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Uniaxial Ferromagnets
Abstract

We discuss properties of uniaxially magnetic materials in the energetically optimal state. We work with
the well-established micromagnetic Landau-Lifshitz model. Our goal is to better understand experimental
observations using rigorous mathematical analysis of the model.

For our purposes, i.e. magnetostatics without applied field, a state is characterized by the magnetization
m of unit length in some sample in a domain 2 C R3. As an auxiliary function we consider the magnetic
field h induced by the magnetization, also called the stray field. It is determined by the magnetization
via Maxwell’s equations to be the Helmholtz projection of the magnetization onto the space of curl-free
vector fields. We consider a sample domain = R? x (—t,t) of infinite extension in two directions and
finite thickness 2t in the third. Our materials exhibit a crystalline anisotropy causing the energy to
strongly favor the magnetization to point in the third direction called the easy axis.

The Landau-Lifshitz energy is the sum of three terms: The exchange energy penalizes spatial variation of
m. The strength of the term is controlled by the exchange length d, a material parameter of typically a
few hundred Angstrom. The anisotropy term enforces a preference for the direction of the magnetization.
The strength of the anisotropy is measured by a non-dimensional parameter called the quality factor
Q. Finally, the magnetostatic or stray field energy is the integral of the squared strength of the field
induced by the magnetization. Note that the stray field depends nonlocally on the magnetization. Thus
the model is described by the sample thickness and the two material parameters, the exchange length
and the quality factor.

In experiments with such materials, e.g. Kerr microscopy of neodymium-iron-boron magnets, the mag-
netization is observed to form patterns with domains and walls. Domains are regions of almost constant
magnetization in direction of the easy axis. These domains are separated by walls, small, almost two-
dimensional, areas in which the magnetization varies sharply.

Given these observations, the passage from the universal Landau-Lifshitz model to a reduced, sharp-
interface model with magnetization indeed constant on domains and jumping at lower-dimensional sets
has been heuristically justified in the physics literature. Inspired by these heuristics, mathematicians
have been able to rigorously establish properties, notably about the scaling behavior of the energy, for
the full model by using the intuition gained from analyzing sharp-interface models.

In this thesis we give a rigorous mathematical justification of the passage to a reduced model by estab-
lishing a variational (I'-type) limiting behavior of the energy in a limiting regime described by the three
model parameters (Q — oo, t/dQY/? — oo, with no assumptions on the ordering of the limits). We
identify the energy limit to be a three-dimensional generalization of a functional proposed by Kohn &
Miiller and investigated by Conti. In the process we need and establish an enhancement of the well-known
T'-convergence result of Modica & Mortola.

We proceed to use our convergence result to rigorously establish a notion of minimal energy per area
(w.r.t. the first two axes) for both the reduced and the full model by considering configurations where this
area is finite but tends to infinity. As in the convergence result we do not need to make assumptions about
the ordering of the limits. We obtain an asymptotic equality that enhances previous results providing
only the scaling behavior up to constants and is novel in the flexibility w.r.t. the parameter limit.

We then turn our attention from the global behavior of the energy to the local energy distribution in a
minimizer of the sharp interface model. This provides insight into the domain structure of the minimizer.
We show that the energy in a cuboid near the boundary with sufficiently good aspect ratio (between
cuboid width and height) scales as if minimizers were self-similar. Indeed, this energy scaling assures
that the magnetization m in blow-up sequences converges locally in L!.
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We discuss properties of uniaxially magnetic materials. Our interest is in the energetically optimal state.
In this sense we focus on the raw material before it is processed into the ubiquitous modern permanent
magnets. We investigate how to connect the well-established micromagnetic Landau-Lifshitz model to
experimental observations using rigorous mathematical analysis.

1 Introduction

1.1 Landau-Lifshitz — a universal model for micromagnetism

A striking feature of the very rich world of micromagnetics is the existence of a widely-accepted universal
model encompassing all sorts of effects in a vast range of materials and configurations, the Landau-Lifshitz
model.

To start we consider a three-dimensional sample embedded in Euclidean space and denote by € the
domain of the sample. We consider a static state. In our semi-classical model the magnetization m is a
unit vector field on the sample. For convenience, we extend it by 0 outside  and so consider m : R? — R?

with
iml? = 1 in Q,
0 elsewhere.

The magnetization induces a stray field h : R? — R3. It is determined by the Maxwell equations, greatly
simplified by the static nature of our setup to

Vxh = 0. (2)
Both m and h are considered to be Lebesgue-measurable vector fields and we identify functions only

differing on negligible sets. The differential equations are understood in the sense of distributions on R3.
For notes on the derivation, see e.g. [DKMOO05].

At the very heart of the physical model is an energy functional. In absence of an exterior magnetic field,
the Lifshitz-Landau energy functional is (after some initial nondimensionalization)

E(m):d2/Q|Vm|2d:c—|—/an(m)d:1:—|—/Rs|h|2d:1:.

The first term in the sum is called the exchange, the second the anisotropy, and the third the stray field
term. Let us give a naive description of the three terms and introduce d and ¢ on the way.

e The exchange term penalizes spacial variation of m. The strength of the term is controlled by the
exchange length d, a material parameter of typically a few hundred Angstrém.



e The anisotropy term enforces a preference for the direction of the magnetization. The function
¢ : S? — R is a positive function describing the type and strength of the anisotropy induced by
the crystal structure of the material. We shall be interested in ¢(m) = Q(m? + m3), making +e;3
the one easy azis and the material uniazial. The dimensionless material parameter @ is called the
quality factor.

e Finally, the magnetostatic or stray field energy is the integral of the squared strength of the field
induced by the magnetization. Note that the dependence of the field on the magnetization is not a
local one. Thus the field extends beyond the sample € and so the domain of integration is R3 in
this term.

With m, h, @, and ¢ dimensionless and x and d having units of length the units of all three terms of the
energy match up as (length)3. The non-locality of the field energy with respect to magnetization changes
can be a hassle. We are fortunate enough to be able to trade equation (2) against minimizing h subject
to (1). For full detail about the magnetic field we refer the reader to the appendix.

This model when varied with different anisotropy and possibly an additional term representing the influ-
ence of an externally applied field explains a vast range of phenomena. In addition many different types of
sample geometries can be investigated. Thin films, for example, when 2 becomes almost two-dimensional
have been investigated and simplified two-dimensional models have been established heuristically and
through rigorous analysis.

Most appealing to the eye are perhaps the different types of magnetization patterns when made visible
by e.g. Kerr microscopy as described in [HS00]. These patterns stem from energy minimization with the
nonconvex constraint that the magnetization be of unit length. In the next subsection we specialize to
one regime and want to shed some light on the physical effects behind the experimental observations.

Micromagnetics and related phenomena have been extensively studied. On the experimental physics side
[HS00] provides an encyclopedic overview of micromagnetic pattern formation phenomena. The survey
[DKMOO05| compares experimental observations to insights of the mathematical analysis and presents the
state of the art (of 2005) in finding mathematically rigorous explanations. The paramount resources for
the specific regime under consideration are [CK98] and [CK0O99] mentioned above.

1.2 Strongly uniaxial ferromagnets

Let us now turn to the specific parameter regime within the Landau-Lifshitz theory that we are interested
in, the bulk regime for uniaxial ferromagnets. The push for a good mathematical understanding of this
setup and in particular the branching patterns known from physical observation started with [CK98] and
[CKO99]. A concise overview of the physical observations, the heuristic explanation for the branching
behavior and the energy scaling as well as a short elementary rigorous proof of the lower bound for the
scaling can be found in [DKMOO05, Chapter 6.8].

As indicated above, we specialize the anisotropy energy contribution to
Q [ |m/|?dx
Q

where m’ = (7,3 ) is the vector with the first two components of m. Our interest lies with strongly uniaxial
ferromagnets, i.e. we consider very large quality factors

Q>1 (large anisotropy).



The experimental picture in Figure 1 (more illustrations can be found in [HS00]) shows the domain
branching of a neodymium-iron-boron magnet with ) approximately 4. We also consider an idealized
sample geometry. To eclipse boundary effects we would like to choose Q = R? x (—t,t). In order to mean-
ingfully talk about energy minimizers in this unbounded sample we introduce some artificial periodicity
in the first two coordinates. We thus consider configurations periodic in the first two components 2’ with
fundamental cell (—I,1) for some very large [ and then consider the limit [ 1 co. Thus we assume that
the sample domain is (—1,1)? x (—t,t). The energy then is

Eugua(m) == d? / Vi + Q |2 + / 1|2,
(=112 x(=t,t) (=112 x(=t,t) (=L xR

where h now is a (—1,1)?-periodic solution to the Maxwell equations (1) and (2). Our analysis demon-

strates that the energy per cross-section area

e(m) = %E(m)

converges as [ — oco. This and the fact that the difference between minimal energy with periodic and
that with free boundary conditions vanishes in this limit also validate the approach of introducing the
artificial periodicity.

It also turns out that the pattern we wish to better understand only forms when ¢ is not too small. We
thus consider the regime
t>> dQY? (bulk sample).

The heuristic discussion of Section 2.2 exposes why mag-
netization patterns with branched domains do indeed
achieve low energy and why the cross-over into the bulk

." ‘I ‘ | \ ‘ ‘J“\T \I " “\ regime happens at t ~ dQ'/2.

Let us briefly describe the nature of the physical struc-
tures: The energy appears to favor the formation of two
phases of almost uniform magnetization called domains,
see Figure 2. These are separated by fairly sharp walls,
almost lower-dimensional transition regions of a certain
wall width. In the regime that we are going to study, the
domains themselves exhibit a pattern featuring a typical
domain width when we take a slice parallel to the xqxzs-
plane. This domain width is a function of the third co-
ordinate and decreases as the translated planes approach
the boundary of the sample and the domains refine by
branching. Of particular interest are the limiting do-
main widths, the bulk domain width in the interior and
the surface domain width at the boundary.

We analyze the magnetic ground state, i.e. the minimizer
of E among all m : R? — R3 such that m has unit length
inside 2 and vanishes elsewhere.

20 um

Figure 1: Neodymium-iron-boron magnets
with magnetization domains made visible by
Kerr microscopy

reproduced from [HS00] with kind permission
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Figure 2: The microstructure in a nutshell

1.3 Results

We approach the model with the desire to rigorously establish qualitative properties of ground states such
as the formation of domains and the structural refinement of domains. We also want to make quantitative
estimates for properties such as the energy, and by proxy of the energy, the domain width in the bulk.

We improve on the upper and lower energy bounds established in [CK98] and [CK099]. Where the
previously known bounds just match in scaling in the two non-dimensional parameters, the quality factor QQ
and the quotient of the thickness of the sample by the exzchange length t/d, we show that the appropriately
normalized minimal energy per area in (21, z3) converges to a finite universal limit in the parameter regime
t > Q'/2d. This analysis essentially consists of two parts of independent interest.

In the first part we establish a I'-convergence result on a domain whose lateral size [ is large but fixed in
terms of the (expected) intrinsic lengthscale of the microstructure, the domain width in the bulk. It is
based on an anisotropic rescaling of variables (z1 and x5 are rescaled by the domain width, x5 is rescaled
by the thickness t).

Interestingly, the I'-limit turns out to be the 3-d generalization of a functional proposed by Kohn &
Miiller for twin-branching [KM92, KM94] and investigated by Conti [Con00]. In the rescaled variables,
it is given by

Ei(m3) == 2/ |V'ms| dz —|—/ ||V/| "t Osms|2de (3)
[—1,0)2x (—t,¢) (—1,1)2 xR

where again

1 for z3 € (—t,1),
|m:>’|2 = . ( )
0 otherwise,



and the negative norm of d3ms is understood in the sense that

/ [V |7t 0sms|?da = / |n'|2dx
(=12 xR (1,2 xR

where 1’ : (=1,1)? x R — R? is the solution to the (reduced) Maxwell equations

V'-h'+83m3 = 0,
O1hy — Oohy =

Theorem 1. After a suitable rescaling the reduced energy E;+ is an upper and lower I'-type limit of the
full energy Eq g1+ for fived rescaled length 1, QQ — oo, and (dQY? /)13 — 0.

We shall make the statement more precise as Theorem 4 before proving it. The subtle part is the construc-
tion of a “recovery sequence” in the full parameter regime. It requires a version of the Modica-Mortola
construction that is quantitative in the parameter % < 1, since only this quantification al-
lows us to paste this construction into a domain construction which relies on the independently small
domain width < 1.

parameter sample thickness

In the second part we show that a notion of minimal energy per area in the (x1,x2)-plane is well-defined
in the sense that [~?min £, where the minimum is taken over m’s which are I-periodic in (21, 2),
converges to a finite constant if the artificial “system size” [ tends to infinity with respect to the domain
width, an intrinsic lengthscale of the microstructure. This means that we establish an extensive behavior
reminiscent of the hydrodynamic limits of Ising-type models.

Theorem 2. In the regime of bulk sample and strong anisotropy the minimal energy per surface area
1

e(Q,d,t,l) = min{4l

Edeiyl(m)‘ m:R® — R® is (—1,1)*-periodic in x',

Imi? = {1 for xzs € (—t,t), }

0 otherwise,

s asymptotically proportional to (dQ1/2)2/3t1/3. More precisely, the limit

e(Q,d, t,1)

(dQ1/2)2/3¢1/3 € (0,00)

lim
t i
Q, 4Q1/2 (aQl/2)1/3,2/3 Too

exists.

In other words, the theorem states that there is a universal constant e* € (0,00) such that for any
sequence {(d”,Q",t")}en C RY satisfying

Q" —oo,  dQU/t" =0, and (@)Y /1 -0
the energy per cross section area behaves as

e(QV7 dua tua l)
(dv (QV)1/2)2/3(tv)1/3 —€

Let us briefly remark that the energy limit when combined with an analogue (which can be shown with
the very same proof) of the energy equipartition result of [KM94, Lemma 2.6] to derive an estimate for



the total wall energy in the center and thus the typical domain size by considering the area divided by
wall length in each slice.

In the third part we analyze the energy distribution in minimizing configurations of the sharp interface
model. This is a step beyond the scaling behavior of the energy in the sense that we are actually proving
structural properties of a given minimizer. Qur method is inspired by work of Conti [Con00] and Alberti,
Choksi, and Otto [ACOO06] and our result has a form similar to Theorem 2.1 in the former.

Theorem 3. There is a universal constant C' such that any Ej 1-minimizing configuration ms, h' defined
on (—=1,1)? x (=1,1) and (—1,1)*-periodic in z' has the following property: For any z{, € (—1,1)?, l, <2,
and any l > X > lif’o

Em&h/(:z:é,lm,)\) = 2/

|V'ms|dx +/ | |2dz ~ 123N,
[=AN)2x(=1,—1+lsy)

(=202 X (=1, =1+15)

The constants are universal in the sense that they are independent of I, I, xo, and A.

We remark that the bound is not expected for small horizontal widths: In constructions and physical
observation domain walls have a small angle to the x3-axis in the bulk and the intersection of such a wall
with a cylinder would contain interfacial energy of order A.

The theorem implies that blowup sequences at sample boundary points have locally convergent (ms
strongly in L') subsequences.

The application of the theorem with [,, = 2 gives a result that is similar in spirit to Theorem 1.1 of
[ACO06], i.e. that on mesoscopic scales the enery is almost uniformly distributed w.r.t. z’. The significance
of this result becomes apparent when comparing to energy distributions in other models. For minimizers
of e.g. the Ginzburg-Landau model for superconductors, almost all energy is localized in small regions of
the domain and there are large areas with very little energy.

The key property we use for proving this result is that after localizing the field energy minimizers are
locally optimal. This means that energy concentration in a region can only occur when the configuration
has high energy at the boundary. We can then “integrate” over these boundaries to get a contradiction
with the global energy bounds.

1.4 The mathematical vicinity: Patterns and nonconvex variational problems

Microstructures arising in physically motivated energy minimization problems have been prominent in
mathematical research for decades. A particularly nice early example from elasticity theory is given by
Ball and James in [BJ87] more than twenty years ago. Tellingly, they already have a section entitled other
similar phenomena, including an account of refinement towards the sample boundary to weakly satisfy
boundary conditions that cannot be strongly accomodated. Advancing into the next decade, Miiller’s
lecture notes [Miil99] feature an introduction to the subject of microstructures with theory and examples,
including experimental pictures, as well as some notes on the history. The recent introductory lecture
[Koh07] given by Kohn at the ICM emphasizes general ideas of pattern formation but also has a taste
for micromagnetism. Specializing on magnetics, we have already mentioned DeSimone, Kohn, Miiller
and Otto’s survey [DKMOO05]. When Kohn [Koh07]| writes “It should be clear by now that our goal is
not to survey the field of energy-driven pattern formation. Such a survey would be extremely difficult,
because the subject is vast and ill-defined.” it seems that similar considerations apply to this thesis
introduction. Following Kohn's example we do not attempt to give a complete panorama and instead
expose similarities in the analysis in our problem and a physical model of Cahn and Hilliard for phase



separation in Section 3. For the broader overview we leave the reader with above starting points for an
exploration of the literature. The author learned most of the material of Sections 2 and 3 by lectures of
Otto held at the INDAM in Rome and the presentation is heavily based on the lecture notes.

2 Heuristics

The goal of this section is to briefly review the heuristic calculations that shed some light on pattern
formation, the nature of walls, and estimate a few of the characteristic quantities. These calculations go
back to [Hub67], see [HS00, Chapter 3.7.1] for a recent treatment.

We briefly discuss the shape of the domain walls (called Bloch walls), the width of the domain walls, the
scaling of domain widths and minimal energy. We heuristically argue that for minimizers

Bloch wall width ~ dQ /2,
surface domain width ~ dQl/Q,
bulk domain width ~ (dQ'/?)'/3¢2/3, and
E(Q,d t,1) ~ (dQ'2)2 5112,
Note that the scaling of the domain widths implies (surface domain width) <« (bulk domain width).

The heuristics for bulk domain width and energy scaling are echoed by the rigorous results of [CKO99].

2.1 Bloch walls

Observing the scale separation
width of walls <« width of domains

we expect domain walls to have a typical profile when cut orthogonally to the direction of the wall. We
expect the wall profile to resemble the one-dimensional equilibrium profile.

Let us thus consider magnetizations

m = m(x;) € S? such that m(+oo) = (igl) .

We estimate (a bit on the formal side) the sum of exchange and anisotropy energy as

* aldm ? "2 < o (dm/| : o [ dms 2 12
o dim’|\ 2 dms\ 2
_ / a2 ( (|im|> 12 (d;pf) +Q(1 - mg)d:m
oo 2 2 2
5 M3 dms 5 [ dms 9
p— —_— —_— 1 p—
/oodl_m§<dxl) d <df€1> QU = my)d
i 1 dms\ 2
_ 2 3 )
= /_OO d = <—d:c1 ) + Q(1 — m3)dz
> 2dQ1/2/ ams e — 24012,
— 0 dCCl
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Figure 3: 1-dimensional Bloch wall profile, the unit vector m(z1) rotates in the zox3-plane

The first inequality turns into an equation if and only if ‘fi—m/ is parallel to m’. But then, the magnetization
1

(locally) assumes values only in one axis of the m’-plane and we can avoid magnetic charges (and thus
field energy) entirely by setting m; = 0. Equality in the Cauchy-Schwarz-inequality of the last line is

achieved if and only if the two summands are equal, i.e.

dmg - Q1/2

—_— 1—m?).
diy d ( m3)

It is no secret that the (unique up to translation in z7) solution to this ODE with above boundary
conditions is
LL‘l) .

We complement this m3 with m’ pointing in, say, the x5 direction and length such that |m|? = 1, see
Figure 3. This type of domain wall is called a Bloch wall. Note that this function has the fairly steep
slope d~1Q'/? at the origin and then approaches +1 quickly with the distance to the origin measured in
units of dQ /2. While it is of limited use to speak about an exact wall width this behavior certainly
justifies the scaling relation

1/2

ms(x1) = tanh (Q

Bloch wall width ~ dQ /2,

In terms of energy we expect
Bloch wall energy

~ 2dQY/2.

wall area

2.2 The energetic advantage of domain branching

To get some taste for why domains form branched patterns we investigate three types of possible magne-
tization patterns, uniform magnetization, striped, and branched domains (also see Figure 2). All three
magnetization patterns are constant in one horizontal direction, it later turns out that this is sufficient
to achieve the optimal energy scaling. More information can be found in [Hub67] and [CK98].



