_) + (Hg;ngu - 77) + (GL((&W gu))?(a-u - T, gu - 77)) . (423)

O

14



5 Pointwise a.e. equation for the penalized model

The estimates of the last section allow us to show that for fixed viscosity coefficient p the
strain tensor e(v,) is a square integrable function.

Theorem 5.1 For fized viscosity coefficient i we have

’|5(UM>HL2(L2) S COTLST,(M) (51)

vl 2y < Const(p) .
proof Consider the weak formulation (2.3) of penalized hardening.
(AduaX - Uu) + (Hém W — g,u) + (G:L((UN7 gu))a(X — Op, W — 5#)) + <U“, diV(X - UM>> =0

Choose (x,w) € I#(0,T; L*(Q,R™*™)) x [*(0,T; *(,R™)) with

sym
—divy = fin Q
X-n=ponly (5.2)
w=2¢,.

Inserting (x,w) into the weak formulation results

(Ad/“X - UM) + (G;:((U/m §1))s(X — O, O)) =0. (5.3)

The space of divergence free tensor fields is the orthogonal complement of the space of

strain tensors ([Tem85] see e.g. also [Lob07a]). This implies
, 0
Ady + 75— Gu((0u, &) = () (5.4)
doy,
pointwise almost everywhere in 2 for ¢ fixed. We have e(v,,) € I*(0,T; L*(Q,R?X")) and

sym

(Adusx =) + (HEus w = 62) + (Gr(00 €0))s (x = s w0 = ) = () yx —0,) = 0. (5.5)
The linear growth condition (2.2) and |0, || o2y, [|§ullzo(r2) < Const gives the estimate
IGu((@50 ) ) < 7 Const. (56)
Together with Korn’s inequality
le(on)llam < %C’onst

1
H/U,U«HLQ(Hl) < ;COnSt .

15



This leads to the pointwise almost everywhere equation

(Adu> n (%GM(UM’§M)> _ (5(%))
HE, 5= G0, €,) 0o )

We obtain a formulation containing the strain tensor £(v,).
Find ((0y,£,), v,) such that for all (7,7) € M holds

(5.7)

(AduaT - Uu) + (Hémn - gu) + (G[;((Oﬁa gu))a(T —Ou, N — gu)) - (5(Uu)a7 - Uu) =0 (5'8)

16



6 Convergence of the penalized problem to the hard-

ening model

We will now proof the convergence of the stress tensor and hardening parameter (o, §,,)

to the solution of the initial hardening problem (1.2).

Theorem 6.1 There exists a subsequence of the sequence (0,,&,,) of solutions of the penal-
ized hardening problem (2.3), converging weakly in I?(0, T; L*(2, RE*)) < [7(0, T'; I (Q; R™))
to the solution of the initial hardening problem (1.2).

proof From theorems 3.1 and 4.1 we know that the sequence of the stress tensor, hardening
parameters and their time derivatives is uniformly bounded in I7(0,T; L*(Q,R2 ")) x
20, T; I2(Q; R™)).

Extracting a suitable subsequence (0,,,&,,), there exists (5,£) € I?(0,T; L*(Q, R x
I#(0,T; I?(Q;R™)) such that for p; — 0

. . (6.1)
(dﬂl7gﬂl> - (57 ) :

Define

X = MN{(r,n) € L(0,T; L*(Q,RLM) x (0, T; (Q;R™)) | —divr = f in Qx[0,T]}

Ssym

Test the pointwise almost everywhere penalized hardening law (5.8) with (7 —o,,,n1—¢,,)
where (7,7) € KN X. Then we have a.e. on [0, 7]

(Admﬂ' - Uul) + (Héman - guz) + (G;:<(Uu17£ul))a(7 = Op 11— guz)) =0. (6.2)

The tested penalty term is non positive

(G;/L((UM? gﬂl))’(T - Uuwn - 5/»”)) S G,u(T’ 77) - G,U«(O-,U«l’gﬂl) .
—_—— — —

=0 >0
This yields

(AdHHT - Uul) + (Héunn - gﬂl) >0. (63)
From (6.3) we infer (note (o,,,£,,)(0) =0)