Recall that

E(m) =d* / |Vm|?dr + Q |m/|?dx + / |h|*dz,
(=4,1)2x(—t,t) (=412 x(—t,t) (=L,1)2xR

where V- (h4+m)=0and V x h = 0.

The first, simplest ansatz is to use constant magnetization in ver-

tical orientation m = es. This has to be compensated by a field

+ + + h = _X(—l,l)2><(—t,t)e3 and so

m h
1\ 1\ 1\ ¢ d2/|Vm|2d:c:O, Q/|m'|2d:v=O, /|h|2dx:8l2t
zs3

- - - so that E = 8[°t, i.e. the stray field energy is rather large. We can

21 now try to reduce the stray field energy at the expense of introducing
walls.

Figure 4: Uniform magnetization

For the second ansatz, depicted in Figure 5, we thus use a vertical mag-
netization that is constant in strips of width w < t with alternating
orientation between neighboring strips. In this scenario we get

1%t
—.

d? / |Vm|?dz + Q/ |m/|2dx ~ 2Q'/?d (wall area) ~ Q'/2d

The field energy necessarily scales like {2w by variable transformation, but the corresponding magnetic
field can also be easily constructed as the gradient of a potential pieced together from summands of the
form

4 2w w 27
777777777777777 k) — = Gin((2k+1)ln) o~ (@k+1) 3 (w5 1)
" sin ((2k-+1) w ) o2k +1)°

y T w2k +1)
r\+/-\ T on the upper half-space outside the sample and similarly below

the sample. The field energy in each strip on a x3-slice can then

| |
* | * | * be computed as
| |
| | w )
1 ‘ / / |V(Zu(k))|2dx3dx1 ~ w2
0 Jt

T NN N
~ ~— - (note that Vu®) are L2-orthogonal because their z;-dependent
X1 w

parts are). Note that the decay of the field is exponentially
fast away from the sample boundary with distance measured in
units of 5~. One way or the other

/|h|2d:c ~1Pw

1/2 It 2

Figure 5: Alternating magnetization

so that

and with the optimal segment width w = d'/2Q/*t'/2 the energy is

E ~ l2d1/2Q1/4t1/2.



Thus we see that this configuration is energetically better than uniform magnetization if ¢ > dQ'/2.

We observe that in the striped pattern magnetic charges inducing the stray field only occur at the sample
boundaries. If we can have a smaller width w there without having to add as many walls cutting all
the way through the sample, we could do even better. For our third ansatz we thus consider branched
domains to reduce the stray even more. The philosophy is to let the characteristic width of the domain
w vary with x3, so that close to the edge, w can be small to minimize the magnetostatic energy, and in
the bulk, w can be large to minimize wall energy.

w(zs) Schematically, the branching has the form depicted in Figure 6. If we
’\_’7 KRN neglect the area increase of the domain walls caused by the tilt we can
Vv Yoy estimate
le)t o>l
* \ \ / / * At 12
\ N7 /
3 LI\ N /0 /d2|vm|2 + Q|m/|2dx’ das ~ 2dQ'/*wall area ~ dQl/QAtE.
] -y w(ws) ) In fact, in the reduced model that we derive for large @ the interfacial
F_lgure 6: Branched magnetiza- energy is proportional to the z3-slicewise wall area and in particular
tion the tilt does not play a role. The tilting of the interfaces causes the

magnetization to change in the xs-direction. This induces magnetic
charges and a field to accomodate them. The field strength is propor-
tional to the tilt w/At and its support has area ~ At/2. Thus the field energy scales like

At 2
29 2 (W
/0 /|h| da’das ~ At (—At)

To compute the total energy, we need to compose multiple layers. Expecting again the field and interface
energy to be balanced for low-energy configurations (also see e.g. [CK099, Proposition 4.1] for a rigorous
result in this direction), the natural scaling is the one that keeps this balance, i.e.

w ~ (dQ1/2) RN (4)

In order to obtain a dyadic refinement of w we choose a sequence of At ~ 273%/2 with the constant
chosen so that one set of refined layers covers (0,¢) and another (—¢,0). With the above calculation of
the energy for one iteration of the branching we then see that the total energy scales according to

12 w 2
E ~ % (dQ1/2AtE+Atl2 (E) )
4) le(At)l/B(dQ1/2)2/3
At
~ f1/312(dQ1/2),

much better (in the regime ¢ > dQ'/?) than the simple striped pattern. Note that in the center (and
more generally away from the boundary), the typical domain width is w ~ (dQ1/2)1/3t2/3.

To sum up, we see a crossover at t ~ dQ'/? in the sense that of the three configuration investigated here,
the branched is best for ¢ > dQ'/? while the uniform magnetization is best for ¢ < dQ'/2. The first
regime is precisely what we call the bulk regime. It can be shown that these are the optimal scalings. For
the bulk regime this is done in Lemma 5.

10



2.3 Domain width at the surface

Let us briefly take a look — on the level of heuristical calculation — at the surface domain width.

Starting from the energy
E(m) = d? / |Vm[*dz + Q im’|2dx + / |h|*da
(=L1)?x(=t,t) (=LD?x(=t,1) (=LD)?xR

we can heuristically express it in terms of the domain width w(z3) by splitting the stray field into bulk
and surface effects and doing Modica-Mortola-style contraction of the first two terms

E ~ dQ1/2/ V' ms|da
[=L1)2x (—t,t)

+/ ||V~ 03mis|>da + Z / [V~ 2ms | da’
(=Ll x (—t,t) wamtt (=112

~ dQ1/2/ %d{[]3+/ (Osw)?dxs + w(t) + w(—t).

—t —t

Computing the first variation we find the Euler-Lagrange-Equation

dQ1/2

w?

— 203w =0 (5)

with boundary conditioons
203w(+t) £1 =0.

The first integral of (5) is found by multiplying with d3ws and rewriting as

dQl/Q

(93( — (83w)2) =0

whence

dQl/2 dQ1/2

w  w(0)
The integration constant has been determined using dsw = 0 grace a the symmetry of w. Plugging in
the boundary condition and our expectation that w(0) is larger than w(t) we see that

(Osw)? =

1 7 7 dQ1/2 dQ1/2 B dQ1/2
1= Gsu(®)’ = wt)  w(0)  w)

in other words

w(t) ~ dQ"?,
is the surface domain width.

We also see that if we are in the regime dQ'/? < t and rescale t to 1, the surface domain width becomes
very small. In the limiting model the domains completely refine towards the boundary. For large but
finite ratios, the refinement stops at very small distances from the boundary. This is detailed in [HS00,
Ch. 3.7.5].
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3 Different physics — similar mathematics: Coarsening in the
Cahn-Hilliard model

We briefly introduce the Cahn-Hilliard model for phase transitions in order to expose the parallels to our
model with respect to lower energy bounds. This model, also known as Model B in the physics literature,
is used to describe the evolution of microstructures in mixtures, e.g. during the cooling of alloys.

The crucial quantity in this model is a scalar order parameter u : (0,A)? — R. We assume that u is
periodic with fundamental cell (0,A)2. While the range of solutions u is not necessarily bounded the
physical interpretation is that u typically takes values in [0,1] and is the density of one component or
phase in a two-component alloy. Throughout this section we also use the corresponding sharp interface
version, the Mullins-Sekerka model. The simplified, purely interfacial energy is motivated in Section 3.1.
In this model u is mandated to take values in {0, 1}.

But first let us very briefly motivate the derivation of the Cahn-Hilliard equation. We introduce the
Ginzburg-Landau energy

E z][ed:v, |Vu|2 1( (1—u))*
Here and in the following we use the notation § - dz = 4 f(o,A)d -d.
The relaxation of the energy with conservation of the average ® := fudxz of the order parameter is
realized by
u-A%:o, %z—Au—i—u(l—u)(l—?u). (6)

Indeed,

][ud:v—][A—d:v—O
de —1:2
—ud ™ A—d |V de = —+ ||V|" | d,

The Cahn-Hilliard evolution as defined by (6) is the gradient flow of E with respect to the Euclidean
structure given by [||V|™! - || 2.

since A% = 1.
u

Mathematically the order parameter u plays a role similar to that of the third component mg of the
magnetization. Both the magnetic and the Cahn-Hilliard model have an interpolation inequality at the
core of the argument for an energy bound: For the magnetic problem in Lemma 4 and for Mullins-Sekerka
in Lemma 1 and Lemma 2 for the sharp-interface. For the original Cahn-Hilliard model Propositions 2
and 3 are of the same nature even though they do not take the form of a classical interpolation inequality.
These inequalities are given a physical interpretation when we bound the problem-specific parameter with
nonconvex constraint (e.g. ms € {—1,4+1} in magnetics, u € {0,1} in Mullins-Sekerka) by the norm of
u on the left hand side and then interpret the two terms on the right hand side as interfacial and (e.g.
magnetic or diffusion) field energy, respectively.

These interpolation inequalities are then used to derive bounds on the energy. For magnetics this is done
in Lemma 5. For Cahn-Hilliard and Mullins-Sekerka we use Proposition 1 from [ORS06] which provides
a generic framework for gradient flows using Otto’s formal Riemannian calculus. In the micromagnetic
case the interpolation inequality we need is two-dimensional (in z’) and then integrated over the third
component. Similarly, interpolation inequalities in space lead to a lower bound for the time-integral of
the energy for the gradient flow.

12



A lot of pioneering work in the exploration of this connection of physical phenomena to inequalities in
mathematical analysis has been done by Kohn and Otto, a particular starting point is [KO02].

3.1 Interfacial regime, heuristics

We wish to heuristically calculate the energetic behavior of u in the vicinity of an interface. Guided by
physical observations we postulate a separation of scales, namely

thickness of interface layer < radius of curvature of interface layer.

Under this assumption, we expect the transition layer to take the shape of a one-dimensional equilibrium
profile. This can be computed by counsidering the energy minimization amongst all v such that u(—oo) = 0
and u(4+o00) =1 of

<1 fdu\® 1 > (d ! 1
E(u) :/_OO 3 (d_Z) + §(u(1 —u))2dx > /_OO (d_z> (u(l —w))dz = /0 u(l —u)du = T
Note that equality is attained if and only if %% = u(1 — u).

As a consequence we expect the interfacial energy to be roughly

B 1 area of interface layer

6 volume of system
We also see that the one-dimensional case is special in that the energy is approximately
1 . .
F ~ — number density of kinks.

Thus the system is coarsening very slowly because the interfacial energy is only reduced when the number
of kinks decreases. The exact behavior has been investigated by Carr and Pego [CP8&9].

3.2 Coarsening for Cahn-Hilliard, & < 1, heuristics

Our strategy is to exploit that the decay rate of friction is the energy dissipation by evaporation and
recondensation, i.e.

B = _][ IV|~ | da.
To obtain a heuristic ansatz, we observe the following.

e In the low volume fraction regime particles are almost spherical. Thus, their form is essentially
controlled by the average radius R(t).

e The particles do not move (but can vanish), thus the average distance L between particles is a
typical quantity.

Our goal is now to express ¢, F, and f ‘|V|_1u‘2 dz in terms of L, R, and R to derive an evolution for
those. To this end we notice that

d :][ud:c = number density x volume of individual particle ~ L™¢R%.

13



For the energy we see with our previous consideration (7) that

1 area of interface layer 1
E~—= YT ~ Z number density of particles x average surface of particle
6 volume of system 6
~ L*defl ~ ¢R71

Finally, we calculate that
fﬂw*m%z:fwm%xafmwm

where v is the potential of 4, i.e. —Awv =4, and J is the diffusion flux given by V - J = 4.

Assuming R > 0, we see that
7 change of volume of particle

J =~
area of S¢~1

D)

][|J|2dac ~ number density ></
R

L
~ L ((Rd)')2/ ro gy
R
R~42  if 4> 3,
if d =2,

. 2
Ld (Rd)' r¢=ldr

r

Figure 7: Neighborhood of a typ-

ical particle
~ L*dR2d72 R 2
(&) In %

NQ)(R)2 1 if d > 3,
Ing ifd=2.

Hence E ~ ®R~! and £ = —f ||V|_1u|2 dx can be combined to yield
1 if d > 3,

—®R 2R = (PR ')~ —®(R
( ) (){mé if d=2.

1 ifd > 3,

Solving for R we find
R¥) '~ R?R ~
() %nlé if d =2,

and thus
1 if d > 3,
Rwﬁm{m*“l ifd =2
i -
and
E o an 13 if d > 3,
o'/l ifd=2.

The question arises if and how the heuristically derived behavior can be proven rigorously
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e The answer is no for the upper bound on the energy
< -1/3 P if d > 3,
~ PPl ifd=2

Such a bound cannot be obtained unconditionally because there exist ungeneric solutions that do
not coarsen at all or only very slowly.

e The answer is yes for a lower energy bound, at least in a time-averaged sense, as we see in the
remainder of this section.

3.3 Abstract framework for lower bounds

The abstract framework proposes a philosophy for the gradient flow where the energy landscape deter-
mines the dynamics. The following proposition links the exponent in an estimate describing the geometry
of the energy landscape to the dynamic exponent in the lower bound of the energy. The ideas presented
here are properly developed and discussed in greater depth in the work of Kohn & Otto [K002] and Otto,
Rump & Slepéev [ORS06].

Proposition 1 (JORS06]). Let X be an affine space, ug € X, E: X — [0,00], By >0, a >0, and
E(u) > Eglu — up|™® for all u € X with E(u) < FEj.
Then for any o € (1,1 + %) and any solution of
= —gradE(u)
we have
T T .
/ E(u(t))?dt > C’(O)/ (Eotat =+2)%dt (8)
0 0
provided T > Ej*|u(+00) — uo|**2 and E(u(+00)) < Ej.

Remark 1. Estimate (8) is a time-averaged version of

2 "
E(u(t)) 2 Byt =,

and %5 is the geometric exponent alluded to above.
The pointwise (in time) estimate does not follow from the assumptions of the proposition, this is discussed
in [ORS06, Remark 2].

Remark 2. To motivate the connection between the geometric exponent a and the dynamic exponent

<53 let us consider the simple example of X =R, ug = 0, and E(u) = Ep|lu|~®. To avoid tracking the

sign we consider a point where u > 0. Then grad E(u) = —aEou~“"!, so that & = — grad E(u) turns
into 4 = aFou~*"! or equivalently (u**2) = a(a + 2)Ey. Thus
u®t? = a(a + 2)Egt + u(t = 0)*+2

and for ¢t > Eylu(t = 0)*+?

2 _ o
E(u) = Eo(a(a + 2)Eot +u(t = 0)*1?) 7542 ~ EF T2t 42,
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3.4 Interpolation inequalities and lower energy bounds (d > 3)

In this section we proceed to obtain the first set of energy bounds announced at the beginning of Section 3.
To this end we want to apply Proposition 1 to

e The space X = {u : (0,A)? — R periodic, f udz = ®} equipped with the inner product from
B 9 1/2
|- l=(FII91 =) de)
e uy = P, so that |u — ug| < |Jul|, and

o E(u) = 1[Vu? + L(u(l - u))*dz.

We thus need to find an optimal o and Ey with optimal scaling in ® such that

][%|Vu|2 + %(u(l —u))%dz > E, <<]l 9]~ (u — cp)]zdx) 1/2> B :

For simplicity we resort to the interfacial regime approximation introduced in Section 3.1 and so replace
1 2 1 2
E= §|Vu| +§(u(1—u)) dz, ueR

with
1 area of 0{u =1}

1
E= ][ 6|Vu|d:v 6 volume of system’ we {01},

i.e. the energy is the perimeter of the set where u = 1, and our task becomes to find « and Ey with
optimal scaling in ® such that

]l \Vuldz > Eq <<][ V]~ (u — @) d:c) W) h

for u : (0,A)? — R periodic with fudx = ®. The bound presented in this section exhibits optimality
for d > 3 only. The improvement necessary for optimal scaling when d = 2 is accomplished in the next
section.

Lemma 1. For any d € N there is a C < 0o such that for all w : (0,A)? — R with f wdz =0 we have

]| a5 == sup s|{Jw] > s}>* < C|[Vwl|| 32|V~ wl| )5
<0 L L
S

Before proceeding to the proof, we want to illustrate how to apply Lemma 1 to obtain the geometric
control required in Proposition 1. For this, we plug in w =u — ® and s = % to see that

1 1/2 _ 1/2
[l — @] > S} S IVull 21917 (- @)1
and thus

1/2 1/4 1 1
(frvuite)  (fIor - @par) 2 4u- ol = 3P0 2 Hu 5+ @
> Yu = 1)/ = @4
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where we denote the volume fraction of a set by .| and use that the volume fraction of {u =1} is & <« 1.

1/2\ ~
][|Vu|d:c2éfl>3/2<< ||V|1(u—<1>)|2d:1:> )

For comparison with the heuristics above, we use this estimate in Proposition 1 with o = 1 and Ey = ®3/2.
We obtain in a time-averaged sense

We thus obtain

2

B(u(t)) 2 (d3/2) 71 77 = Ot~

W=

)

which is the result predicted heuristically.

Proof of Lemma 1. By scaling, we may assume s = 1. Consider the function

1 where 1 < w,
X=140 where —1 < w < 1, and
—1 where w < —1,

select a smooth, compactly supported, symmetric, nonnegative convolution kernel K; with ledz =1
and define Kr(z) = 75z K1 (2).

Now
/|X|d:c§/xwdx:/(w—KR*w)xdx—l—/(KR*w)xdaz
:/(w—KR*w)xdx—l—/w(KR*X)dz

, 1/2 1/2
§/|w—Kr*w|d:csup|x|—|— </||V|_1w‘ d:c) </|V(KR*X)|2d:c) .

As the terms are bounded by [ |w — K, xw|dz < R [ |Vwl|dz, sup|x| < 1, and

2

/|V(KR*X)|2d:1: < </|VKR|d:1:> /X2d:c§R_2/|x|d:c,
1 , 1/2

/|X|d:c§R/|Vw|d:c+ <ﬁ/‘|V|1w’ d:c/xda:) .

Using Young’s inequality, we can absorb the (finite) rightmost integral and get

1
/|X|d:v§R/|Vw|d:E+ﬁ/‘|V|71w’2dx,

SV wl?da)/®
([ IVwldz)t/3 >

ol > 11 = [ e (/|Vw|dz>2/3 (1191l ax) "
(ol = 0 = [ ae < ( [ 19wia) 1/2 ([ Ivrtuf i) "

as claimed. O

we arrive at

so that with the optimal choice of R =

Hence
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With essentially the same techniques as above we can obtain the analogous result for the full Cahn-Hilliard
energy.

Proposition 2. For any d € N there exists a constant C < oo such that for all A > 0 and u : (0,A)? — R
with ® = fudz < 1 satisfying

@2

1, 1 , 1
=4 = - - <=
E ][2|Vu| + 2(u(l w))de < G

we have

—1/2

E> éqﬁ/? ( 9]~ (u — @)\2>

The assumption E < ®2 ensures that u has evolved well into the interfacial regime (compare with
assumption E < Fj in the abstract framework described by Proposition 1).

Proof. Compared to Lemma 1, we need the new estimates

][ IVuldz 5][|u(1 — )| |Vulda
(1<u<z)

1 1
gfﬁwm?+?m1—wﬂm:E,

< ][ Ll = u))2dz < B, and

f Jul <
{us—1}ufu>2} 2

o :][ud:v 5][|u(1 —u)ldz +Hu > §}|
< (fSo0—wpa) =2y

< B2 pi{u> 2} 9)

Here and in the following, we write { := A /. using “volume” A? in the denominator regardless of the
integration domain.

We now introduce the cut-off function

2
1 §§u7
— 1 2
0 ugé.
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Similar to the calculation in Lemma 1 we have

fxdxg][uxd:v

:][uKR*de—F]lu(X—KR*X)d:c
:][(u—q))KR*Xda:—F(I) Kpg * xdz
—I—][ u(x—KR*X)d:zr—F]Z u(x — Kg * x)dz
{—1<u<2} {u<—1}U{u>2}
1/2
< ( IV~ (u — ®)|*dx |V(KR*X)|2d:c) +<I>/KRdx][xd:v

+2][|X—KR*X|CZI+][ |u|dz sup |x — KR * x|
{u<—1}u{u>2} T

Using

—~
<
=
=
*
=
&
D
A

’;g —

\’\
>0
oW
=

o < 1,

][|X —Kpxxlde < R |Vxlde = 3R/ |Vulde < RE,
{3<u<3}
]l lulde < E, and
{u<—1}u{u>2}
sup[x = Krxx| < 2suplx| < 2,

we see that

1 1/2
]Zxda:ﬁﬁ < ||V|1(u—<1))|2d:c]lxd3:) +E+ RE.

Absorbing § x dz on the right hand side after the application of Young’s inequality yields
1
][xdac < Tz][ V|~ (u— ®)|2dz + E + RE,
which after optimization in R reads

1/3
][xdac < (][ V)~ (u — <I>)|2d:c) B3 4 E.

We can now plug this into estimate (9) and get
2
® < B2+ {{u> 2}

§E1/2+][Xd$

1/3
< (][ V]~ (u — <I>)|2dx) E?B L BV 4 E.
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Hence for E < %2 < 1
1/3
3 < ( 19 (u <1>>|2dx) 2,
that is
~1/2
pz o (fIv - wpe)

as was claimed. O

3.5 Interpolation inequalities and lower energy bounds (d = 2)
In two dimensions, the scaling of above estimates in ¢ does not match the heuristic predictions of

Section 3.2. Following Conti, Niethammer & Otto [CNOO05] we can improve the interpolation lemma to
achieve optimal scaling.

Lemma 2. There is a constant C < oo such that for all u : (0, A)? — R, periodic with fud:c =& and
all s > 2® we have s
1/2 - 1/2
'/t = sl{ful = s} < CIVall IV (u = @)1
Applying Lemma 2 to our u for s = 1, we get
1 1/2 ) 1/4
w2 o fivaie) - ([Ivra-of)
that is
1 1 1/2 L\ /4
P>/ 4nt/4 5= Int/4 3 Hul > 14 <cC ( |Vu|dx) ( IV (u — @) ) :
Hence
1 3/27..1/2 1 -1 2 e
][|Vu|d:c26<1) In 6< IV~ (u— @) > .
Now Proposition 1 with o = 1 and Ey = ®3/21n'/? I gives
e
E2 (@3/2 In'/2 é) =2 = @ In'/3 ét‘l/?’.
This scaling matches the heuristics and thus is optimal.

Proof of Lemma 2. The strategy of the proof is similar to the one in higher dimension, but we need a
more careful choice of convolution kernels.

We introduce for L > R > 0 two families of kernels

L if 2| <R
K _ ) 7R? 1 -
R(2) {O if |z2| > R
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and

ﬂl%g if |z|] <R,
In L
Kri(2) = sz ifR<|2| <L,
R
0 if |z| > L.

Note that 0 < Kr < Kpg 1, and IKR =1.
Consider

1 where u > s,
xX= 0 otherwise.

We have
s/xd:z: < /uxdz = /umin{KR,L xx, 1 }dx + /u(x— min{Kp 1 * x, 1})dz.
Asu >0, Kr > Kg, x > 0, this can be estimated by
< /umin{KR,L xx, 1 }dx + /u(x —min{Kpg * x, 1})dz,
and since K * x < 1 this is

:/umin{KRL*X,l}dI-F/U(X—KR*X)df-

Splitting the first term and moving the convolution in the second we get
s/xdw < @/min{KRL * X, 1dx + /(u — ®)min{Kpg 1, * x,1}dz + /X(u — Kg xu)dz.
Enlarging by dropping the first minimum and using y € [0, 1], this can be bounded by
) 1/2
< @/KR)de/xd:v + (/ V[~ (u — @) d:v/ |V min{Kg 1, * X, 1}|2d:v>

+/|u—KR*u|dx

We consider the terms individually and see that

1 L\?
B <— = —
/ rrde < Tl Bl (R) ’

/|u—KR*u|dz§R/|Vu|d:1:,
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and
/ |Vmin{Kg 1, *x,1}|?de = V(Kg.p * x) - Vmin{Kp 1, * x, 1 }dz
= /(—AKR)L) « xmin{Kg 1, * x, 1 }dz
< /(—AKR)L)Jr * x dx
= /(—AKR)L)erx/de
= %é/xd:c.

Hence

L\* 2 1 i
-1 2
S/Xd$§®<§) /Xdar—l— (/HV| (u—®)| d:cﬁ@/xda) —I—R/|Vu|d:1:.

We choose % such that

to get

1/2
-1 2 1 1
s/xdw§</‘|V| (u—®)| dxﬁln%/xd:v> +R/|Vu|dac,

and absorbing s f x dxr with Young’s inequality

1 1 _ 2
S/des’ﬁsln% /HV| Hu—a)| dI+R/|Vu|d:c.

Finally we optimize in R and obtain

2/3 1 , 1/3
s/xdars (/|Vu|d:c) ( - /Hvrl(u—@)‘ da:) ,
sln g

that is

S 2/3 9 1/3
54/3ln1/36/xdx§ (/|Vu|d:c) (/||V|_1(u—fb)| d:c) ,

which is the desired estimate

s 3/4 1/2 ) 1/4
slnt/* 3 (/Xdzzr> hS (/|Vu|d:c) (/ ’|V|71(u— fI))’ d:c) .

O

With the same strategy as in the case of higher dimensions, we can adapt our calculation to the actual

Cahn-Hilliard energy.

22



Proposition 3. There erists a constant C < oo such that for all A > 0 and u : (0,A)? — R with
P = fudz < 1 satisfying

E ::][%|Vu|2 + %(u(l —u))3dr < —®?

we have

1 1 2\ /2
3/271.,1/2 —1
E25<I>/1n/ 5( I4 (u—<1>)y) :

Proof. We again use for L > R > 0 the kernel families Kr and Kg ; of Lemma 2.

Consider as before

2
1 §Su7
— 1 2
0 ug%.

We proceed in a fashion similar to the proofs of Lemma 2 and Proposition 2, the only difference is that
we cannot pass from Kg  to Kg where u < 0. We estimate

][X(ia? S]luxd:c :][umin{KR)L xx, 1 }dx + /u(x— min{Kpr, 1 * x,1})dz
S][q)min{KR)L xx, 1}dx —|—]l(u — ®)min{Kp 1 * X, 1}dx

—|—2][ |u|dx —|—]l u(x — Kg * x)dx
{us—1}U{u>2} {0<u<2}

+][ u(x —min{Kpg, 1 * x, 1})dz.
{~1<u<0}

Recall that we write  to denote A~2 [ (regardless of volume of the integration domain).

Our previous estimates in Proposition 2 and Lemma 2 readily apply to all but the last term. Noting
x = 0 where u < 0, assuming F < ®2 and with

1/2 1/2
][ —umin{Kpr 1 * x,1}dz < (][ u2d:v> (/KR)de][xd:v>
[—1<u<0} —1<u<0
I 1/2 N2
§E1/2§ (%de) §E1/2+<I><E> ][xdaz
2 1/2
dr<ao(L d V- ) des—{ v a E + RE + E*/?
xdz S @ (=) f xdet | £ [[V]7H(u— @) "BmL) X +E+RE+E'?.

As before we choose L = C~'®~/2R and use Young’s inequality to absorb all occurrences of f xdx on
the right hand side. After optimization in R we get

we see that

1/3
1
][xd:vSIIfl/gg <][HV|_1(U—<I>)’2dx) E?® 4 E+4 EY2
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With this we follow the proof of Proposition 2 to calculate for E < ®2 <1
1 2 1/3
P < EY/? +]lxdx <ln~Y/3 3 < IV (u — @)] dz) E?P3 4 E + EY?

1 2 1/3
s B2 (fIvre-ofa) e

that is

1 —1/2
E > $3/21n!/? 5 <][ V]~ (u — @) dz) :

as claimed. 0

4 Energy functionals and scaling

In this section we prepare the setting for the proofs of Theorems 1 and 2 by rewriting the energy functionals
and providing the anisotropic rescaling of the coordinates.

Localizing the stray field. First, we reformulate the magnetostatic energy to include h in the mini-
mization in order to make the problem more local. Recall that we defined the field energy as the squared
L?-norm of the (—I,1)%-periodic field h : R® — R3 given by the simplified Maxwell equations

V-(h+m) = 0and
Vxh = 0.

As discussed with a bit more context in the appendix the energy may equivalently be expressed as the
minimization

/ |h|?dx = min{ / |h|2dz| h: R® — R® is (—I,1)>-periodic in 2,
(—L1)2 xR (—L1)2xR
V- (h+m)= o}.

Here and in the following the differential equations as in the last condition are understood in the sense

of distributions. We denote by ' the variables (7. ) and do similarly for vector fields and derivatives.

Hence, setting

1
eQ.ati(m,h) = —5 d2/ |Vm|*dz + Q/ |m/ [2dx —|—/ |h|?dx
Al (~LD2x(~t.) (~LD2x(~t.t) (~LD?xR

we have
e(®,d,t,1) = min {Gdeiyl(m, h)‘ m,h: R3 — R? are (—1,1)%-periodic in 2/,

{1 for z3 € (—t,t),

m|® :
0 otherwise,

v-(h+m):o}.
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Rescaling. We now rescale the lengths, fields and energy to more convenient units. The horizontal
lengths are scaled so that the width of bulk domains is of order 1, i.e.

o = (dQ1/2)1/3t2/3:i:' and [ — (dQ1/2)1/3t2/3[,
the vertical length is normalized so that the sample is on the interval (—1,1) in Z3-direction, i.e.
T3 = tfg.

In order to retain the structure of the magnetic field, we have to rescale the horizontal field according to

1/3
e (dQ1/221/3t2/3iL/ _ (thl/2> o

and keep the vertical component hg = fzg to ensure V- h = %@ - h. For consistency we write m = m.
With these rescalings in the coordinates it is convenient to also rescale the energy density as

o — (dQ1/2)2/3t1/3é

in order to non-dimensionalize the weights in the energy. We write the energy in the new coordinates

and quantities
1 @/
(@Q1/2)1/342/3 ~
< R m
t 9ag

+Q |/ |?d + /
(=% (=1,1) (=1,0)2xR

2
dz

1/2y1/3,2/3 ~
(dQ/)t/t/h/
hs

e = (dQ"PP1 % = L (& /
412 (—=1D)x(~1,1)

d:@) ,

and thus

é 1 ( d )2/3/ ( /@/1/3 )m
= — — 1/2
412\ \1Q (—iD)2x(~1,1) (7)ot
2/3
t
+ (Q) / |m'|2d;%+/

d (=00 x(=1,1) (=002 xR
(oL ()
412 (=00)2x(=1,1) | \ " ?%3

=: &5 (M, h)

2
dz

W QdA
(35572) " ha *
2 1 N2
d§:+—/ |m’|2d@+/ ’(fa )] di
0 J—iix(=1.1) (—iD2xr N8

when we set

5. () ___d4/QY2 _ Bloch wall widh
ot ~ (dQ/2)1/3t2/3  bulk domain width

and

t

. dQ'/? Y - (dQY/2)1/3¢2/3 _ bulk domain width
° N "~ sample thickness

The rescaling of &’ now reads h’ = £h’ and the constraints turn into

i? 1 for &5 € (—1,1),
ml* =
0 otherwise
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and

.1 o .
V' (h+ =m) + —(hs +13) = 0.

(h -+ Zii') + g (s + 1)
Finally, observe that we can now conveniently characterize the parameter regime of interest because
Q> 1, dQY? < t, and (dQ'Y/?)V/3t2/3 < [ are equivalent to § < €2, €2 < 1, and 1 < [, respectively.

Combining, we are interested in

<<l

Hence, we define

é(0,e,1) := min {ééﬁsyf(rh, h)

— A|2:{1 if &3 € (—1,1),

m,h R3S — R3, (—i,l) -periodic, | .
0 otherwise,

A | o -
V(W + gm’) + 950 (hs +13) =0}

and to prove Theorem 2 we have to show that
lim é(6,e,1) € (0,00),

§/e2—0,e—0,[—o0

i.e. that the limit exists and is a strictly positive real number. Because we frequently have to take
simultaneous limits we introduce the notation

lim  é(d,¢,0) := lim  é(d,e,1),
fke2kiIkl 6/e2—0,e—0,1/1—0

where, as with usual limits of real variables, we say that the limit exists if all sequences of (positive)
parameters satisfying the limiting relations, i.e. such that all quotients of the left hand side and right
hand side of » < « converge to 0, have a limit that is independent of the particular choice of the sequence.

Having adequately reformulated the problem, we proceed from this point using the rescaled quantities
exclusively and drop all » «.

We now discuss the various energy functionals and minimization problems that are useful in the following
analysis. Our starting point is the energy

1 , 1 /N |2
e5,5,l(m7h): o) 5/ ‘(avas)deCC—'——/ |m/|2d:17+/ ‘(lhhg,)‘ dx )
4 (=102 % (~1,1) 0 J(—12x(~1,1) (—10)2xR | N *

and its minimum on the periodic configurations

1 ifase(—1,1),

eP(d,e,l) = min {655 1(m, h) ’m, h:R> = R3 (=l,1)%periodic, |m|*> = .
” 0 otherwise,

1
V(W 4 —m') 4 Da(hg +my) = o}.

We also introduce the renormalized, sharp interface energy where m’ and h3 have vanished, the exchange
and anisotropy terms have been replaced by a BV-norm, and dsms has ceased to play a role. The
renormalized energy functional is

1
ei(ms, h') = —= 2/ |V'ms| dz +/ |h/|2 dx
41 [—1,1)2x(—1,1) (=1,1)2xR
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and we consider the corresponding minimization problem amongst periodic mg, b/, i.e. we are interested
in

1 ifas e (=1,1),

€P(l) = min {el(mg, h')‘ msz:R®* = RA :R3 = R?  (=I,1)*periodic, m3 = ]
0 otherwise,

V' h 4+ 03ms = 0}

The first term in the energy is understood in the sense of BV -functions periodic in 2/, i.e.

/ |V'ms|dx
[=L1)2x(—=1,1)

= sup {/ ma V' - &dx| ¢ € C®(R?* x R), (—I,1)*periodic in z/,
(=112 x (=1,1)
€] < 1in (-L,0)% x (-1,1)}.

Although the half-open fundamental cell is not used on the right hand side, we use it to be consistent
with the interpretation of the integral as the measure |V'mgs| of the domain of integration.

We remark that the reduced energy enforces that mg vanishes weakly at the top and bottom sample
boundary because finiteness of the field term excludes jumps of mg in the x3-direction. But then the
field vanishes outside the sample domain. Thus one could also prescribe mg3 to vanish weakly at top and
bottom as boundary conditions and only take integrals over the sample domain. This insight is crucial
to justify Theorem 3 and used in its proof in Section 8.

As m3z € {£1} almost everywhere in (—1,1)? x (=1,1) we have an interpretation of the reduced BV-
gradient as a “slicewise measure” of the interface that corresponds to the usual geometric interpretation
of the total gradient of a characteristic function of a set as the perimeter. To be precise,

1
/ IV mg|dx = 2/ H(O{ms(-,x3) = 1})das.
[=1,1)2x(-1,1) -1

Note, however, that to make this interpretation rigorous one needs to show that the distribution used
above to define the left hand side indeed is represented by a measure that is absolutely continuous with
respect to the Lebesgue measure dzs. For energy minimizers, the argument in the proof of [KM94,
Lemma 2.6] is also valid in the present setting. We do not use this interpretation except in constructions
where the absolute continuity is evident.

Loosely speaking, one key message of Theorem 2 is the following: As the system size | becomes large
w.r.t. the intrinsic length scale of the pattern of Figure 2, boundary conditions become irrelevant. This
phenomenon is reminiscent of Gibbs states in Ising models below the critical temperature. In fact, we
shall use a similar analysis tool by working with different boundary conditions: Next to the periodic
boundary conditions, we shall use free boundary conditions, i.e. consider

: 1 if -1,1
ej(é,s,l):min{e(;sl(m,h)‘m,h: (-,)>’ xR —=R3 |m|*= s 6.( 1),
” 0 otherwise,

1
V. (hl + gm/) + 63(]7,3 + m3) = O},
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and

el (1) = min{el(mg,h/) ’ msz: (=L,D2 xR =R, A : (=1,1)? x R — R,

1 ifzze(—1,1)

2 3 s L) / /

ms = V'-h' + 03msz = O}.
s {0 otherwise, o

As discussed for the full energy, the role of h or I’ is to allow a local formulation of the stray field
energy. Equivalently, we could write the corresponding terms as negative norms, characterized either by
a Fourier-multiplier or via solving an auxiliary problem, and the energies as only depending on m or ms.
Inspired by these interpretations of h and h’ we introduce the formal notation

/ ||V/|7183m3‘2d:1::min{/ |n'|2dx
(—=1,1)2 xR (1,12 xR

V' h' + 83mz = 0 in R3},

h':R?* x R — R? is (—I,1)* periodic in 2/,

and

2
/( 1,1)? R‘(|V’|2+€2|83|2)71/283m3‘ de
—1,1)2x
= min {/ | (lh;;:,,) ‘2d:v ‘ h:R? x R — R3 is (—I,1)*periodic in z,
(=1,1)2xR N
V-h+dsms =0 in R3}. (10)

To conclude this section let us briefly consider the scaling behavior of the sharp interface energy. We
start with the energy (not divided by the cross-section area) on a a’-periodic domain (—1I,1)? x (—t,t)

Elyt(mg, h/) = 2/

|V’m3|d:1:—|—/ |n'|?dx
[=L,D)2x(—t,t)

(=1,))2xR

for configurations
ms: (=, xR — R, B (=1,1)* x R — R?

with

m3 = .
0 otherwise

) {1 if 73 € (—1,1),

and
V' -h +83mz =0. (11)

Scaling the coordinate in the magnetization mg(sya’, Sz, x3) = ma(a’, x3) and the field as

W (sprt!, spat3) = S’

B (2!, x3)

Szs

preserves (11). Then

2

— Syt

s, | V/ms|dz + si,sms/ (i> |n'|2d.
(—=1,0)2xR \ Sz3

After the equilibrating choice s,, = s, 547 = 52/3 this becomes

Esm/l,smst(mﬁ}, ill) = 28%,813/
(=5L,1)2x(=t,t)

Eg/3p g (M3, W)= s"3E(ms, ).

28



5 Convergence to the sharp interface model

This section is devoted to the proof of the almost-I'-limit Theorem 1. We first restate it in the rescaled
coordinates.

Theorem 4 (Theorem 1 made precise). For fized length [, the reduced energy is an upper and lower
T'-type limit of the full energy for

§/e? =0 and 2 -0 (12)

in the following sense.

1. The energy of any pair (ms,h') admissible in e?(I) can be approximated in the regime (12) by the
energy of pairs (m(59 (=0 admissible for eP(e,d,1) such that

li (e,9) h(€>5) < hl .
sdm esea(m™Y,hEY) < er(ms, W)

2. If 60 ™) converge as in (12) and (m™), h(")) is admissible for el (§0), ™) 1) with

w

m{") s mg in LO((—1,02 xR)  and AW b in L2((—1,1)* x R)
then (ms, h') is admissible for e/ (1) and

ei(ms, h') < lin% inf e[;(u)ﬁ(y))l(m(”), h(”)).

Note that the theorem does not provide a I'-limit result because the lower bound and the approximation
are done in regimes with different boundary conditions and we do not actually verify the approximation
property of our prospective recovery sequence. This could be fixed, but as our main interest is Theorem 2,
we omit stating and proving a theorem concerning a proper I'-limit.

We start with the more straightforward lower bound, which is demonstrated by a compensated compact-
ness argument that takes into account the anisotropy. Then we address the upper bound which requires
a more involved proof.

We thus begin with the proof of Theorem 4, part 2. This is also used to show

liminf e/ (8,¢,1) > e/ (1).
iminf e (3,6,1) 2 ¢’ (1)

for the proof of Theorem 2.

Proof of Theorem 4, part 2. We fix [ and recall that we aim to show the following: Given any sequences
{60 M} C (0,00) let (m™), (") be admissible for e/ (6(),e*),1) with

)
6" =0, M=o 0 —0

b b (E(V))2 b)
m{”) 5 mg in L((—1,1)2 x R), (13)

and

AW 2 in L2((~1,1)% x R)
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as v — oo, then

(ms, h') is admissible for e/ (1) and

er(mg, h') < lin% inf 65(V>)5<V)1l(m(”), h¥)).