0 < timsup [_ /O (A6, )ds + /0 (A6, ,7)ds — /0 (H,6)ds + /O (Hém,n)ds] -
1 1 t t °
< limsup [—§(Ao—m ) () — 5(Hgm,gm) (t) + /0 (Ad,,,7)ds + /0

w—0

come

17



We average with respect to t on an intervall (s, s + h) and use that
1 s+h 1 s+h
_ﬁ (Aam,a“l)(t)dt - % (Hfunguz)(t)dt

are upper semicontinuous in the weak topology on (0, T; L?(£2, R"*")), thus

sym

) 1 s+h 1 s+h
(6.4) < hgll_s}olp [_ ﬁ/s (Aaul7aul)(t)dt “ 9 ; (ngngm) (t)dt

1 s+h pt 1 s+hpt .
+5 / / (A6,,,7)dsds + / / (Hgm,n)dsdt}
s 0 s 0

By the the weak convergence (6.1) and (0y,£,)(0) = 0 we deduce almost everywhere in
[0, 7]

(6.5)

1 s+h o 1 s+h _ 1 s+h pt . 1 s+h pt .
0< {_%/3 (Aa,a)dt ~ 57 s (H&,f)dt + E/; /O(AU,T)dsdt + E/; /O(Hg,n)dsdt
(6.6)

_

The weak limit ¢ satisfies 5(0) = 0, since 0, g, are uniform bounded in L>(I?), [*(I?)
with respect to the viscosity coefficient pu.

Now, we let h — 0, and a theorem about Lebesgue points provides for almost all ¢t € [0,T")

0S/O(Aé,f—ﬁ)ds+/0(Hg,n—€)ds. (6.7)

Since (0,,,&,,) € X and X is closed and convex the weak limit satisfies (5,6) € X. We
have to show that (&,€) € K. By theorem 3.2 we have

T
/0 (F(Uul>€ul))ids < My Const.

By letting 1, — 0, we obtain (&,€) € K and this proofs the statement of the theorem. By

standard techniques we obtain the convergence of the whole sequence (g, §,,) . O

Now we show the convergence of the displacement velocity v,.

Theorem 6.2 There exists a subsequence (vy,) converging weakly in I7(0,T; HE (€, R™))

to v displacement velocity solution of the initial hardening problem (1.2).
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proof We will make use of results from the next section. By theorems 7.1,7.3 in section 7
we know that the sequence (v,) is uniformly bounded in I*(0,T; Hy, (2, R")). Thus there
exists a 0 € [*(0,T; HE (€, R™)) and a suitable subsequence ((0y,,&,,),v,,) such that for
pr— 0

((Uuz>€uz)avul) - ((U,S),’fi).

We have to show that 0 is a solution of (1.2).
Test equation (5.8) with (o, — 7, ¢, —n) where (7,77) € M. We have like in theorem 6.1
by using the balance of forces (2.4)

—(vm,div(am — 7')) > (Adm,am — 7‘) + (Hfm,§M — 77) a.e. in [0,7]. (6.8)

Arguing as in the preceeding theorem we see that v is the displacement velocity solution
to the initial hardening problem (1.2). O

Theorem 6.3 The sequence (0, &,) converges strongly in [*(L*).

proof Test (5.8) with (0 — g, — &), where (0,§) is a solution of (1.2)
(Adma - Uu) + (Héwg - gu) + (GL(UW 5“),((7 — 04, § — gu)) =0. (6.9)
Due to the monotonicity of G/, the tested penalty term is non negative. Hence
(A6 =650 = 0) + (H(E = €)¢ = &) < (Ad,0 — ) + (HEE — &) . (6.10)
Integration of (6.10) from 0 to ¢ yields
1 1 t t
5(14(0—0“),0—0#) +§(H(§—§u),§—§u) < /(Ad,a—au)ds—i—/ (HEE—E,)ds. (6.11)
0 0

Passing to the limit y — 0 gives

1 t t .
lim inf > [(A(U—UM),a—au)ﬂH(g—fu),f—gu)] < lim { /0 (Ad,o — g,)ds+ /0 (HéyE — gu)ds}

J

~~
=0

(6.12)

since (0,.6,) = (0.€). O
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7 H'-Regularity

In this section we show the regularity of the hardening model. Johnson ([Joh78]) was the
first to show the H'-regularity for the displacement velocities. He used as approximation
the projection onto the set of all stress and hardening parameter satisfying the yield crite-
rion.(see e.g. Duvaut Lions [DL76] for projection models.) Seregin [Ser94] even obtained
H? _ regularity results for the displacements (not velocities!) in kinematic hardening.