Without compromising generality, we may assume that the energy e(;(V)’E(V)’l(m(”), h(”)) remains bounded.

In particular, this implies that

1 1 ?
=7 / |m |2 da and / c )héy) dx
0™ J iz x (=11 (—1,02 xR |EVY
are bounded and with % — 0 we see
1 2
/ ﬂm(”)’ dx — 0 as well as / |hg’)|2dw — 0. (14)
(—1,0)2x(-1,1) |EY (=1,)2xR

Thus, the differential equation

1 v v
V' (O 4 —m®) ds(hY +mi{"”) =0

yields
V'-h'+83m3 =0
in the limit as desired.

We first bound 41265@)76(”))1(771(”), h®)) from below. In the sample the magnetization satisfies the point-
wise estimate

, 2 1 2 2 1 2
w|( v w® L]y D) T Y
0 (E(U)as)m +(5(V) m = Vim +6(V) ’m
2 1 2
W) |, @) ROy
2 3 V[ o |
(V) 2 2
_ <V>M‘ NI oY
B o vmi?|" + = (1 (m) )
> 2}v’m§”>.

Dropping the third component in h we see that the renormalized energy provides a lower bound

APes) ey (m) A1)

— 5<,,>/ (.55, ) m®
(=1,)2x(=1,1) a5 )
@\ |2
G e
(=1,0)2xR I N3
2/ ’v/mgu) de‘—i—/ ’h(y)/z
(=1,1)2x(=1,1) (~L)2xR
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0 J Zipzx—1,1)
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By the lower semicontinuity of convex functionals under weak convergence this implies

vloo

liminf 41%€50) .oy (m®), R)) > 2 / |V'ma| dx + / | da
(=412 % (—=1,1) (—1,1)2xR

= 4l*e;(mg, ).

It remains to show
mi =1ae. in (=1,1)% x (=1,1).

Since
Im™W)? =1if 23 € (—1,1),

this follows upon establishing
m™’" — 0 in L2((—1,1)? x (=1,1)),
m{”) — ms pointwise a.e. in (—1,1)% x (—1,1).

In other words, we need compactness (only) for the nonconvex part. The first convergence follows readily
from (14). The second is a consequence of (13) if we can show compactness of {mgy)}l,Too in form of

IN

/(~-)2 Im{ (@' + h,xs) —m{ (2, xs)|da C|h| for |h| <1 -1, (15)
—1,1)2xR

1/2
(/ . |mgy)(:1c',:v3+7) —mgy)(x’,x3)|2d:v>
(_l7 ) xR

IN

Clr'/? + o(1) (16)

for |7| < (1 —1)*/2,

for [ < I, that is, the modulus of continuity w.r.t. =’ and z3 must decrease uniformly in L' and L2,
respectively, as v 1 co. Then, by the usual LP-compactness criterion of M. Riesz (see e.g. [Ada75,
Theorem 2.21|) the sequence is precompact in L'. The other two requirements for the application of
M. Riesz’s criterion, uniform boundedness and that the norm taken on ever thinner boundary layers
vanishes uniformly, are evident because |mg')| < 1 and [ is fixed. As we already know the limit of
converging subsequences, méy) — mg in L' and thus pointwise a.e., we are done upon establishing (15)
and (16).

Inequality (15) is an immediate consequence of our bound on el(mgj), h()") because for |h| <1—1
(G SN (AW,
N |ms” (2" + h,x3) —my ' (¢, x3)|dz
(=LI)2xR
— / im{ (2 + h,as) — m{ (2, ws)|da
(=LD2x(=1,1)

< |n| IV'm{"|dz < C|h).
(=1,01)2%x(-1,1)

For the second inequality, (16), we use a compensated compactness argument in the sense that we can
combine the uniform modulus of continuity in 2’ in a strong norm (cf. (15)) with the uniform modulus
of continuity in x3 in a weak (negative) norm provided by the field energy to obtain a uniform modulus
of continuity in z3 also in a strong norm (cf. (16)). We fix a smooth convolution kernel ¢ : R? — R such
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that ¢ > 0, p(a’) = 0 for |2/] > 1, p(—2') = ¢(a’), and [, ¢da’ = 1 and denote by a subscript  the
convolution with ;¢ (=). We observe that the equation

(e

d5(hY) +m{y = —v' - (W) + 5(1”) m
in (=1,1)2 x R implies for o <1 —1
B 4= 4 L,
in (=,0)2 xR
Hence

) 1/2
dx

AVAS (h(l’)’ +

([ i
(=012 xR

B </<z:z>sz

1
Ay
s Ja

5 1/2
d:v)

1 , 1 2 1/2
< / — V' <y—)‘dy’ / A — W' g

R2 | O a (=LI)2xR e

1/2 , 1/2

< Cl / ’h(l’)’ de + 0w 1 / ’m(u)/ de

a (1,12 xR (eM)260) \ JZi2xr

1 1
< - (C+o(l)0) < CO-.

(6% (6%

As a consequence,

1/2
</ A 4 Rl s+ 1) = (m h§”>>a<x',xs>l2dx> -
(_l7 )2><R (0%

Finally, we observe that

1 2
W dr = o(1).

5(1’) 3

[ P < [
(=L1)2 xR (=L1)2 xR
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Combining these two estimates with inequality (15), we obtain for o <1 — ]

1/2
</ . |mg’) (', 23 +7) — mg’) (2, x3)|2d:v>
(—=1,1)2xR

1/2
< (/( - |(méy) + hgu))a(:ﬂ, T3+ 7T)— (méy) + hgu))a(:ﬂ, x3)|2d:v>
—1 xR

1/2
+2 </ N |(h§”))a|2d:z:>
(—LD)2xR

1/2
vz |<m§,”>>a—m§,”>|2dx>
(—i

D)2 xR
1/2 1/2
<ol iy / ) Pdr |+ 2% / [(m$) o —m|dx
! (=1,D)2xR (=L xR

1/2
< O|T| +o(1) +2%/2 < sup / o m @ K ) —mY) (I/’IB)W‘E)
(=L,D)2xR

@ |k'|<a

l

< C= 4 0o(1) + Cal/?.

o
With the choice of a = |7|*/? this is (16), and the above reasoning yields the desired m3 = 1 for a.e.
v e (=12 x (—1,1).

Thus (mg3, k') is admissible and the proof of our claim is complete. O

We now wish to prove Theorem 4, part 1, also needed to obtain

limsup e?(d,¢,1) < eP(I)
skl

in the proof of Theorem 2.

The approximation is done in two steps. In the first, given by Lemma 3, we energetically approximate
(m3, h') admissible for e?(I) by a pair (ms, h) for which we allow a small third field component but require
some additional regularity of mg in the third direction. This can be seen as a counterpart to taking the
limit of extreme anisotropy. In the second step we use Proposition 4 to “revert” the Modica-Mortola type
passage from a diffuse to a sharp interface energy. We defer the proof of that proposition to Section 7.

More precisely we introduce an intermediate energy

’ / 2
ea,l(m&h) = (21)72 <2/ ‘(ggg)mg‘dx—i-/ ‘(lhhg)‘ dx)
[=1,0)2x(—1,1) (=1,1)2xR €

for pairs (mg, h) satisfying
msz:R? xR — R, h:R? x R — R? are (—1,1)-periodic in 2/,

. B 17
2 {1 lfL'BE( 171)7 andv_h+83m3:0inR3 ( )

ms = .
0 otherwise,
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for use in the following approximation lemma. As discussed for the other energies, we can also split the
minimization in h and mg, replace the second term by the expression

2
/ ’(|V’|2+€2|83|2)71/283m3‘ dx
(~1,1)2 xR
= min {/ ’ (;h}:g) ‘Qd:p ’ h:R? xR — R?is (—1,1)*periodic in 2,
(=1,1)2xR c
V- h+ 83ms =0 in R3}

and write e; .(m3) to emphasize that the minimal energy depends only on ms.

Lemma 3. Fiz m3 and the associated h' in the admissible class in the minimization problem in for eP(l),
i.€.

mz:R* =R, :R® = R?  (—1,1)*periodic,
) {1 if 23 € (~1,1),

Ma = v/'h/+8m:0.
3 0 otherwise, s

Then there exists a sequence {(mga), RN} o 0 satisfying (17) such that

lim sup ec;(m$), b)) < ey(ms, 1). (18)
ex1

We postpone the proof of this lemma and first present the path from this approximation to the desired
result of Theorem 4, part 1.

Proof of Theorem 4, part 1. Fix an a@ < 1. Using Proposition 4 (see Section 7) with the slight general-

()
3

ization of Remark 3 we obtain from ms+ ’ functions mgs’é) such that

<1 f —1,1
mgs’é) is (—1,1)? periodic in 2’ and (mz(f"s))2 {_ 0 (zlx?’ 6 (=1,1),
=0 otherwise

such that

. 2 1
(593 ) méa’[s)‘ dx + 5 / 1— (77%())6’6))2 dz
(=1,1)2x(—1,1)

1
5 / —
(—1)2x(~1,1) 1 — (m(a’ )2

3
< (1+a)2/ (5 )ym$) | de (19)
[—1,0)2x(~1,1) s
and
/ (mED — m©O)2dz < C(a)s (3 m®| da (20)
3 3 — e03 3 .
(—L,D)2x(~1,1) [—1,0)2x(—1,1)
We then set
o) _ S 1= (mE)2 for ay € (~1,1),
! 0 otherwise,
and

méa’é) =0
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so that
‘m(s’é)‘zz 1 for xr3 € (_1,1),
0 otherwise.

We also set

p(E0) — ple)r _ lm(E";)' and hgf";) = hgs) + més) — més’5),
€

so that (17) turns into
1
v/ . (h(6,5)/ + g,',n(s,(;)/) + 63(}1&516) + mg&(;)) — 0

in R? and see that (m(®9), h(=:9) is admissible for e?(d,¢,1). We rewrite the first two terms of the energy
using |m|? =1 and mg = 0

, 2 1 €, ’ 2
5 ’(E% )m(s,zi)‘ de + = / |m(5’5)/|2d:17 +/ ‘( ?( (j,)a) )‘ dx
3 ) ghs
(—L)2x(~1,1) (—LD2x(-1,1) (=LD?xR

1 2 1
e dr + — / 1- (m§876))2 dx
(=1,0)2x(-1,1) 1 — (mgf’ ))2 O J(—in2x(~1,1)

(e,8)7 2
[t
(=1,D)2 xR ha

and apply Young’s inequality in the form (a +b)? < (1 + a)a® + (1 + a~1)b? to split the field term and
obtain

-5 ( v’ ) (£,9)

683 m3

1 / 5|? 1 (c.6)
<6 (Y ) ‘ dr + — 1—(my”)? da
(—1,)2x(-1,1) 1 — (mg&‘;)y (863) ’ O J—i2x(=1,1) ’
7\ |2 C 1 (=00 2
+(1+04)/ ‘(fhw)’ dr + — ( L (6 (6.8 > dr,
(—L2xR | N EMS @ J—rpzx (-1, |\ =0ms” =mg™™)

expanding the last integrand and applying (19) and (20) we estimate
1

(=L,1)2x(=1,1) W

SOTANE:
oo () e
(—LD2xR ' \NE'"3
C
+ (204) / 1—(mz(f’5))2d:v+/ (mgf’é) —mgs))2dx
€ (—=L,)2x(=1,1) (1,2 x(=1,1)

(19,(20) b : el
< <1+a+0(0<)g‘2) <2/ (%) mf d”/ [(5)) dw)
[—LD2x(~1,1) (“LO2xR 1T

_ (1 fa+ C(a)a—(i) APe; (m h©).

1

, 2
—5 (3,)mE| do+ —/ 1— (m§)2 da
(=1,01)2%x(-1,1)

Combining this estimate in the limit § < £? < 1 with (18) from Lemma 3 we conclude

(18)
limsup eP (4, e,1) < limsup(l + «) el,a(mgs), Y < (1 + a)e(ms, h).
§<e2 <1 el

As 0 < a <« 1 was arbitrary, we obtain the desired conclusion by using a diagonal sequence for the above
limit relation and « | 0. o
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Proof of Lemma 3. Before we begin with the proof in full technical detail, let us point out the key ideas.
In order to approximate mj3 with functions having some regularity in zs-direction, the first thing that
comes to mind is taking a convolution. This, however, does not play well with the requirement that
the third component of the magnetization has unit length because the other two components vanish.
So instead we approximate mg by piecewise (in zg-direction) constant functions and obtain some BV-
regularity also in this direction in the following way: For a third component in the BV -norm, we need
to control the L'-norm (with respect to the Hausdorff measure) of the jumps. The field term only yields
a bound in the H~!-norm, so we have to resort to interpolation (using Lemma 4) with the 2’-perimeter
over which we have control. The jump norm is small in L? (and thus also L') if the weight ¢ is small
compared to the discretization lengthscale 7.

We incur, however, the problem that now the field energy measured as [ ||V’|~103mg|?dx is infinite in the
presence of jumps. We thus need to allow an e-small third component in the field term, i.e. introduce a
Os-term in the inverted operator (cf. (10)). As the jumps are essentially a surface phenomenon, we want,
roughly speaking, to control the H~/2-norm. To that end we need to interpolate again between the
H~'-norm on a slowly changing component and the domain perimeter or, more precisely, the L?-norm
on the oscillations of short wave length (this happens on the level of Fourier series in (28)).

We begin with a few preparations in order to be able to define mga). Let us denote by P, the projection

on the Fourier modes n’ with 7r)\|"7,| >1,1ie.

(FO)(n') if A > 1,

. (21)
0 otherwise,

F(PAO() = {

where F'(¢)(n') is the Fourier coefficient

1 z’

F(¢)(n) exp(—min' - —-)((a")da’.

o ﬂ (—l,l)2
Hence Px¢ only sees the (horizontal) wavelengths smaller than A.

The Fourier space representation of negative Sobolev norm appearing in the sharp interface field energy

is
_ 2 12
/(l 1)2XR|h’|2dx B /(l l)%RHV,l 183m3’ dr :/R Z 7T2|n/|2|(-7:/83m3)(”/)|2d$3,

HIGZQ
see also the appendix. We need to make more precise the notion that small lengthscale oscillations in the
magnetization, for our purposes Py03ms with A small, contribute little to the field energy. Note that an
admissible m3 cannot be constant in x3-direction. As such we have

/ IV~ 0gms|* da > 0,
(=1,1)2xR

and thus
/ ||V'|_173,\83m3|2 dx < (w()\))2/
(=1,)2 xR (-

with some modulus function w > 0 satisfying limy o w(A) = 0 and depending only on ms3. We rewrite
(22) as

IV~ 0yms|” da (22)
R

1,1)2 %

1
w(X)

We wish to find good layers to introduce the discontinuities in our envisioned x3-piecewise constant
approximation. This means that we want to limit the “slice” energy in these layers. Still integrating over

/ I Pasma|” do < w(NAPey(m).
(=L1)2 xR
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all the domain we note that replacing zs-derivatives by difference quotients does not enlarge the norms
involved, thus

+oo
/ 2/ |V’m3|d:1:/—|—/
—o0 (—1,0)2 (=1,1)?

ol
+—
w(A) (—1,1)2

< (1+w(\)4li?e(ms, h').

2

V|~ 11 (mg(:zz x3 +7) —ma(a’,x3))| da’

2
dll?/> d:Z?g

We are now able to select a set of slices that is good for the energy on the left hand side of this inequality.

For any ﬁxed N e N weset 7= % By Fubini’s theorem not all slices can be above average and so there

exists a 3 € (0,7) depending only on mg, A and N such that

Z T / ’mék) ‘ dx’ + /
(_lvl)2

kEZ
W /*l 1)2

1
V’|71;PA(m3(:1:/, x3 +7) — ma(z’, 23))

s

2
da/)

2
[ms]® | dz’

1
2Py [ms)®)
-

1 2
< o7 (2 / V/mg’”} dz' + / V|7 2 [ms) )| da’
kez ¥ (0,7) (—=1,1)2 (—=1,1)2 T
2
1 1
+—/ |72 Pa[ms]®| dz’ | das

w(/\) (—1,0)2 T
< (14 w(N)4lPe(ms). (23)
Here we use the abbreviations mék) (z') = ma(2’, kT +23) and [m3]*) = mgkﬂ) - mgk). To finally obtain

a candidate for mgs)

we take the piecewise constant (w.r.t. z3) interpolant
(2, ws) =m{P (2)  for ws € [kr, (k + 1)7).

Note that m3 is admissible for the e-energy e.;. We want to estimate egyl(rhg,ﬁ) with h minimal for
given mg. More precisely we are going to use an equivalent representation of the field energy. To prepare
well, we use the interpolation estimate of Lemma 4 for (—,1)%-periodic ¢

1/2 1/3 1/3 1/6
— 2
([pptae) <o ([, wone) (s ia) ([, 17 ms)

and conclude that for A < 1 and small enough such that w(\) < C

Z/ |Px[ms) (k)|2dx

kEZ
2/3 ) 1/3
< oYy ( / |V'm§?|da’ + / |v'm§k+1>|dx'> ( / V]~ Palms] ®)| d:c’)
keZ L2 (=102 (1,12
< <Z/ gk)|dx’> (Z/ |~ 1P ms]¢ } d:zc)
k€ ez (=hD?
(23) 2 2/ 2 1/3 1/3 2
< C 4l ei(ms) (w(N)T4l%ei(m3)) " = Cw(N) WZLZ er(ms). (24)
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Taking into account that |[m3]*)| is either 0 or at least 1 (in fact 0 or 2 except at the boundary), we
likewise have

Z/ |[ms]®)| da’ < Z/ |?da’ < Cm4l2el(m3). (25)

k€EZ keZ

With these preparations we turn to estimate e;(ms). We first bound the surface term

2/ (5, )il de < 2/ |V/m3|d:c+2e/ [037i3| d
(L2 xR [—L,)2xR [—1,)2xR
= QZT/ A% (k)|d:17 —|—2£Z/ [ms] (k)|d:c
kez YI=LD? kez’ (=LD?
(25) ,
< 27'2/ V'm{P|da’ + C 1/341 er(ms). (26)

To tackle the field term we take the Fourier series in 2’ and the Fourier transform in z3. Writing
Ga(z3) = LG () and G(23) = 5 exp(—|23|), the field term is

2
/ ’(|V/|2+€2|83|2)71/2837’7L3’ dx
1,1)2xR

/ Z 7.‘-2 |7’I/|2/l2—|—452§2)

R n'e72?

/ 2 m( |n'|2/12+4<€2§2 //exp (2mies)0sF (Ma)(n', 22)

R nrens
eXP(—QWi§y3)33f’(m3)(”’a y3)dxzdysdé

B w2|n'|2/ f (. e vt amicon - )

/622
D3 F'(1h3)(n', 23)03F (1h3) (1, y3)dwzdys

- 7"2|n/|2//<2€l/|n’| (—27T|w3—y3lln’l/2al)>

2

dg

eXP(—27Ti§fC3)53f/(m3)(nla x3)dws

/622
s F (13)(n, 23) 03 F (113) (0, y3)daadys
+oo +oo
= Z 2|n’|2 / Gﬂn q (x5 — y3)83(_7:'(ﬁ13))(n',x3)83(.7-"(7h3))(n’,y3)dac3dy3.
n'€Z?

The above calculation is valid for smooth 73 and by approximation also for our piecewise constant
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ms(z’, - ). In this case the two integrals on the right hand side are in fact sums, thus

2
[ \<|V'|2+a2|ag|2>-1/2agm3] .
(=1,1)2xR

= 2 /|QZZG (G = k) F (ms) @) (') F (s ) ()

n' €72 JEL KEL
= Y St Y 3G (= W ()6 F )
n’€7?2 JEL kEZ
2 1 . ! (k) V|2
< X s | G )| 2 (s ™)) )
n/ €72 JEZ keZ

Using the inequality exp(1/«) > 1 + 1/a we observe that

, 1 > 1\’ 1 14 exp(—1 1
> Gali) =5 —1+2Zexp<—5) _ Llreele) g 1
7=0

= 2001 —exp(—1/a) 2a

and so

2
L JOTE oty o e
1,I)2xR

2
N I NACHIUISIESTDY

n’€Z2? kezZ n!'€Z2?