We show the uniform boundedness for £(v,) and then we regard the stress tensor. The
proof in the present paper looks simpler, although it is, of course, similar. The regularity
problem for the displacement velocities was also discussed in [Pai02].

We assume for f:
feL>0,T;,L"(Q,R"))
Df € L¥(0,T; Li,.(2, R"™™)) (7.1)
AF € L2(0,T; L (L R")

7.1 isotropic hardening

Theorem 7.1 Let (7.1) and the safe load confdition (3.1) hold true, then the strain tensor
e(v,) of penalized hardening is uniformly bounded in I*(0,T; L*(2, R7X™)).

sym

proof Let w € I*(0,7; L*(Q, R")) with divw € L=(0,T; L™(2, R")) and ||w||z2(2) = 1.

Sym

Consider the test function

T=w

(7.2)
n=|wp|— k.

test the weak formulation (5.8) with (o, — 7,&, — 1) where (0,,&,) are solutions of the
penalized equation.

We examine the tested penalty term (GL((O’M, &))s(0, — 7,8 — 1))

(G;:((Uw &) (0 — 7,6 — 77))

= %/Q (loun| = (5+&4)), <|Zzz| o — W)) dx—%/ﬂ (loun|=(5+8u)) (§u—lwpl+r)de
1

CauChy>SChwaer/ (|UMD|—(/§—|—§M)) (|UMD|—|QJD|)dZE——/ (|UuD|_(/‘f+§u)) (é“u_|WD|‘|""<J)d:l7
N HJa j Hia ’

= [ (ol = (4 6). (o] = (54 ) = 0. (73

HJa
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The definiteness of the tested penalty term yields the inequality
(A650, — w) + (HEus — (lwp| = 1)) < (e(vy),04 — w) (7.4)
sorting terms
(€(0)sw) < =(AGus0,) +(AG, w) = (HEus&) + (HEslwpl) = (HEum) +(e(va),0) - (7.5)

Using the balance of forces (2.4) (£(v,),0,) = —(vy, f) +fFN pv,dl’ and integrate (7.5) from
Otot

/ (5(vu),w)ds < —%(Aau,au) — %(Hfu,ﬁu) —i—/ (Adu,w)ds
0 0
+/0 (Héu,|wD|)ds—/0 (Hfu,/ﬁ)ds—/o (vu,f)dsjt/o /FvaMdFds. (7.6)

The Hoélder and Young inequality gives with use of |wp| < |w| almost everywhere the esti-

mate

t 1 1 t ) t t .
/0(5(vu),w)ds < §(A0u70u)+§(H§m§u) —I—/0||Aau||2ds+2/0||w||2ds+2/0||H§M||2ds

t
T / ol
0

We have |e(v,)||2(2) < Const. By Korn’s inequality we obtain [|v,[|2(z1y) < Const. 0O

t
L% . ||fHLndS —+ /HU/JHLl(FN) . HpHLoo(FN)dS +t KJ2‘Q‘ S COnSt. (77)
0

Theorem 7.2 With the assumptions of theorem 7.1, the strain tensor e(v) with v solution

of isotropic hardening holds

e(v) € I*(0,T; L*(Q, RZX™))

o (7.8)
ve LF0,T; HL (Q,R").
proof The convergence of ((UM,SM),UM) to ((0, f),v) yields the statement. O
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7.2 kinematic hardening

Theorem 7.3 Under the assumptions of theorem 7.1, the strain tensor e(v,) of penalized

kinematic hardening holds
le(u)|l 22y < Const.

proof Let w € I[*(0,T; L*(Q,R2")) with divw € L*(0,T; L™(,R")) and ||wl|z2(12) = 1.

sym

Consider the testfunction

T=w
(7.9)
n==E& —o,+w.
Test equation (5.8) with (g, — 7,§, — 1) where (g,,¢,) are solutions.
The tested penalty term (GL((O’H, &.))s(0, — 7,&, — 1)) takes the following form
(Gh(030: &) (0 = 7, & — 1))
1 (|U#D —&up| — K)+
= — OuDp — o, —w) + — (o —w
,U/Q |UMD _§MD| (( uD £HD> ( [z ) (qu uD> ( [z ))
(7.10)
Thus we have the inequality
(A6,,0, — w) + (Héu,au —w) < (g(vy),0, — w) (7.11)
sorting terms
(c(vp),w) < (A6u,0,) + (Ady,w) — (HéM,O’u) + (Hfu,w) + (e(v)y0,) - (7.12)

Integrate from 0 to ¢ and using the Young- and Hoélder inequality.
With (£(v,),0,) = —(vusf) + Ji, Pvudl we have

t 1 to t t
/(5(vu),w)ds < §(Aau,au) +/||Aau||2ds+/||w||2ds+2/||H§u||2ds
0 0 0 0

t t
+2/H0'u!|2d8+/!|f
0 0

Thus e(v,,) is bounded in I7(0,T; L*(, R2")) independent of the viscosity coefficient .
U

t
Ln’ll dS + A||UH’|L1(FN) : HpHLOO(FN)dS S Const .

(7.13)

- [0l
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Theorem 7.4 We have for the strain tensor £(v), with v solution of kinematic hardening
e(v) € X0, T; L*(Q, R and v € I2(0,T; Hy (Q,R™)).

sym

proof The convergence of ((O’M, fu) , V) to ((O’, €), v) yields the statement by using theorem
7.3. O

7.3 Local differentiability of the stress tensor and hardening pa-

rameter

With the uniform boundedness of the strain tensor £(v,) we are now able to show the local
differentiability of the stress tensor o and hardening parameter £. Seregin [Ser94] obtained
the local differentiability for the stresses and hardening parameters with a dual method,

without using a penalty approximation of the variational inequality (1.2).

Remark: To prove the differentiability we need more regularity for the elasticity ten-
sor A and hardening modulus H: For the sake of brevity we take A € hom(R<™ RI=")

Sym 7 - Usym

constant!. The same assumption holds for the hardening modulus H.

Theorem 7.5 With the assumptions of theorem 7.1 and the remark above we have:
In the case of isotropic-,kinematic hardening the stress tensor and hardening parameter
holds o € I*(0,T; H. (Q,R™2™)). € € I*(0,T; H. (Q,R™)) withm =1 or m =n X n.

sym

proof Let 6 € C°(2) be a cutoff function and 0 < h < 1 dist(supp6,9Q). Test the
penalized equation (5.8) with —D;h(92D§L(UM,§M)).

(0AD"6,,0D%0,)+(HOD"E,,0D"¢,) +(0D1G) ((0,,€.)) 0D (04, €,)) = (Dle(v,,),0°Dlay,)
(7.14)

By monotonicity, the tested penaltyterm reads

(0D} G (0, €)),0D} (03, €4)) > 0.

'For example one can take the inverse Lamé-Navier Operator Ac = 520 — ?)Ao’\ﬁ tr(o) - Id, where

2p0
Ao, o > 0 are the Lamé constants of the material.
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write

) 1d
(HAD;‘UM,HD;‘UM) = §E(HAD?UM,9D§LUM)
: 1d
(HQD%M’QD%M) - §E(H9D§Z§MQD§L€M) :

Integrate equation (7.14) from 0 to ¢ and using the ellipticity of A, H we obtain
@A 2, H he |12 Yoo 2 Hh
7||9Dj a.® + Tyij E? < i (Dre(v,),0*Dlo,)ds . (7.15)
Using the balance of forces (2.4) on the left hand side yields
t t t
/0 (D?e(vu),é’zD;-‘UM)ds = —/0 (D;-‘UM, grad 6’2D§-‘UM)ds — /0 (D?UM,HQD;-‘f)dS.