D 1F ([ms] M) (n) . (27)

In’l
kEZ

The second sum is an H~/2-norm which we estimate by interpolating between the H'-norm and the
L2-norm for high wave numbers. More precisely, we estimate splitting the second sum

> ,|Z|f' mal )0

n/eZ2 kEZ
= Z - Z|}" ms]F)(n")? + Z - Z|}" RONTOIE
n' €72 | | kEZ n' €72 | | kEZ
TAn/|/1<1 TAn/|/1>1
1
< 52 2|n,|22|f’ J"EE A D D F (sl ™))l (28)
n'€Z? kEZ n'cZ?2 k€L

TAn/|/1>1

Thus using (23) and (24) we obtain for A small enough such that w(\) < C

2
L JO7 oty o e
[,1)2xR

T (L L)Y S R L Y S @)
= 7 2\ = w2|n’|? = 2 nez?  ker
Am|n/|/1>1
- (+ )X L9 s+ —Z Palms | a’
2e\ 12| T ’ T
= e kez” (=LD)
(23),(24) 1 ? AP
< ZT/ ~ V[ [mg]©| da’ + CAi%en(m )+C(71334126l(m3)' 29
kezZ (=L 1T i
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Combining (26) with (29) and employing (23) we see that

1
— V| mg]

T

’ 2
2/ |(£B)m3}d:§+/ }(|V/|2+52|83|2)_1/283m3} d
[=1,0)2 xR (—1,)2xR
+C (== + — + 2520 ) 4%e,(ms)
T3 e erl/3 3

(26),(29) 2 2
< ZT 2/ V’mgk)‘ d:c’—|—/ dz’
(=L,0)?
€ T Aw(W)3

keZ GUUE
T dw(W)3
(23) 9 9
S 41 el(mg) + C w()\) + m + a + 57_71/3 41 el(mg). (30)

In the last inequality we have used our choice of “good slices” again. To finish the proof, we need to
arrange for the second term to vanish in the limit, so choosing 7 = M?3¢? and A = M*<? we compute

5 T Aw(W)Y3

1 1
PEYERLESY oy e w(M*e?) + — + — + M3w(M*e?)1/3,

M M
Since

1
T 4.2 3 4.2\1/3) _
h%olslfg<w(M8)+N+Mw(M€) ) 0

we can select sequences {N(©) = %}sw and {\®)}_ | such that
) 7O AO(AE)1/3
COEAS CRIFETOITE ) =

Application of (30) for the corresponding sequence of fnéa) yields the assertion of the lemma. O

lim (w()\(g) )+
el0

We now provide the interpolation inequality used in the proof of Lemma 3. It originally appeared in
[CKO99, Lemma 2.3|, but we wish to present a simplified argument here.

Lemma 4. There exists a universal constant C such that

1/2 1/3 1/3
( / |P<|2dw'> <c < sup |<|> < / |V'<|d:v'> < /
(=1,0)? (=1,0)2 [-1,0)2 (=1

for all (—1,1)2-periodic ¢ : R? — R and P either be the identity or the projection Py on the Fourier modes
as defined in (21).

1/6
- \|V’|—1Pq2dx'>

)

Proof. We fix a smooth convolution kernel ¢ : R> — R with
>0, p=0for|z'|>1, ¢(-2") =), and / edz’ =1
R2

and denote by subscript a the convolution with %cp(a) Note that P commutes with convolution and is
indeed a projection in L2.

We observe that for any (—[,1)?-periodic ¢ : R?> — R we have

[ Ka ) =P < s jo@ K = o) [ o ) - oGl
(_l)l)2 (_lvl)2

z'e(—1,1)?
<2 ( sup |C|> : |h/|/ V'C|da’. (31)
(=Ly? [(—1.0)?
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A standard convolution argument using Jensen’s inequality shows

— 2 / i (y_/> AN V2 ’ ’
/(—l,l)2|< Cal“dx S/n@ 27\ /(_“)2 [€(z") — ¢(z" — o) |Pda’dy
1 Y/ 1 / I .
</Rz a”’( >dyo‘sup<lh'l /H,l)z Ca) = ¢l + 1) dz>
1 / / NP
Ozsup<|h|/(lﬁl)2 [C(x") — (2" + )| d:c)

Y za<sup |<|> / V'¢lda . (32)
(—1,1)2 (=11

By duality (see (106) in the appendix) the standard estimate

1 !
R 1 O |
(—1,1)2 R2 @& o (—1,1)?
1
< C— 2da’ 33
< og [, e (33)
valid for all (—[,1)%-periodic 9 : R? — R, entails
[eaupar = [ (PQaaps
(=1,0)? (=1,0)?

1/2

1/2
(106) / 25 n—1 2 .
< |V (PC)aa| dx “V | (P<)| dx
(=1,0)2 (=1,0)?
1/2
(33) 1 2. -1 2 .
2 ol (PO Pde V(PO d
@ (_lvl)2 (_lvl)2

1 _ 2
/( 1,12 (PO)al*de’ < Og/( 1,0)2 IV'I7H(P)|” da”. (34)

1/2

and thus

Note that convolution and the projection P on Fourier modes are (pointwise) multiplications in Fourier
space and thus commute, in particular P¢ — (P¢)q = P{— P({a) = P(¢ —{,). Combining (32) and (34)
after using the triangle inequality and the projection property of P we estimate

1/2
( / |P<|2dw’>
(—L1)2
1/2
PO Pde’ P¢ — (PO, |?da’
< </(W|< Ol ) +</(W| ¢~ (POl :c>
1/2 1/2
( / |<P<>a|2dw'> +< / |<—<a|2d:v'>
(_l)l)2 (_lvl)2

1/2 1/2
(32),(34) 1 -1 2 50 1/2 / /
< (ol = [IV'|7 ¢ da +a sup (] |V'¢|dz
RECACIAE (~1,)2

1/2

IN

[—1.D)?
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We obtain the assertion of the lemma by choosing the optimal

_ 2 1/3
S |[V/|71P¢|” da!

SUP(—1,1)2 IC] f[_lJy |V'¢|dax’

6 Asymptotic behavior of the energy

In this section we prove Theorem 2 by comparing the various energies introduced in Section 4. Most of
the results needed in addition to Theorem 4 follow from the energy scaling and some elementary reflection
and extension arguments. For the lower bound, we also need the interpolation inequality of Lemma 4,
the upper bound is provided by an explicit construction. As we shall need to fix a few constants for later
reference, we recall that C denotes an arbitrary constant (universal or depending only on the parameters
indicated in parantheses) that can change between any two occurrences, while the numbered constants
C4, Cs, etc. are fixed within this section.

Lemma 5. The sharp interface energy per cross-section area on configurations with periodic boundary
conditions is bounded from below, i.e.

lim inf P (1) > 0.
1<l

Proof. At the core of the proof is the interpolation estimate of Lemma 4. Fix an arbitrary [ and let
(m3, h’) be admissible for eP(l). Recall that

41%el (mg, h') = 2/

|V ms|dz —|—/ |h'|2da. (35)
[=,0)x(—1,1)

(—=LD)2xR

We estimate the second term from below by

—+o0
/ |h/|2dz:/ / |h'|2da’ dx3
(=1,1)2xR —oo J(=1,1)2
+o0 9
z/ / [[V'| 7 03ms|” da'das
—co J(=1,1)2

T\ 2 ! -1 2 .
2 (3) [, [y 1917 ol i

where we use the Poincaré estimate on (—1,1). For the first term in (35) we observe

1
2/ |V'ms|de = 2/ / |V ms|de'dxs
[=1,1)2x(—1,1) —1J[-10)2

1
> 2/ sup |ms] |V'ms|dz’dxs,
—1(=1,0)? [—1,1)?

because |ms| < 1, and hence using Young’s inequality and Lemma 4 we can estimate the energy from
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below as

41%€f (ms, h —/ sup |ms] |V ms|dz’ +/ ’|V'|_1m3’2 dz' | dxs
¢ 1.2 (~L.0)2
2/3 1/3
> —/ sup |ms| |V mgs|dz’ / ||V’|71m3|2dx’ dzs
¢ L2 (~L.y2
1 1
> — mida'dry = —AlI?
= O/ /( ll)2 3 T ars3 O )
that is 1
ef(m37 n ) > 6
Since (mg3,h') was an arbitrary admissible pair, eP(l) > 1 &> as claimed. O

Lemma 6. In the setting of free boundary conditions, decoupling the passage to the limit [ — oo from
the limits in § and € does not increase the limiting energy of the minimizers. More precisely

liminf e’ (e,d,1) > limsup liminf e/ (¢, §,1).
kel 1<l 0Kkl

Proof. A key ingredient to establish the claim is
el (e,0,Nly) > €' (e,0,1p) for N € N. (36)

To establish this inequality, consider a minimizer (m,h) for ef/(e,d, Nly) and decompose the domain
(=Nlo, Nlp)? into N? squares {Qn}—g0. n—132 of edge length 2ly. Denote by (my, hy) the restriction of
(m, h) onto @, x R translated back to (—l,lp)? x R. As these are admissible in the minimization problem
for ef(e,d,1y) and as the energy functional is translation invariant we conclude with

€e,5,Nlp (M, h) = > ee,8,N (M An)
ne{0,...,N—1}2

that
(Nlo)zef(aaav NZO) Z Z lgef(e,é, lo)

n€{0,....N—-1}2

As a second item we need that

~\ 2
el (e,5,1) > <§> el (e,5,) forl>1, (37)

!

~
o~

) is

which is evident when considering that the restriction of a minimizer (m,h) for e/(e,4,1) to (—
admissible for e/ (¢, d,1).

Now fix Iy and let [ > Iy be arbitrary. Write [ = Nly + r with N € N and r € [0,[p). By above estimates
(36) and (37) we have

2 2
e-f(s,é,l) > <%> e-f(5,5, NZO) > <l _l lo> e-f(s,é, ZO) = <1 - ZTO) (6567 lO)7

thus

liminf e/ (e,8,1) > liminf e/ (e, 4, 1),
ILe?kiIkl 0kKe?k1

43



and so as [y was arbitrary

liminf ef(e,d,1) > limsup liminf e/ (e, d,1). O
s<e2 <1l 1<l 0kl

Lemma 7. In the setting of periodic boundary conditions, coupling the passage to the limit | — oo with
the limits in 0 and £ does not increase the limiting energy of the minimizers. More precisely

limsup eP(g,d,1) < liminf limsup e’ (g, d,1).
f<e2<1I <l ser<l

Proof. Because (—[,1)2-periodicity implies (— NI, N1)?-periodicity and the resulting inclusion of the ad-
missible classes we have
eP(e,d, Nl) < eP(e,4,l) for N € N. (38)

We claim that )
l ~ -
eP(e,6,1) < ( i 1> eP(e,8,1) forl>1,e*> 4. (39)

Indeed, let (1, ) be a minimizer for e?(e,d,1). We define an admissible (m, h) for e?(e,4,1) as follows:
Let

Thus k' is defined such that

(h’ + 1m’) (2, x3) = ! (ﬁ' + lm') <£$',$3> ;
€ l € l
<V’ . <h/ + 1m’>) (', x3)
€

i.e. the admissibility of (m, h).

ensuring

Il
/N
4
7N
.
+
™ | =
=
~
~_
/_I'\
~1
&\
8
w
~—

Furthermore using l~§ [ and § < &2 we have

1 ’ 2 1 T
i Byl = o[ )l
412 (_l)l)gx(_Ll)}(Eas)m’ T 12° )it Lo, )| dx
1 S
< =3 (5 )l da,

as well as

11 11
—2—/ ' de = — 1 | da,
4126 J—iy2x(-1,0) 4026 J -T2 x(-1,0)
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and

l ) 1/2 L1 1/2
+2:( ) —/ |h/|2d$ —~—2/ |’ﬁ’LI|2d(E
l 412 J(—iz2xr 412 €% J(-ih2x(-1,1)
l 11
+ <:—1) —~—2/ |/ |2 dx
l 412 €2 J—ihezx(-1,1)
N? 1 VAN 1 /1 l 2 N
S <7> / ‘(lhfl )‘ dI+ 2: (7-1) + (7—1) ep(5,5,l).
1) 42 ) ipexe!\2 I\ I

Hence

as claimed.

With (38) and (39) at our disposal, we are able to proceed as in Lemma 6. Fix lp and let | > ;. We
write
l=Nlp+r with N € Nand r € [0,{).

Then for €2 > § we can estimate

z 2 z 2 I+0)
eP(e,d,1) < 2W—1 eP(e, 0, Nlg) < 2l l_l eP(e,d,1lp) = 7 eP(g,d,1p).

0 —lo l—1o
Hence
limsup €P(g,6,1) < liminf €P(g,d, 1),
fge2kl1kl d<ke?kl
and again the assertion of the lemma follows because [y was arbitrary. O

Lemma 8. The minimal sharp-interface energy per cross-section area amongst admissible configurations
with free boundary conditions is bounded, i.e.

limsup e/ (1) < oc.
1<l

Proof. We use four main estimates for the proof. First, completely analogous to (37) we have

el (1) < <:> ef(l) forl<I, (40)

then because the inclusion of the corresponding admissible classes we obviously have

el (1) < eP(l). (41)
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T3

T
Figure 8: The refinement (constant in zs)
Thirdly, as in (38) we have
eP(N) <eP(l) for N e N. (42)
And as a fourth ingredient we need the estimate
eP(1) < oo. (43)

To establish the latter, we have to construct ms : R? x R — R such that

) {1 if 25 € (—1,1),

ms3 is (—1,1)%-periodic in 2/, m3 = )
0 otherwise,

with
2/ |V’m3|d:c+/ ‘|V’|7133m3|2d:c < 0.
[=1,1)2x(—1,1) (=1,1)2xR

By symmetry and translation invariance, it suffices to construct ms : R? x (0,1) — R such that

mg is (—1,1)%-periodic in 2/, mZ =1, and ma(-,) EEIENY) (weakly) in L>((—1,1)?)

with
2/ V' msde +/ 19| 205ms | dar < oo.
[-1,1)2x(0,1) (—1,1)2x(0,1)
Denote by mJ : R? — R the (—1,1)?-periodic function given by
mg (1, 29) = signzy.

Obviously (see e.g. Figure 8), one can construct m3! : R? x (0,1) — R such that

m3* is (—1,1)-periodic in 2/, (m$')? =1,

mg'(2',0) = mg(2'), and mg' (2, 1) = m3(22),
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and
2/ |V'm3t|dx +/ ||V'|_183mg1|2d:c < 0.
[-1,1)2x(0,1) (—1,1)2x(0,1)

We now glue rescaled versions of m3'. Let A = 60%(1 — @) with € (0,1) to be chosen later. Note that
Y opeo Ak =1. Let a:( ) — 0 and a:gk'H) = xgk) + Ay and define

_ (k)
m3(x', z3) = mg' <2k33/7 %) for z3 € (xé ), (k+1))

By construction we have

I3T1

ma(+ 28 =) = ma(-, 2§ +) and ms( -, x3) 0,
thus
' /
/[—171)2X(071) Vimalde = kz—o/[—l,lfx(wék))mgkﬂ)) Vims|dz
-3 A / V' |de
k=0 [-1,1)2x(0,1)
and

2
|V | 1837)13 dx = / |V'|_183m3 dx
/<—1,1>2x<o,1> | | Z 1,1)2x (2" 2{F+D) | |

2
(L V| Bym | dr.
I;)Ak <2k> /<1,1>2x(0,1>’ d

Combining these two, we see that

2/ |V/m3|d:c—|—/ }|V’|7183m3|2d:c
[~1,1)2x(0,1) (—1,1)2x(0,1)

2
<max{z A2 ,ZALIC (i> } (2 / |V’mgl|d$+ / “V’|_163mg1‘2 diE)

[-1,1)2x(0,1) (—1,1)2x(0,1)
:max{( 9)229 1_92<49) }
k=0
. (2 / |V'm3tdx + / ||V'|_183mg1|2d:c>,
[=1,1)2x(0,1) (—1,1)2x(0,1)

to ensure that the bound is finite, we need to choose % <6< % The natural choice based on the energy

)3/2

scaling is § = (4)™'", but this is not of further interest here. This construction entails (43).

To finish the proof of the lemma, fix [ > 1 and write

l=N+rwith NeNandr€0,1).

47



By consecutively applying (40), (41), (42), and (43) we see

el (1) < (#)2 ef(N+1) < (%)2 eP(N +1)

< (%)26%1) _ (1 + %)2613(1) <o

and because [ was arbitrary, this entails the assertion of the lemma. O

Lemma 9. In the limit | — oo of the sharp interface model, the minimal energy among periodic con-
figurations is no larger than that among admissible configurations with free boundary conditions, more
precisely

li (1) < liminf e ().
i sup e (1) < lim inf e (1)

Proof. The main ingredients for the proof are

el (Nly) > ef(ly) for NeN (44)

el (1) > <l

eP(20) < el (1) +

resembling (36)

1~

) ef(l) forl<l (45)

analogous to (37), and

(46)

—1

To verify (46), we consider an admissible pair (ms,h') for /(). We translate (mg,h’) such that the
domain is (0,20)? x R. We aim at the construction of an admissible pair (s, h') for e?(2l). Unique
extensions (13, k') of (m3,h’) to R? x R exist with the following properties

(rhs, h') are (—21,21)*-periodic in 2,

(h1, ho, 13) (=21, @2, 33) = (h1, —ha, —iis)(21, 22, 73), and

(h1, ha,ms)(x1, —T2, ¥3) = (—hi, ha, —103) (21, T2, T3).

We observe

(537”713 + 010} + 32;/2) (—x1,29,23) = — (53m3 + 011} + 32%) (x1, 22, x3),
(537”713 + 00} + 32;/2) (1, —x2,23) = — (53m3 + 11 + 32?1/2) (x1, 22, x3),
fz’l(O ,{EQ,Ig) = illl(0+7$27$3)7
(21,0, x3) = hy(z1,0+, x3)
Hence
V' -k +03m3=0in (0,20)* x R
yields

V' -k 4 03m3 = 0 in R5.

48



Additionally

2 1 for z3 € (—1,1),
3 0 otherwise,

so that (13, 1) is admissible for e”(21). We estimate the energy as

(41)2eq (103, h') = 2/

|V’m3|d:c+/ 7 2da
[—20,20)2 % (—1,1)

(—21,21)2 xR

4 2/ V' si2s e +/ B 2da | + 641
(0,20)2x(~1,1) (0,20)2xR

= 161%¢;(ms3, h') + 641.

We incur an additional term because 73 has a jump of height 2 at the reflection lines. Dividing by 162
yields (46).

To wrap up the proof, fix l[p > 0 and let [ > [y be arbitrary. Write
l=Nly+r with N € Nand r € [0,1p).

Having prepared our three ingredients we combine them to compute

(44) 4
eP(2l) < ef()+ 7
(45) (N +1)lp\> 4
< (( ;i )O) f((N‘Fl)lo)‘Fj
(46) 2
S ! + ZO ej (lo) + é
l l
o)’ 4
= 1 + —0 ef (lo) + -
l l
and thus find
limsup e (1) = limsup e?(21) < e/ (Iy).
1<l 1<l
Since Iy > 0 was arbitrary we have
li P(1) < liminf e (1),
m sup e (1) < liminfe’ (1)
completing the proof. O

Finally, we can collect the results on comparing the various energy estimates and deduce Theorem 2.

Proof of Theorem 2. Recall from Section 4 that we have to show
eP(d,¢e,1) € (0,00)

lim
kel

i.e. that the limit exists and is a strictly positive real number.
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The lemmas of this section and Theorem 4 allow us to put the minimal energies for periodic and free
boundary conditions and sharp and diffuse interface versions e?(e,6,1), ef (¢, d,1), e?(I), and e/ (1) in the
following chain of inequalities.

limsup €P(4,¢,1) < liminf lim sup eP(d, ¢,1) (Lemma 7),
s<e2 <1l Il e«
limsup e (4, e,1) < eP(1) (Theorem 4, part 1),
Ike?k1
limsup e (1) < lim inf e/ (1) (Lemma 9),
I i
e (1) < liminf ef(,¢,1) (Theorem 4, part 2),
Ike?2kl
limsup liminf e/(6,¢,1) < liminf e/(d,¢,1) (Lemma 6).
1<l 0Kkl ILe?kiIkl

These combined with the trivial

el (8,e,1) < eP(6,¢,1) and ef (1) < eP(l)

imply that the limits under consideration exist and coincide for all energies. Then

lilm infe?(l) >0 (Lemma 5) and (47)
limsup e/ (1) < oo (Lemma 8) (48)
l—o0
show that the limit indeed is a finite positive number. Thus the theorem is established. O

7 Quantification of the construction in a Modica-Mortola prob-
lem

In this largely self-contained section we provide a quantification of the construction used to show the
I-convergence result of Modica and Mortola, [MM77] that we use in the proof of part 1 of Theorem 1.
Throughout this section, we work with the half-open cubes Q;(z) = = + (%l, %]" Our goal is to prove

the following proposition:

Proposition 4. For all « > 0 a constant Cs(a,n) < oo exists such that for any domain size L > 0, all
functions x : Qr, — {—1,1} and all 6 > 0 there is an approzimation v : Qr — [—1,1] such that

51 , 1 )
— — (1 —u*)dx < (1 d
STl g5 -t < () |9

QL

and

/ = ul < Cs(aym)s [ |Vxlde.
QL QL

Remark 3. We apply the lemma in a rescaled version with n = 3 and Z3 = %1'3 and a size in x3-direction
that differs from that in the other two directions. This does not affect the viability of the proposition.

First, we construct a set of finitely many characteristic functions with the property that arbitrary char-
acteristic functions can be approximated by those from the set.
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Lemma 10. For all L € N there is a finite set F C BV (Qr,{—1,1}) with cardinality
#F S 2Ln

such that all x : Qr — {—1,1} can be approximated by a X € F in the sense of

/ |V)~(|d:c§/ |Vx|dx and (49)
QL Qr

| = lde < oty [ 19 (50)
L L
The exponent in the cardinality estimate is, of course, the volume of Q.

Proof. We proceed in two steps. First we approximate y in L' by functions constant on unit cubes
with an error bound proportional to the total variation, i.e. with a bound resembling (50). We then
replace these initial approximation functions by minimizers of the total variation within appropriately
sized closed L!'-neighborhoods. This ensures that the approximation satisfies (49) without making the
L'-error larger than twice that of the first step.

Let us decompose @ into L™ translated unit cubes {Q’f}ke{l _____
functions xo : Q1 — {—1,1} that are piecewise constant on each Q¥. Clearly #F, = 2-". We claim that
any x : Qr, — {—1,1} can be approximated by a function yo € Fp in the sense that

ry» and denote by Fy the set of all

/ X — xoldz < Cy(n) / IV xlde. (51)

Indeed, let xg be the piecewise constant function given by

1 if ka xdz >0,
XO‘Qk = . !
i -1 if fQ’f xdz < 0

for k € {1,...,L}". Since Q¥ has unit size, we can use the Poincaré inequality to estimate the deviation

from the mean as
[ =[xl =cam [ 9 (52)
Q¥ QY QY

If ka xdz > 0, this implies
[ o= xide = [ 11— xide = 2674z € Qy(a) = 1)

§2/’)(—/ X’dz§2C’2(n)/ [Vx|dz. (53)
Q¥ QY

The same calculation also works if ka xdx < 0. Summing over k € {1,...,L}" we establish our claim
1
(52) with Cy(n) = 2C2(n).

We now want to improve our choice of the approximation functions to have small total variation. To
this end, consider for any xo € Fy the smallest L'-neighborhood containing a good approximation. More
specifically we define

Sex0) = {x: o= {-1.1)] [ v xolde < Cu(w)P)
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and then find the minimal radius

P e P(xo) = inf{P‘ inf / Vxlde < P}
XE€Sp(x0) JQr,

that is of relevance to our approximation needs. By the standard compactness and lower semicontinuity
properties of BV -functions both infima are, in fact, minima. We thus find ¥ € Sp«(xo) that minimizes
the total variation in the L'-closed set Sp=(xo), i.e.

/ |Vx|dx = P*.
QL

We claim that the set
F = {X|xo0 € Fo}

has the desired approximation properties. Indeed, given any x : Q@ — {—1,1} with total variation
P = fQL |[Vx|dz, we find by the first step a xo € Fp satisfying (51). In particular, x € Sp(xo) and thus
P > P*(xo), which is (49). By the triangle inequality

Sap(X) 2 Sp(Xxo0) 2 Xs

in other words (50) is satisfied with Cy(n) = 2C4(n), completing the proof. O

We now use this approximation by functions from a finite set to improve the Modica-Mortola result to a
uniform version, first for bounded and later for arbitrary system sizes.

Lemma 11. For any system size bound Ly € N and approzimation parameter R € N there is a scaling
coefficient 0 < §o < 1 such that for all 0 < § < g, all L < Ly, and all functions x : Qr — {—1,1} there
is an approzimating u : Qr — [—1,1] such that the diffuse interface energy is bounded by

51 , 1 ) 1/
—— —(1— de < (14 —= d 54
I R I Y (R L (54)

and u is close to x in the sense that

—uldx < C(n Vxldz. 55
| ix—uid < o [ 9 (59

QL

Proof. Recall from [MM77, Theorema 2] that for given fixed L € Nand 6 — 0

51 1
— Vul* + =(1 —u?)d
a7 VUl gl mude

Es(u) := E5(u, QL) :—/Q

I'-converges with respect to the L'(Q)-topology to

Fo(u) 'fQL |[Vuldz ifue{-1,+1} a.e.,
u) =
0 400 otherwise.

With this in mind, we begin the proof. Fix an arbitrary Ly € N and R € N. Let us assume for the
moment that L = L.
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Since the set F' of Lemma 10 is finite, there exists a g > 0 such that for all 0 < § < §p and all y € F,
there is a uy : Qr — [—1, 1] satisfying

Bstur) < (1+3) [ 193z (56)
and
/Q 1§ = el < Cofo) /Q (9 (57)

We do have the choice of using the constant in the approximation property of Lemma 10 as Cy(n).

Now let x : Qr — {—1,1} be given. According to Lemma 10, there exists x € F with (49) and (50).
This allows us to estimate

(56) 1 (49) 1
Es(ug) < (14~ /1|V2Mx;§ 141 /"|vxu@
0= (rg) ) (v g) )

establishing (54). To obtain (55) we compute

[ on-uslis < [ pe-ldet [ R - uglds
QL QL QL

(50),(57)
L0 o) / IV x|dz + Co(n) / Vx|dz
QL QL
(49)
<

200(71)/ |Vx|de.

Thus uy has the properties claimed in the lemma for § and C(n) = 2Cy(n), completing the proof if
L = L.

It remains to consider the case L < Lg. If L > 1 we rescale lengths according to

L .
TO:E’ 0=

Lo

5 L=22L=L,.
LJ 0

j:

This puts us in the case already dealt with and we obtain an approximation @ : Q; — [~1,1] for
X : Qi — {—1,1} with (54) and (55) in the new coordinates, i.e. for 6 < & we have

J

1
1—a2

J

Rescaling back, we notice that the constant for (55) only improves (by a factor LLO < 1 on the right hand

~ 1 1 A
Vi + —(1 —a%)de < (1 + — / |VX|di
20 ( R) 0

L

N S

i
and

= ildi < O(m) [ [9¢lda.
Qf

L

L5 As & may depend on Lg, this is

side which we may drop) and (54) remains valid with ¢ = LLS > 7o
1 < L < Ly when we replace the original

not a problem and so the claim of the lemma is established for
50 by LLO(SO
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Finally, we need to address the case 0 < L < 1. Without loss of generality, we assume fQL xdz > 0.

Obviously u = 1 satisfies (54). We claim that it is also a good approximation in the sense of (55). Note
that by our assumption of y having non-negative average

/|x—u|dw=/ Ix —1l|de =2L"({z € Qrlz = —1}) <1,
QL QL

so we are done if 'fQL |[Vx|dz > 1. Otherwise, we can estimate similarly to (53) but this time using the
Poincaré-Sobolev inequality

/|X—u|d:17§/ |X—L7"/ X|d:17—|—/ |1—L7n/ x|dx
L QL QL QL L

:/ |X—L_"/ xldx +2L"({z € Qplz = —1})
QL QL

<3 [ -1 [ s
L L

<aci(m)( [ [vxdr)"
Qr
<C() [ [vxde.
QL
and so (55) is verified, concluding the proof of the lemma. O

We now proceed to the core argument, where we decompose very large cubic domains into such of
moderate size in order to improve the above convergence result by eliminating the dependence of the
approximation length scale § on the system size L.

Lemma 12. For all R > 0 there is a & > 0 such that for any system size L > 0 and for all functions
X : Q; — {—1,1} periodically extended to R™ there ezists a periodic approzimation u : Q; — [—1,1] such

that
51 , 1 , 1
Z —(1— < -
/Qi (21_u2|w| + 5501 u))dx_(l—i—R)/QLW)ddx, (59)

and

/ I~ ulde < Cyfn) / Ve (59)

L QL

Proof. It is well to develop a plan before delving into the minutiae. Our basic idea is to split ()7, which
we think of as being very large, into cubes of a suitably chosen intermediate size L. Then we apply
Lemma 11 to these subcubes in order to obtain approximating functions on each piece and glue together
one on Q5. We need to apply some care to appropriately choose the width A and position of the overlap
during the cutting in order to keep a lid on |Vx|. We also need to make a considerate choice of the region
of glueing to not lose the approximation property.

Let us now fix an arbitrary L-periodic x : R® — {—1,1}. Given & small enough, smallness depending
only on R, our goal is to construct some wu satisfying

Bs(u,Q;) < (1 + C(n)(% + % + %)) /Q Vx| da. (60)
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Figure 9: decomposing (J; into overlapping regions

Then we optimize the coefficient to determine A and L such that
R
R A

i.e. we set

A =R? and L = R3,

establishing (58) with a renaming of R to compensate the constant 3C(n). Thus we need to achieve (60)
and (59) to prove the lemma.

To begin in earnest we decompose R" into cubes {lefA}kGZ" of size L — A > 0 and denote their centers
by xr = (L — A)k. For given k € Z", let Q% = Qr(x1) be the cube of size L with the same center as
Q’Z_A. As alluded to above the cubes {Q’Z}kezn overlap with width A, see also Figure 9. Without loss
of generality, we assume R > 2. This entails that the overlap width is not too large compared to the size
of the Q’L more precisely, we use that

A<

|

: (61)

For convenience we also assume that L = M (L — A) for some M € N so that M™ cubes Q% , cover
exactly one fundamental cell in the domain of the L-periodic functions. A variation of the rescaling used
in the proof of Lemma 11 can be used to deal with nonintegral ratios greater than 1 and in the remaining
case of small L the present lemma does not claim any improvement over the previous. We remark that
d, which we want to depend only on (the dimension n and) the approximation quality R, may by above
considerations also depend on the quantities L and A determined by R, a fact that shall be of use to us.

With these preparations, let us determine good areas of overlap, i.e. a good offset for the x). Using the
L-periodicity we claim that there exists a translation vector h € R™ such that

L n
[Vxldz < (—) / |Vx|dx. (62)
Z /QL(C%-HL) L-A Qf,

ke{1,.. M}
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Figure 10: choosing a good set of stripes of width ¢ in the overlap

Indeed, we have for the average over b’ € Q;

@, / '
‘C (Qi) Qf, kE{l,...,M}" QL(wk'f‘h)
E”(Q’Z)/
Vx|dx
Z L£(Qr) Q£| |

=g, [

L

and there must be an h for which the integrant is bounded by the average. Without loss of generality,
we assume h = 0.

According to Lemma 11 there exists a 0 < § = (L, R) < % with the property that for any k € Z™ a
function uy : Q¥ — [—1,1] exists such that

5 1 1 1
| Vur? + =1 —ui)dz < (14 —= / |Vx|dz (63)
/Q,z21—u§ 26 b ( R) Qt
and
| - wlde<co [ 9 (64)
Qk Qk

For given k € Z", consider Q,_a4s/2(xx +h) C Q" for translation vectors h € Qr—s/2(0). In order to be
able to glue functions together we are interested in the approximation quality in the boundary layer of
thickness 0, i.e. the set Qp_pys5/2(xr +h)\ Qr_a—s/2(xx +h). We claim that there exists h € Q_5/2(0)
such that

4néd
/ R DR TSR )
ke{l,. myn P (QE _xi5/2\QL _A_s/2) ke{l, ..My’ QL

This is shown similarly to (62), this time with a one-dimensional optimization (see Figure 10): Considering
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stripes

SE(hY) == Q% N {z|zt €z}, + W'+ ([—(L — A)/2 —5/2,—(L — A)/2+5/2)
U[(L—A)/2-6/2,(L—A)/2+5/2))}

there is a h'* with

Z / lug, — x|dx
Sk(hl*)

ke{l,...,.M}"

1 /A/2—6/4 / )
< — |ug — x|dx dh

A—=6/2 ] pj2ts/a ke{l;M}n Sk (hy)

26
< — .
~A—6/2 2 /J“’“ Xlde

ke{1,...,M}" L

As noted in the beginning of the proof A depends only on R, so we may assume § < A/2. Optimization
for and summation over all coordinate directions yields the desired estimate (65).

Let {ny : R" — [0, 1]}rez» be a partition of unity subordinate to Q7 _a4s/2(7x + h). More precisely we
ask that

Z m = 1in R™ (66)
keZm
e =1on Qp_a_s/2(xk + h),
M =0on R"\ Qr_ays2(xr +h) DR\ Q. (67)
In addition we choose 7 such that
c
[V |? < saik(l = Mk)- (68)

Let us emphasize that this partition of unity is uniformly locally finite in the sense that for any k the
number of cutoff functions with support overlapping that of 7y is bounded by a constant depending only
on n, i.e. for all k € Z™

#{k' € Z"|supp i Nsupp 1y, # 0} < C(n). (69)

We can now define the L-periodic function u : R — [~1,1] as u = > kezn MUy and set out to verify (60)
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and later (59). We begin by noticing that

1—uw? = 1- Z Z NN Uk Uy

keZ’Vl kleZn
= 1= npup— > Y mkmukuy
kezn ke b Ak
= 1= mui+ Y ((nk —mup — Y nknkfuwm)
kezn kezn Kk
(66)
= Y om(l—ud)+ Y (ﬁk(l —m)up = Y nkﬁkfukuk')
kezr kezr Kk
(66)
= D m(—u)+ Y > (nknk/ui - nknk’ukuk’>
kezn ke k' £k
= > (=) + YD memuk(uy, — up)
kezn kezn k' £k
1
= > ml-up)+ 3 ST e (wn — upe)? (70)
kezn KELn k' ELn
(66) 1
= 3 Z Z menwe (1= uf) + (1= ui,) + (u —up)?) . (71)
KEZn k' ELn
. (66)
Using Y, czn Vi = 0 we see that
Vu = Z e Vug + Z up Vi
kezn kezZn
= Z Nk Vg + Z (Uk - Z nk’uk’)vnk
kezm kezn k'€Z
(66)
=D mVur+ Y (uk — up ) Vi (72)
kezn kEZ k' €7

We can thus estimate with Young’s inequality

1
2
[Vul” < (1 + E)} > Vg
kezn
Combining this with (70) and (71) we get
2
‘ ZICEZ" nkv'l,l,k‘
> kezn Me(1 — up)
2
’ 2 wez 2owezn(Uk — “k’)nk'vﬁk‘
% Zkezn Zk/ezn e (1 — U%) +(1- ui/) + (ug — ugr)?)

We use the convexity of (v, g) — 1|g|? on (0, 00) x R" to estimate by pulling the (locally finite) summation
in the first term out of the fraction and obtain

1 9 1 |Vuk|2
1_u2|Vu| S(l—’—ﬁ)znkl—lﬂ
kezn k

}2 + (1 + R)} Z Z (Uk - uk/)nklvnk 2,

keZ k' €L

1
1 —u?

|Vul? < (1 + %)

+(1+R)

2
| X ke X ez (un — wr ) Vg |

+(1+R) .
3 kezn Soprezn MMk (L —uf) + (1 —uj,) + (ug — up)?)
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In combination with (70) this entails
4] 2, 1
21— |V "+ 26

1 1) |Vuk|2 2
<(1+4) 3 m(3 1-u}))
—(JFR];Z:” 21— +25( i)

2
8| ke 2w en(un — un )i V|

~(1—w?)

+(1+R)

+ 4% Z Z ke (ug, — g )?

kezZ k'eZn
=:51 4+ 55+ Ss.
We address the terms on the right hand side separately. Starting with S; we write
6 2
/ Side = 1 + = / |Vu;g| —|— 25(1 —ui))dw
Qf Qf keZ
(67)
< (1 + ﬁ) Z Es(uk, Qr—a+s/2(xk + D))
ke{l,...,M}n
1 k
< (1+g) X Bs(w.qb)
ke{l,...,M}n
(63) 112
< (1 + = Z / |Vx|dz
k
ke{l,.,M}n Y QL

Y (b (), e

We proceed to estimate So 4+ S3 at any point z € R”.

2kezn 2oz Mk (1= i) + (1= uil) + (up —up)?)

(74)

To this end, assume without loss of generality

x(z) =1 and let J = J(z) = {k € Z"|x € suppni}. Using the local finiteness (69) and R > 1 we see

). (75)

S2 + Sg
2
= (1+R) 8| Pher Sowen(un — ww )nw V|
S kezn Dopezn Mt (1 —u2) + (1= u2) + (ux — up)?)
1 2
Ry Z Z e (U — Uper )
keZr k'eZn
< CR 0 ez Zk’ez(uk; Uk/)zn;%/ankP i
Ekezn Zk’ezn e (1 —uip) + (1 —ug,) + (ug — upr)?)
1 2
Y SN e (u — upr)
kel k'eZn
(68) 1 )
< 3 Z Z MM (U — Uper)
keZn ki eLn
(l + C(n)Rnw (1 — n) )
Sowezn Sowezn ke (L —ud) + (1 —ui)) + (up — upr)?)
s 1 ! C(n)R
< = i — V2 £
< 52 annk(uk Uk)(4+(1—ui)+(1—U§/)+(uk—uk/)2

kezn k'ezn
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We now claim

(up — upr)?
(1= uf) + (1 —uiy) + (up — up)?

< |uk —uk/|—|—(1—uk)—|—(1—uk/). (76)

If up < 0 or upr < 0, the left hand side smaller than 1 while the right hand side is larger, so that the
inequality is trivial in this case. For u; > 0 and u, > 0 we start with the elementary observation

(a —b)* < |a—b|la+b|,

which, for a,b > 0 is equivalent to
(a —b)?
a+b

<|a —bl.
Plugging in a = 1 — u;, and b = 1 — uy, this becomes

(ur, — up)?
(1 — U]g) + (1 — uk/)

S |’U,k - ’U,k/|,

which, by 1 —u? = (1 —u)(1 +u) > 1 —u for u > 0 and adding non-negative terms to the denominator
and right hand side implies

(ur, — upr)?
(1 —uf) + (1 —uf) + (uk — up)?
(up — upr)?
- (l—uk)+(1—uk/)

< |uk —uk/| < |uk —uk/| + (1 —uk)—i- (1 —uk/).

Thus (76) is established.

We can now continue with our estimation (75), we start with using (u; — ug2)? < 2|u; — us

S + 53
@1 1 C(n)R
s 3 e (g, — wp)? (< +
5keZZ" k’eZZ" ( ) (4 (1_U%)+(1—ui/)+(uk—uw2>
1 1 O(n)R(Uk — uk/)2
< 3 NNk’ | | Uk — Upr | +
5kezznk'ezzn (2| | (1_U%)+(1—ui/)+(uk—w«)2)
(76)  C(n)R
= (f;) Z Z e (Jug — upr | + (1 — ug) + (1 — upr))
kezZn k' £k
C(n)R
= (5) Z Z”Wk/(|x—uk|+|x—uk/|)
kEZn K £k
(66)
< C(Z)R Z k(1 = me) X — ukl, (77)
kezn

in the last two estimates we use the triangle inequality and our assumption x(x) = 1.