We know that £(v,) and v are uniform bounded, thus we obtain for — f(f (D;Lvu, grad 92D§LUM) ds

and h small enough
t t 1 t
—/0 (DMv,, grad 6 Dla,)ds < fng/O 16D a,,||*ds + @/0 v, |5 ds
t
< 709/ ||9D§-LO'M||2CIS + Const.
0

We use discrete partial integration for — fot (D?UM,QZD;-’f) ds and obtain

t

t t
—/0 (D;—L’UM,QZD?f)dS = /0 (UM,Dj_h92D;-lf)dS +/0 (vu,Ej_hQQAhf)ds < Const.

Where A" f = Dj_h (Djh f) denotes the finite difference approximation to the Laplace oper-
ator Af.
We obtain the inequality

« o 1 t
7‘4||6’17§L<7M||2 + 7H||9D§L§M||2 < Const + BConst + 709/0 ||9D§LO'M||2dS.
and Gronwall’s lemma yields

]|9D§lau||2 < Const

||6’D§-‘§M||2 < Const

independent of the viscosity coefficient pu. By passing to the limit one gets the local
differentiability for the stress tensor and hardening parameters of the initial hardening
problem (1.2). O
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8 LOO(L2)-estimates for 8(?@) and (dméﬁ

In this section we derive L>(I?) estimates for the velocities of the stress tensor and hard-
ening parameters. We also show the existence of the initial value (d;,£,)(0) .

We do this by giving an estimate of the form

.. 1 [h .
/Adu:deLng:fudx}Tgﬁ//AdM:du+H§u:§dedt+K.
Q 0JQ

For the preceding calculations we need to extend the safe load condition (3.1).
extended safe load:
There exists a (7,77) € W>>(0,T; L®(Q, RL*)) x WH(0,T; L=(Q,R™)) and § > 0 such
that

—divr = fin Q x [0,T]
-n=ponly x[0,7T] ®.1)
(1,7)(0) =01in Q x R™ x {t = 0}

F(r,n) <=6 <0.

Vs

The novell feature in this hypothesis is ¥ € L>(0,T; L*(Q, R™X")) .

sym

Theorem 8.1 Let the assumptions of section 1 and the extended safe load condition (8.1)
hold true, let h € (0,T), then there holds the estimate

h h
// |5(uu)|2dxdt§K//|<'7M|2+|£u|2dxdt. (8.2)
0JQ 0JQ

proof We test the pointwise hardening law (5.7) with (e(,),|e(%,)])T. In both cases,
isotropic and kinematic, the tested penalty terms cancel out after the use of the Cauchy

Schwarz inequality. Application of Young’s inequality gives the desired result. 0J
Theorem 8.2 We have

1 [h K [" :
—//e(uu):(fudxdtg —// |6, + €7 dadt + K . (8.3)

proof Let (7,7) satisfy the safe load condition (8.1). Then
1 [h
// e(ty,) : 6, = —// e(twy,) : (du — 7)dadt +—// e(ty,) : Tdadt
h Jo h JoJa
Young (84)
<Kt 2 //|£u“|dxdt

®2) 2 2
Do //|au| 4 1€, Pdadt .
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O

Theorem 8.3 Under the assumptions of section 1 and the extended safe load condition
(8.1) there holds the estimate

. 1 [h ..
/Ao"u:quLng:fudx‘T < ﬁ//AdH:o"ujLng:fudxdtJrK. (8.5)
Q 0JQ

proof Let 0 < p < T and t, € (0,p) and apply the finite difference Operator D;*,
0 < k < tp, in time to the pointwise a.e. equation (5.7) and then test with D; *(a,,€,,)

/ D;*e(u,): D; %o, dx= / AD;*g,: D%, +HD*E,: D7 *¢, da+ D;kqg(a“, ¢,):D; % (a,,€,)dx .
Q Q Q
(8.6)

A zero addition with D;*7, where 7 satisfies the extended safe load condition (8.1), in the

e(uy,)-term leads to

/ D;*e(i,): D rdr = / AD;*6,: D %0, +HD; %¢,: D%, da+ / D;*Gl (0, €.) : Dy (0, &) d
Q Q Q

'

>0

(8.7)

By virtue of the monotonicity of G, the tested penalty term is non negative. We now

integrate (8.7) from ¢y to T'— p and use discrete partial integration on the left handside

to+k T—p+k

// “u D+kD krdzdt + = // “u dedt—— // uu —krdadt

to+k

1
>3 / AD;*a,:D;*a, + HD;%¢,,: D; £de (8.8)
Q

to

We now let p — 0, by a theorem about Lebesgue points we procure from (8.8) for almost
all to S (0, T)