Using our choice of the boundary layer we estimate the integral over Ss + S3 (which are supported only
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on the boundary layers) as

(77)
ke{l,..,.M}n

67
(<) C(n)R Z
k

ke{l,..,.M}" QF
(65),(67) C(n)R Z
ke{l,...,.M}"

@) C(n)R
< 0 > /‘vaww

ke{1,., M}

(62),(61)
< CmER / |Vx|dz. (78)
A Qr

Mk (L — i) |x — uk|dz

\\

Mk (L — i) |x — uk|dz

|X — ug|dx

<0\

Combining (73), (74), and (78), we see that

g 2, 1 2
/ 57— u 2|V| 5(1—u)d:1:

(73)
< / S1 4+ Sa + Ssdx

L

R (N S AL

(61),(R>1) < 1 A R
< 1+Cn) =+ =+ )/ |Vx|dz.
(*2*3%) o,

But this is (60), which we know from above to imply (58). To complete the proof of the lemma we need
to verify the approximation property (59). By definition of u

[ e - [ \x_ zm\

L kezm
QL keZ"
(67)
< / —Uk
ke{l, Ly QL
(64)
< om) / IV |de
ke{l, Ly Y QL
(62) L
<
< co(zzg)" [ e
L
(61)
< ct) [ Vi
Qr,
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which is (59), the missing piece in the proof of our lemma. O

Finally, we prove Proposition 4.

Proof of Proposition 4. Let a > 0 be given and set R = é Denote by 5 = S(R) the parameter of

Lemma 12 and let Cs(n, R) = %04(71).
We rescale the lengths according to

L=-L.

[STN e

According to Lemma 12, there exists @ : Q; — [—1,1] such that

5 1 1 1 .
—— |Vﬁ|2+—A(1—ﬁ2)>d§3§ 1+= / |Vx|dz,
/QL <2l—u2 2 ( R) Q;
/,

Rescaling back this gives u : @ — [—1, 1] such that
0 1 0\? 1 1\4
/ ——2(7) Va2 + —(1—u?) | de < (1 + —)7/ \Vx|da,
QL 21 —wu\§ 26 R/ QL

1)
/ X - uldz < Ca(n)2 / IV x|de
QL 1) Qr

as desired. O

and

= aldi < Catw) [V
QL

L

and

8 Local behavior of the energy in minimizers

We now prove Theorem 3. In the following we refer to the sharp-interface energy
Ey (20, Lot Lo, ) 1= 2/ |V’m3|dx+/ W Pda
o+ ([—lyr15r)2 % (0,lay)) 2o+ ((=lyr ly)2 X (0,124))

as the energy for configurations with
Osmsz+V' -h' =0

and appropriate boundary conditions.
The lower bound of the theorem is essentially an application of Lemma 5.

Lemma 13. There is a universal constant C' such that any energy-minimizing configuration ms, h’'
defined on (—1,1)% x (0,2) and (—1,1)%-periodic in x’ with m3 — 0 weakly as x3 — {0,2} has the following
property: For any x{, € (—1,1)? and any | > 10 > C’l%3

Em31h/ (I/Oa lm/a lm%) = 2/

|V'ms|da +/ W [2dx > O3,
(@h+(—1yr,l5)2) % (0,lay) ’

(=14 5l5)2)x(0,lz5)

The constants are universal in the sense that they are independent of 1, xo, lyr, and lg,.
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Proof. Without loss of generality we assume z(, = 0. We reflect the magnetization evenly and field oddly
at xg = ly,. After another set of reflections at x1 = £l,» and x3 = £l,/, even in the h'-component in the

direction of extension, odd in ms3 and the other h’-component, as detailed in the proof of Lemma 9 and

rescaling x3 by l;sl and z’ by l;sz/?’ as described at the end of Section 4 we obtain an (—21;32/3lw/, 21532/3lw/)—

periodic configuration with ms — 0 as 3 — {0, 2} with energy
81;35/3Em31h/ (I/Oa lm/; lmg) + Ol;sz/glm/,

By Lemma 5 any (—21;32/311/,21;32/311/)2—peri0dic configuration on (—21;32/311/,21;32/311/)2 x (0,2) has
energy bounded from below by %1534/313,. Thus

1
Egn (.%'6, lar, lmg) > 61;‘431% — Clyyly

which is the claim of the lemma when we bound the second term on the right hand side by one half of
the first for I, > 202123, O

Interestingly, but not of relevance here, the analogue of the equipartition of energy result [KM94,
Lemma 2.6] implies that cutting out a sample piece around the center in zs-direction (i.e. taking a
periodic minimizer and performing only the first, vertical reflection described above) does not yield a
minimizer: The slicewise field energy of minimizers converges to 0 at the center for minimizers, it does
not for the constructed comparison function.

The upper bound is one of the claims of Theorem 5 proved in the remainder of this section.

8.1 Upper bound for the energy in subdomains

The local upper estimates for the energy are derived in two steps. We consider a fixed minimizing
configuration (mg,h’). We drop the (now fixed) ms and A’ (unless that would lead to confusion) and
write F as a function of the extension of the cuboid in which we integrate the energy density, i.e.

E(ly ) = 2/ |V/m3|d:c—|—/ |n'|2da.
[7lm/,lm/)2><(0,l23) (7lm/1lm/)2><(01la:3)

In fact we modify the energy by subtracting the xs-average h'(z') = fl”

o ® h'dxs of b’ and consider

E(lyr,ly,) = 2/

|V'mg3|dx + / |’ — K |dx,
[—lz/,lz/)2><(0,lw3)

(—lI/,lI/)2><(0,lm3)
see below for more discussion.

Before we begin we make a first observation concerning the two energies E and E.

Lemma 14. Given top and bottom magnetization as functions
mg,mz)’B : (—1117111)2 — [—1, 1],

a field flux
f : 8(—11/711/)2 X (O,ng) — R
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across the sides, and curl-free cumulated fields Hy., Hfy : (—ly,l)* — R? at top and bottom with

~V'-Hp = miin (—lp, )2,
~V'-Hy = mb in (1),
log

V' - (HY — Hp)(2)) f(@',x3)dzs for H'-a.e. 2’ € O(—lyr,lur)?

0

let ms 1 (=lpr,lp)? % (0,1,) — {+1,—=1} and b’ : (=l 1.)% x (0,14,) — R? be an energy-minimizing
configuration among all (ms, h') such that

Osmz +V'-h = 0 distributionally in (=l 1)* x (0,1,),
my — m3B weakly as xs — 0,
my — m3T weakly as v3 — Iz,
RV = f on O(=lw,1w)? x (0,14,).
Then .
/13 B (2!, x3)des = (Hy — HE)(2) for a.e. &' € (=g, 1) (79)
0

Proof. When we fix the magnetization mg the field A’ is a minimizer, i.e.

/ |W'|2de = min/ W *dx
(—lI/,lI/)2X(0,lz3) h'e A (—lz/,lz/)2><(0,lm3)

with the admissible class
A= {1V = fon d(lu,lu)* % (0,1s,), V' - ' + 93mz = 0in (—lyr,1o)? x (0,14,) }.

By decomposing I’ orthogonally into zs-average and xz-oscillation we can split the minimization

min/ |h|*dz = min / |ho|?dx + min lms/ AR
€A (=14 ,0,)2%(0,lzg) ho€A0 J (=11 ,1,1)2%(0,lz5) hi€Ay (—lgrilyr)?

with the admissible class decomposed into
Ao = {holho V' = f =1 (Hr — Hg) - V' on (=1, 1) x (0,1s,),
V' b+ 0sm =0 in (—lpr, 1pr)? % (0,1,,),
/0113 ho(2',&3)dés = 0 for a.e. @’ € (=ly,10)?},

Al = {iLlﬁll . I/I = l;sl(HT — HB) . I/I on 6(—1117 11/)2 X (0, lmS),
V' by ==l m" —mP) in (=1, 10)?}.
As l;sl (Ht— Hp) is curl-free by assumption, it also solves the minimization problem in 4;. By uniqueness

of the minimizer of the strictly convex minimization problem, we have l;gl(HT—HB) = hy, as claimed. O

As the first step, in an inner iteration we consider subdomains Q(ly, lzy) := (—lzr, lzr)? x (0,1, ) for fixed
lz, and varying (but not too small in a sense to be made precise) I,-. Quite literally, our starting point

are large horizontal cubes, I, = [. For these the bound E(lm/, leg) < CElglcé?’li, is essentially established
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w’)

U
Figure 11: The ODE argument in a nutshell: if E(l,/,l,,) intersects with Clglcéglg, it has smaller derivative
there

in [CK98| in a setting similar in Lemma 8, we present a slight variation below. We now want to extend
the control of the energy as [,/ decreases.

Our argument and presentation resembles the “ODE argument” of [ACO06, Lemma 3.5], the one in
[Con00] is very similar.

Imagine that [,/ — E(lms, lor) were smooth. If E’(lm,lmr) > CEliégli, for some [,/ then there is a largest
horizontal length [, such that E(l,) > Cgl?. This implies that at [, the energy must grow more slowly

than Cply/®12,, ie. E'(l,) < (CEliégli,)"l L= 2Cp12.%1,. Combining these two inequalities with a
differential inequality relating E’ and E we can obtain an estimate for [,.

The differential inequality in [ACO06] takes (in two dimensions) the form
E(ly) < O3 + (B'(l)*?) (80)

to allow the conclusion that [, is bounded by a constant independent of the system size [. This inner
iteration with the ODE argument is done rigorously in Section 8.2.

As we want to construct comparison configurations for configurations with prescribed boundary values,
we need to introduce the cumulated field with more precision. We consider a cuboid domain and prescribe
a (relaxed) magnetization ms(x) € [—1,1] to be weakly assumed at the top and bottom boundary and a
field flux v-h across the vertical boundaries. For convenience, we move the domain to (—l,l)? % (0, I, ).
The most important case is a cuboid close to the sample boundary {x3 = 0} with mg(a’,0) = 0 weakly.
If x3 = 0 is a sample boundary where the magnetization vanishes weakly, we set

T3
H(2) = / W (o, 3)des.
0
We do, however, need a slight generalization, so for

m§ € [~1,1]
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and possibly some prescribed flux at the boundary there is an L?-minimal Hf, such that
~V'-Hy =m?

and define for a configuration with ms — m% weakly as 23 — 0 the cumulated field as

H'(x) = Hy (') + / "W (!, &) des.

Loosely speaking, sup |H’| bounds the domain width. The field H’ is the equivalent of the scalar function
u in the functional of Kohn and Miiller in [KM94]. We sometimes speak of [ |H’|?dz’ as the energy of
H'.

In the second, outer iteration we use the local bound to show decay of the cumulated field H’ towards
the boundary and derive the desired energy bounds. The course of our arguments is in this step modeled
after [Con00]. Here we consider the difference to the linear interpolation again. With the aid of the
local bounds from the inner step we can estimate the distance to the linear interpolation. Crucially, we
can do so in a way that has a less-than-linear dependence on the constant relating |H’| to its expected
scaling. Focusing on the center of the xs-interval we can then use this fact and that decay of the linear
interpolation (trivially exponent 1) decays better than the expected scaling (exponent %) to absorb the
constants from our estimates and get the desired scaling result for H’. This is done in Section 8.3.

8.2 Localization of the energy estimate w.r.t. the horizontal directions

In this subsection we provide the differential inequality and then make the ODE argument introduced
above precise. As usual constants such as the generic C' and those named after lemmas and the propo-
sition, e.g. Cpr1, Cp1, are allowed to depend on each other (but not cyclically). However, in this section
they crucially do not depend on C'y.. Instead the dependence of estimates on Cpy. is always explicitly
tracked. This is important because we choose Cys to suit our needs based on the other constants in the
next subsection.

Proposition 5. Given top and bottom magnetization as functions
m3T,m3B : (—lm/,lm/)Q — [—1, 1],

a field fluz
f : 8(—11/,195/)2 X (0,113) — R

across the sides, and cumulated fields H}., Hf : (—lyr,12)? — R? at top and bottom with

—V/ : Hr/r = mg mn (—lml, 11/)2,
—V' : Hé; = m? n (—lm/, lm/)z,
lz‘
V' (Hy — Hp)(2') = ’ f(@' x3)dxs for H'-a.e. 2’ € O(—lyr,lp)?
0

let ms 1 (=lpr,lp)? % (0,1,) — {+1,—=1} and b’ : (=l 1.)% x (0,1,,) — R? be an energy-minimizing
configuration among all (ms, h’) such that

Osmz +V' - R 0 distributionally in (=l 1z)? x (0,1,),

my — m3B weakly as xs — 0,

|

ms3 m3T weakly as v3 — Iz,
7 foon O(—lury o) X (0,14).
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Given a constant Cg > 1 let H', f, and l satisfy

sup |H’p|,sup |[Hy| < CH/Z%?’, (81)
16 2/3
b > S Cl,
1
— — vV (Hp — HE)Pde < 270003, 82
T B 3z
O(—Lys 1) % (0,10y) lag
Then the energy of (ms3,h') in (=lyr,1y)? x (0,1y,) is bounded by
- 1
E(ly,ly,) = 2/ |v’m3|d:c+/ |n' — —(Hy — HE)|?dx
(s 00)? X (0l (—lar 1y )2 X (0,1a) lzg
1
< Cpsll/31%, + CP5CH,J§/3/ |f — —v' - (H} — Hp)|?da’
: * Ja(=1,0,)2x(0,1) lag

4/3
1
+Cpsl)’ ( / |f = v (HE — H]'3)|2d:z:’> .
D=Ly L) 2% (0,05 s

If H, — Hf; is curl-free we may rewrite this as

E(lm/,lz3) = 2/
[7lm/,lm/)2><(0l

lag)

1
Crsly* L2 + CrsCrill? / |f = ="+ (Hy = Hp)[Pda’
8(—l1/,lz/)2><(0,1) x3

|V'ms|dr + / |n|?da
(7lm’ >lz’)2 X(O,l13)

IN

4/3
1
+Cpsli? ( / = v~ Hg>|2dx'>
O( 1 1y)2 % (0,0uy) w3

+1;)! / |H} — Hj|?d.
(=lyrylyr)?

Estimating the energy difference between the linear interpolation and the field instead of the full energy
(or equivalently having constant 1 in the additional term in the second estimate) seems to have been a
key improvement in the construction of comparison functions in [Con00] over [KM94]. It is crucial for
being able to prove the required decay of the cumulated field HY.

Proof. 1. Rescaling. We rescale to I, = 1. This scales 2/, I/, and H by l;sz/g and the energy by l;35/3.

2. Splitting the field boundary data. We split f into three parts: The first part is the xs-average of f, i.e.

1
i) = / F(& es)das = o - (Hy(e) — Hy (o).

Next we split the zz-oscillation f — f; into a high-frequency (w.r.t. ') and a low-frequency part. We do
this by decomposing f into local averages and oscillation relative to that. We cover a boundary layer of
size sz p = 1727 N1 leaving N to be determined later, with squares

Sbij = (15216, (14 1)82r 1) X (38271, (§ + 1)5271)

and define the local averages

fg(l‘) = |6(—lml, 11/)2 n 8Sb7i,j|_1 / f(fl,x3)dfl for 2’ € 8(—1% 11/)2 n 8Sb7i,j.
8(7lz/,lz/)2ﬂ85byi,j
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We denote the oscillatory component by

fs=[f—fi— fa

Note that this is an L2-orthogonal projection (on each sector), in particular

/ foPde’+ e’ = [ f - fi2aa.
8(—[2/,l11)2ﬂ85b’i,j 8(—[2/712/)2ﬂ85b’i,j 8(—l1/,l11)2ﬁasb,i’j

We accomodate the high-frequency part f3 by a divergence-free field, i.e. one not influencing the mag-
netization. In each slice we apply Lemma 16 on Sy ;; at the boundary. As the boundary flux we use
the (zero-mean) oscillatory part f3 on the one or two sides 9Sy ; ; N I(—ly, lz+)? and zero on the other
sides of OS5y ; ;. Note that 27 of the lemma does not play a role here as the jump height would be zero.
Lemma 16 yields a comparison field h{, with energy bounded as

/ (hy[2da’ < Crgsars / \fl2da.
Sb,i,j 8Sb,i’jﬂ8(—lm/,lz/)2

Adding up all boundary squares we have the bound

/ |h6|2diﬂl < CLlGS;E’,b/ |f3|2d$/ < CLlGS;E’,b/ |f - f1|2d90/-
(— A(—lyrylyr)2 A(—lyrylyr)2

Lyt st )P\ (= g +857 boler =847 1)3

By splitting out the highly oscillatory part we gain an L°°-estimate for the remaining low-frequency part
f2. Knowing fs is constant on 95y ;; N O(—l,, I.r)? we compute

swp Al = [0S 00l el
asb,’i,jma(flzhlz’)z aSin,jﬂa(*lm/,lm/)2
1/2
< 08b,i NO(=lar, 1r)? 12 / | fol*da’
BSb,i,jﬁa(flz/,lz/P
1/2
< sl ( / |f—f1|2dx'> , (83)
BSb,i,jma(flz/,lz/)Q

or if we prefer to just take the supremum over the full boundary

1/2
sup ol < 530 / - fPd ) (84)
A(—1,1,0)2

/€0 (—lyr,lyr)
We introduce the cumulated field flux across the boundary

Fy(a', x3) 3:/0 3f2($/7§3)d§3-

3. An initial relazed magnetization. We start with the linear interpolation between mg and H’ at top
and bottom. By construction

mi® = xzma + (1 — a3)my,
in = Hyp— Hg,
Hl, = x3Hy+ (1 —x3)Hf

68



satisfy
Osmi™ V' -, = 0in (=l lw)? x (0,1),
by, -V = fi=(Hy —HE) -V on O(—=ly, 1) x (0,1).
Note that this x3-constant field does provide a lower bound for the field energy.

We have to also accomodate the field flux f5. To this end, consider again a square
S = Sb,ij

at the boundary. We want to change the magnetization within S to obtain a valid relaxed magnetization
ms (i.e. |ms| < 1) and field such that 3
O3z +V' -h =0

and
VI iLI _ v hl/in + f2 on SN 8(—196/, lx/)z7
YW on 85\3(_196/711/)2.

lin

As we wish to simultaneously do this for all horizontal slices we need to change the total magnetization

in S to satisfy
/Thg,d:v':/mg“dac'—/ Fodx'.
s s ASNA(—11,1,)2

We want to change the linear magnetization proportionally to the distance (in the change direction 41
in the image space) to the constraint mgs € [—1, 1]. We thus estimate the (double) “volume of each phase”

M*E = ‘/S(:Izl—l—mgn)dx’|
> |5 - |/m13ind3:"
S
= [5]- |/ v Hl/ind‘rl}
S
= [5]- |/ v Hl/ind‘rl‘
a8

|S| — 0S| sup | Hf,|
= Si/,b — 484/ p Sup |H1/in|7

abusing the term volume of a phase by applying it to a relaxed magnetization. In order to be able to
accomodate a sizable deviation from the average magnetization we want

16 16
Sz b > ECH/ > 3 sup |Hy,,| (85)
to get
1
Mil Z Zsil’b-
Note that

DsM*! = + /S dsmy"da’ = F1 /83 v - (H} — Hp)dx!',

in particular
|03 M| < 282, . (86)
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To avoid overlap we prefer
Sz!.b S lm/- (87)

We can now treat Fy by adding a fraction of —mli® — sign I to the magnetization, more precisely we
define the additional relaxed magnetization as

SNA(—1_s,1.1)2 1i .
madd . {— I\J(sigr‘be2J; ) |(—|F2|m31“ — Fg) in each S = Sbﬂ')j,
3 T

0 in (—ly + Sa/ by lar — Sar1)?

and the relaxed magnetization

s = my" + midd, (88)

Recall that F is constant on each 95y, ; ; NO(—ly, lm/)2 to see that there is no ambiguity in the definition.