// (1) dedt+/ (1) de‘t / (1) de‘T /Ad“:dujLHé“:éudx
to Q to

(8.9)

T
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Integrating this inequality over t; form 0 to A and multiplying with % yields

L[ e [ A L
§AAUH:UH+H§H:§de‘T§ iﬁf(]/QAau:Uu—i-ng:gudxdt—i-E/O/Qa(uu)n'dxdt

) (8.10)
- /e(uu):%dx}T+K.
Q

'

(%)

The constant K comes from the term ftffﬂ (1) : Tdadt:
We used Young’s inequality then the extended safe load condition (8.1) and the uniform
I?(I?)-estimates from section 7. The terms (*), (**) can be absorbed, to do this we first

use Young’s inequality and then theorem 8.2. Thus

. 1 [h .
/QAdu co, 4+ HE, fudx}T < 7 /O/QAKTM Do, + HE,  Edadt + K (8.11)
And this is the statement of the theorem. O

Theorem 8.4 We have (6,,£,) € L®(0,T; L*(Q,R™<")) x L®(0,T; I*(Q,R™)), where

sym

m =1 orm=mnxn. Furthermore (d,,&,)(0) exists.

proof This follows by the preceeding theorems of this section. (Il

This theorem and the convergence of (g, fu) — (0,&) finaly gives:

Theorem 8.5 The time derivatives (d,, @L) of the stress tensor and hardening parameter,
solution of (1.2) belong to the space L>(0,T; L*(Q,R2*™)) x L>(0,T; I*(2,R™)), where

sym

m=1orm=nxn and (¢,€)(0) eists.
As a consequence we note

Theorem 8.6 The strain tensor (1,) of the displacement velocities is contained in the
space L>(0,T; L*(Q,R7x")), with the uniform estimate

e ()| oo (r2) < Comst

as p — 0.
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9 A static hardening model

In the previous sections we considered a quasi-static hardening problem, whose formula-
tion is due to Johnson [Joh78]. Following Temam |[Tem85] we introduce a static hardening

model based on the Hencky model of perfect elasto-plasticity.

We define the following sets:
K ={(0,8)[F(0,§) <0}
M = {(0,€) € L*(QRLT) x P(Q,R™) |0 -7 = p, dive € L"(Q,R")}.
Then the static hardening Problem is to find a minimum of
J(0,6) = 5 (Av0) + 5 (HEL) ©.1)
over the set XN MN{o|—dive = f in Q}. Where

feLMQR"
p € L®(0Q,R").

The weak formulation is, to find ((0,&),u) € (M NK) x BD(Q) such that

(Ado,m — o) + (HEm — &) + (u, div(t — 0)) > 0 (9.2)

(0,Vw) = (f,w) —I—/ pwdo Yw € HL (Q,R")
In (9.3)

u=0onlIp.

We will use the same type of approximation as in section 2, and we obtain similar results.

The penalized problem is to find ((o,,&,), u,) € M x BD(2) such that
(Aoyr — o) + (HEn = &) + (u, div(T — 0)) + (G (0, £))s(T = 04y = €)) = 0 (9.4)

(0., V) = (f, w) —I—/ pwdo Yw € HE, (,R")
Iy (9.5)

u, =0onIp.
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Under the assumption of a safe load condition we are able the show the existence of the
solutions to the static and penalized static hardening problem. We have the estimates for

the solutions of the penalized problem independent of p

loullz < Const

€ull 2 < Const.

Like in the case of quasi-static hardening, for fixed viscosity coefficient p the displacement
is contained in H'(Q, R")

1
]| g < ;C’onst

1
le(up) e < pConst.

And the pointwise almost everywhere equation

<A%> N (&Gm,m) _ (e(um) (9.6)
H¢, %Gu(am &u) 0

holds in €2. The convergence of the solutions of the penalized model can be shown in the

same way as in section 6.
If we use the same(but not time dependent) testfunctions as in section 7, we obtain the

uniform estimate ||u, || < Const and thus v € H'.

By using finite differencens, we are able to show that 0,& € H}. .
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