We need to take care that m3 € [—1,1]. This is clear in (=l + Sy b, lz — S22 ). In the remaining region
lin

we estimate by seeing that 73 is a convex combination of m3" and —sign F. More precisely,

—_ ! /2 . - ’ ’
i <1_|8Sm9( lor, o) ||F2|)mhn+|88ﬂ8( lor o)

|
ms = Msign Fy 3 Msign F> |F2 | (_ sign Fz)

is a convex combination of values in [—1,1] when

OS N O(—lyry )2 (®5) 10S N O(—lyr, 1y )? 284
| (sinF7 ) ||F2| < | 1(2 ) ||F2|§ 152 - sSup | o
Mien 2 st/,b st/,b 9SNO(—1yr,l,0)?
is bounded by 1. Thus we can ensure ms € [—1, 1] by requiring
Sz b > 8 sup |F3. (89)
(85N (=1,0,1,1)2) % (0,1)
We also specify a field i’ such that }
83ﬁ13+V’-h’:0
by means of a correction h/ 4 to hj;, such that
Dsm3 + V' hlyq = 0in each Sy,
V' hlga = faoneach 0Sy;;NO(=ly, 1),
v -hlga = Ooneach 3y \ O(—lu, 1)

Let us again fix S = Sy ; ;. We apply Lemma 16 on each boundary sector to obtain divergence-free fields
Hp o with normal component

. —' - Hp 4+ [0S N O(—=lgr 1o )?| 7! [og v - Hpda!  on 98 N O(—ly,1ar)?,
B R A on 95\ O(—lyr,lyr)?

and analogously Hy  with Hp in the boundary flux. From the lemma and (81) we know that
sup |H’T)0|,sup|H{3)0| < CChq. (90)

As in the definition of H.

lin W€ write

Hjy, o= x3Hp o + (1 — 23)Hp o
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Let Hj be the unique linear field with
V'-H, = 1linS§,
5]

/'H/ — m/l
v' - Hy PEGREIENME on 9S N O(—lyr,lyr)?,

vV -H] = 0o0ndS\d(~ly,ls)?,

i.e.
(lw, - Swl)b + (El)el lf 1= _2N_17j ¢ {_2N_17 2N_1 - 1}7
(lar = $o1p — m1)e1 if i =2N — 1,5 ¢ {2712V -1},
(lm/ — Sz'b —+ 172)62 lfj — —2N71,’L' ¢ {_2N7172N71 _ 1}7

H — (lar — Sur,p — T2)e2 if j=2N"1—1,i¢{—2N"1 2N-1 _1},
' %(l ’—Sm’b+$1)61+ (I — Surp +x2)eg if i = —2N—1 j = —2N=1

(ly — serp+a1)er + 5l — Sprp — T2)eg ifi=—2N"1 j=2N-1_17
2l —serp—x1)er + 2l — swp+22)ey ifi=2N"1—1 j=_—2N-1
%(lz/—sm@b—xl)el %(m/_sz’b_IQ)EQ ifi:2N71_17j:2N71_1-

Note that

sup [H] < 821 (91)
and that the normal component of both Hy, + H{, , and H] vanishes on 95\ d(—lu,1.+)?, so we can
glue and extend by 0 without incurring a singular divergence term at these boundaries.

With these preparations we define

I oSl (— sign Fo(Hy, + Hi, o) +H{) in S = Sp,i;
¢ 0 in (—lz/ + Sz/.b, lpr — Sm/yb)z,
satisfying V' - H! ., = —m339 and compute the z3-derivative h. , := 03 H] 4 to get a field
0SNA (=1l .
%—f@)‘f (— sign £ (Hjy, + Hllin,O) + H{)
Sl sign F. .
‘asmﬂa/[(s,gln le )] 6‘}‘\%; F; F (— sign Fy(H{;, + H{in’o) + H{)
9SNA(—lyr,l, .
+ =L Py (— sign Fa((Hp + Hi ) — (Hp + Hpy ) in S = Shi
0 in (_l;ﬂ’ + Sx/,b lw’ - Sm’,b)zu

/ —
hadd -

to match d3m3dd. Observe that m3d vanishes where sign F changes. Thus we may assume that sign Fy
is constant when computing the derivative because it indeed is for almost every z3. The normal com-
ponents of the last two summands exactly cancel at the boundary. Recall that fs is constant on each
6Sb)i7j n 8(—1% 11/)2. The field

h' = hiy + hhaa
is compatible with the magnetization /s defined in (88). At the boundary d(—l,,1,/)? N dS we have

’ |8S N 8(—lzl,lzl)z| —signF2 fas’/ H{m dx’ + |S|

! / I
vViehio= vy, +

M sign Fz 2 [0S N O(—lgr,1u)?]
f2 :
= VPt yar [ (Csien s Vi iy 1) dof
- Jn +L (sign Fp mi™ + 1) da’
lin M sign Fa S & 2
= fl + f27
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as desired. By (81), (85), (86), (90), and (91) we can estimate the additional field strength for the

3 3

correction in the boundary layer as

!
sup |hadd|
Sb,i,5 C(—lar b )2\ (=lor 4847 1y lar =847 1,)?

(81),(86),(90),(91)

IN

C(lfal + | Fal)syy (Crr + 50r)

,\
IN&
&

C(|f2] + [F2l). (92)

We emphasize that it would be premature to take the supremum over the full boundary layer at this
point because we later want to integrate over the boundary layer and would lose a factor of essentially
I if we took the supremum now.

4. Subdivision of the domain and local averaging. In preparation for defining a {—1,+1}-valued magne-
tization we locally modify m3. We divide the cuboid (—l,,1,/)? x (0,1) in a way such that the pieces get
smaller towards the boundary. It is natural to construct the magnetization on these pieces. Before we
do that, however, we average the magnetization to be piecewise constant in x’ on each horizontal slice of
such a cuboid sector while still being continuous in x3 even across sector boundaries. We fully refine the
structure as x3 approaches either top or bottom boundary in order to get by without detailed knowledge
about the magnetization mj and m% at the top and bottom boundaries. To make things precise, each
layer is in an x3-interval

ng k= (273(164»1)/271, 273]6/271) U (1 _ 273]6/271, 1 _ 273(]64»1)/271)
for k € Ng. We define the z'-lengthscale on each I,
Syt = 2iko+k+1lm/.

with kg chosen as the unique positive integer such that

% < 2 hotly <1,

We divide (—ly,1,) into the subintervals
IV o= (jsar, ( + 1)s0r)
and so split (—l,,1,+)? into 22(-+k0) subsquares
S =Ih X I

Let,
m3_2—3(k+1)/2—1

OZ(Ig) — 2—3k/2-1_o-—3(k+1)/2—1 for T3 € Iwg,k N [07 %]7
afly, — x3) for 3 € I, 1 N (3,1]

be the relative position of z3 in I, . We split each I, ; in two parts, one in which the local averaging of
mg is refined and a second where the geometric refinement is done. This is done to simplify the somewhat
technical construction and only costs a constant factor in our estimates. We thus introduce

ap(z) = min{2«,1},
a1(z) = max{2a —1,0}.
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We define the envisioned average magnetization for = such that z3 € I, , and 2’ € S’f/)j, C S’f);l as

ia(a0) = (1= o) [ el ma)dg +an(wn)$7h 1 [ el i
Sk S’ -1

il 5! @, J

Note that in particular f(_l L) ma(a’, x3)da’ = f(_l L) ms(a’, x3)da’ so the magnetization is com-
patible with the boundary conditions.

5. Undoing the relaxation. We now define a {+1, —1}-valued magnetization that has average ;. We
treat two adjacent sectors S’§i7j/ u S”giﬂ)j, at once. Let

+1 for z1 € (84:24, 82(2i + min{(1 + ) 22t 1}))
U(8a(20 + 1), 52 (20 + 1 + max{(1 — oy ) 22t 1ig})),
T € I;C,)j/,
—1 elsewhere on S’gm/ us’

k
2i+1,5""

Note that mg is constant on the union of the two sectors when a; # 0. We see that the averages of mg

and mg agree, i.e.
~ / !
madx’ = madx
S/k US/k S/k Us/k
24,5/ 21,5/

2i4+1,5/ 2i41,5/

k—1
and so on the larger sectors S’} ;~ we have

/ msda’ :/ msdz’ :/ madx’.
k—1 k—1 k—1
S35 83 S5

We compute d3ms3 in the sense of distributions and see that it can be represented as

dsmy = 20527 (w3) - H {ar = 2P ()}

+283x§2i+1’j’k) (z3) - H' {wy = :E?Hl’j’k) (x3)}

when we define

i . : m3 + 1
xgz 9:k) (x3) = 8(2i + min{(1 4+ 1) 32 1),
i+1,j . m3+1 |
xgz FL.3k) (x3) = 82(2i+ 1+ max{(l — ;) 32 M3 }).

6. Comparison field. As the construction of mg from ms3 preserves slicewise averages in Sf;l X Ipy | OUr

strategy is to construct the comparison field using a local modification R’ to deal with the change in Mmg.

Let us write

(f)igr = |5'Zj|_1/ fde'.
S/f,j

For the following calculations we fix ¢, j and let i’ and j' vary in {2¢,2i + 1} and {2j,2j + 1}, respec-

tively. We compute the first density 28333§2i’j ") if S’giﬁj, has not filled up with +1 magnetization, i.e.
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$§2i,j’>k) < (2i+1)s, or ag < 1,

283x§2i’j/’k) = Sy0301 (’ﬁ’Lg +1

)+ Sar (1 + a1)031n3
)+ sar (14 1)05 ((M3) 21,50.1) + 0 ((M3)i k-1 — (M3)2i,5 %))
20301 (g + 1) + sor (1 + a1)03a0((M3)i,jk—1 — (M3)2i 5 k)
+52/ (14 a1) ((1 — a0)(931m3) (21,57 %) + @0 ((O37123 )i j,k—1))
= SpOsa1 (3 + 1) + sprO3a0((hs)ijk—1 — (M3)2i,5/ k)
+52 (1 — o) (93mm3) (21,57 1) + (1 + 1) ((O313)i jk—1)) 5

O3
O3

Sz 03001 (’ﬁ’Lg +1

where we have used that at any point either oy = d3a1 = 0 or ap = 1 and 9309 = 0.
Similarly we compute the second den51ty in the case that 2(21 k)

2i4-1,5' ,k
maximum in the expression for xg HHLILR)

< (204 1)sy or ap < 1, i.e. when the

is the first argument,

263$§2i+1’jl’k) = —sp0sa1(mg+ 1)+ s, (1 — aq)03ms
= —spOza1(mz + 1) + s (1 — a1)03a0((M3)i k-1 — (M3)2i41,57 k)
+52/(1 — 1) (1 — 0)(93m3) (2041, k) + @0 ((D3m3)i,5,6—1))
= —8p 0301 (g + 1) + 840300 ((M3)ijke—1 — (M3)2i41,5 k)
+52r (1 — a0)(83m3) 2041,5.1) + (1 — 1) o ((93m3)i5,6—1)) -

In the other case, xgzi’jl’k) = (2i 4+ 1)s,» and ap = 1, the density is instead

2i+1,5"k A
263:E§ HLIWR) 95, 8s1hs
= 25,/(03M3)i k1.

(24,5 k)

We construct the comparison field as a sum of fields reflecting this decomposition of O3z and

83:E§2i+1’j ) Denoting by e; the standard unit vectors we see that

hl =

a

—spO3a1 (g + 1)er  for 1 € (z (24.3,k) xf”l’j’k)),x?i’j’k) < 8(20+ 1),
0 otherwise

compensates the first summand (featuring dsav1) if it occurs. The strength of this field is bounded by
|h,| < dsgprsy)

For the term involving d3ay we consider the four squares 5’5 2,2 S’];Hl 25 S"; 2410 S’2Z+1 9j41 comprising
S"ﬁj 1. We note that oy = 0 if dayg #0. Let

- - . ik
—S0300((M3)i,5,k—1 — (M3)2i57 k)€1 in S”;,j/ N{z1 > xf” ' )}7

- - etk 241,45k
b1, (T) = sp0300((M3)i k-1 — (M3)2i41.5 k)€1 in S’ 241,51 {!El < CC( R )}7
0 elsewhere in S'% 9150 U S’2H_1 g
and
— 55 0300(2(M3)i,5,6—1 — (M3)2i,25.6 — (M3)2i+1,25,k)(€1 + €2)
. i i )
in 89,410 V{2 — 282 > 21 — (20 + 1)5,/},
b2 (T) = ¢ =52 0300(2(M3)i5,k—1 — (M3)2i,2j41,k — (M3)2i41,2j+1.k) (€1 — €2)
in 851 5ie1 N{z2 — (2 + 1)sy < (20 +2)s0r — 21},
0 elsewhere.
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€2

T1 T1

Figure 12: Construction of Ay, ; (left) and hj, , (right), black regions have magnetization mz = +1, (arrow
lengths are not drawn to scale)

Then
/AN / /
b =Nb 142 1041+ b2

(see also Figure 12) matches the terms of the derivative of mg involving 93 and we can bound the field
strength as
|hy,| < 1284/[0500] < 24595/5;31

without trying to get a good constant.

Finally, we want to correct i to match the non-relaxed magnetization, i.e. find a field corresponding to
the terms involving d3m3 in the density of the measure representing d3m3. As the reader might suspect
after our construction of h, we adjust h/. and h’ — h]. separately.

lin lin

We start with A/

lin-

We apply Lemma 15 on S’y j/ 1) with

_ ! / _ lin __ T B
g=V'"hj, =—=03m™ = —(mgz —mg)

and M = {xgi,"j/’k)} x I%, 5, to find bl ;5 = hiy, + V'w. With
/ |g|2dI/ S 2|Sl(i/7j/,k)| = 28%/
S,(i/,j/,k)

the bound of Lemma 15 is i
/ / 2 4
/ |h1in - hc,l,i’,j/| < CSz/
S5 k)

and we achieve .
V' bl = =2 (0ss)ir jr g - H'CM on S’ .

c,1,i",j
We apply Lemma 15 a second time, now on S’ﬁ;l with ¢ = V - h{;,, and the same M C S’f/‘j/ to obtain
2,040 = by, + Vw with the same estimate (but the constant being 16 times larger) and
1k—1

V/ . h/c.,Q,i’.,j’ = —481/(837h3)i,j_’k71 'Hl\_Af on S ij -
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In the boundary sectors we also need to take care of h, ;. We proceed in a slighly different way keeping
an eye on the maximal field strength instead of the energy per sector. We apply Lemma 16 on Slf'u/

with f = v hl 4, 2] = a:gl ) and M = If,yj/ to obtain hg71)i,7j,. Similarly, we apply Lemma 16 on

S"i;—l with the same f, 7, and M to obtain hg , ; ;. We have the estimate pair

sup |hg 4yl < Cris sup |hjaql

S/?,le S, / ]/
and

sup |hg o0 5| < 20116 sup |hadd|

5 5t

k k—1
For § = 8" ;,or § =8/, we have
/ Vv hdx = / V' -hds' = —/ Oymsdx’
as s s
and so
vl / _ —1 h d Hl (i',5' k) Ik:
. d,1,i’,5’ = S:c’ V d,1,i,j" X L{./I:l }X z’ !
as’k,
- '/,‘/,k
= —sm/l/ Dsm3dddy’ - H&{xﬁz J )} x I
S”?, P
J' ok
= —5(93ma ) i - HlL{JI g )} X If,J/
and similarly
- -/7 »/)k
V' Wi = — A8 (O3 g - HIT T Y < Ik,

Consistently with i/, = 0in (=l + g/ b, lor — sup)? we define all hld,... to vanish there. Recall that we

require that 2s,/ divides s,/ 1, so any S”i;l is contained either in the boundary layer or its complement.
We see that the convex combination
(1 —a0)hg o0
1
+(1+ar)aog(he o0 + Pe2.2i2j41)
+(1— al)O‘O%(h/c,zzi,zj + he29i2j41) ON st o if @y < (204 1)sy or ap < 1,
1

/ / /k 1 21 gk
3(he 2214125 T e 2.2i41,2j41) on 5% ;" if x = (20 +1)sy and ag = 1

[
hc = 24,5, k

and hq defined as a convex combination with the very same coefficients are fields compensating the terms
involving d3mi® and 93m39d, respectively, so their sum compensates d3ms in the derivative of d3m3 on
S"ﬁj ' With /- (B, + ) = v’ - h' we can glue the field for all sectors and obtain a field matching our
boundary conditions.

We have treated these two components separately to be able to bound their energy contribution in
different ways. The convex-combination of the bounds from Lemma 15 gives

/ |hl, — Wi |da’ < Csi
S,)»C/ IG
Lemma 16 lets A/ inherit the L>-bound (92) from A4, i.e.

sup |hy| < 2CLis sup |hadd| < C(If2| + [Fz|)
skt sk
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k—1
fOr each S/i,j g Sb71:b1jb C (_lz’7 lz/)2 \ (—lz/ —+ Szlﬁb, lm/ — Sm/,b)z-
Summing up, we have constructed in each slice
bed 1= N+ hy + hl + hy
satisfying

(93m3 + V/ . h;bcd = 0in (—1117 11/)2,
Villpea = Vb = fi+t foon 0(—lw,lw)’.

Adding the divergence free by in the boundary squares, i.e. letting

o= h;bcd in (_lz’ =+ Sm/,balm/ - Sz',b)27
h;bcd + h6 in (_lz’v lz’)2 \ (_lz’ + Sz b, lyr — Sm’,b)2

we have the desired comparison field A’ with

dsmg + V' -1 0in (—lpr,lp)?,
V/ . h/ = f on (9(—1:5/, lm’)2'

7. Energy bound and boundary layer size. In the interior we estimate h’ — hj,, because we want to exploit
the orthogonality with hf;, once we integrate in z3. We thus bound the field energy as

F T N R e U N

+f 3 + g Pl
(Lo o)\ (Lo 4807 boler =800 1)?

S Si/S;flg/ + Si/lg/ + Z S$/)b|F2|2
Sb,i,j
+3m’,b/ |f = filPda’
A(—1,1,0,0)2
S 55’853213/ +Sm/7b/ |f - f1|2d$/ + Z Sm/,b|F2|2'
O(—lyr,l,r)2

Sb,ij

Recall that F is constant on 9Sy, ; ;N00(—1,, I)? for each Sh.i,j- The interfaces are the sector boundaries
and (at most) one line through each sector. We thus have

2 / \V'ma|da’ < sM2.
[l )2

Adding interfacial and field energy, plugging in the x3-dependent lengthscales s,/ and s,,, and integrating
over r3 we see that

2/ |V'm3|d:c—|—/ |h — hi,|2da
[—ll_/,ll_/)zX(O,l) (—lm/,lm/)2><(0,1)

1
/S li, / (S;/l(iEg) I (Sz’ (IB))2513 (I3)72)d$3 + Sm/,b/ |f - f1|2d;c/ + Z Sx/)b|F2|2
; (1l )2 x(0,1) Sb,ij

< l§,+sz/,b/ If — f1|%da’.
A(—1yr,l,1)2%(0,1)
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Before we can complete the estimate, we have to collect our assumptions on Cy/, I/, and s,/ . We want

to choose
1/3
Sarb = 4 (/ |f — f1|2d$>
8(—l1/,l1/)2><(0,1)

because then by (84)

" 1/3
8 sup [Fo| < 4 / |f = filfdz | < sup,
a(flw/,lw,)Qx(O,l) 8(7lm/,lm/)2><(0,1)

which we required in (89). Combined with the restriction of (85) and our desire that 2s, divides s,/ 1,
we choose s,/ 1, = 2-N+11, with N the unique integer such that

1 1 16
=Sz, b < Mmax 4 / |f—f1|2d117 ;_CH’72 < Sg/ b- (93)
2 B(—1,,1,)2%(0,1) 3

To be able to drop the last restriction we ask that
CH’ Z 1.

Per (87) we want the boundary layer to not occupy too much of the domain, so we impose

16
lw’ > ?CH’
and, because we want to interpret the required relation as a bound on the boundary energy in terms of

/ If — ful2de < 2793,
A~ ,1,)2%(0,1)

Undoing the rescaling, we have the first energy estimate of the proposition.

lz’:

It remains to consider the full energy instead of b’ — A, for the second formulation. Similar to Lemma 14

we consider our constructed comparison field as a comparison field for the minimization of the field energy

with given magnetization ms. For H}. — Hj to be curl-free is equivalent to it having minimal L?norm
for given magnetization difference m3 — m% and normal component on 9(—I,/,1,/)?. By Lemma 14 the

optimal field hgpt for given mg has an x3-average that is orthogonal to the x3-oscillation and thus solves

the same minimization problem. By the uniqueness of the minimizer the average has to coincide with
7 (H% — Hf;) = hi;,, and optimality of the oscillation implies
z3

lin

2 2 2
/ e = | o, Pz + s
(7[1_/,[1_/)2)((0,[23 (7lz/,lm/)2><(0,l23 (7lm/1lm/)2><(01la:3)
</ W = o+ [ .
(—lz/,la:/)2><(0,lz3) (—lI/,lI/)2X(0,lz3)
Plugging this into the first estimate we obtain the second. O

The following two lemmas are used in the construction of the field for the magnetization above. The
first is a dual estimate to the Poincaré inequality in the form of Lemma 20 combined with the usual
L? estimate for the solution of the Poisson equation.
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Lemma 15. Given g € L*((0,1)?) and M = {3} x (a,a+b) C (0,1)? let w be the solution to

~ANw = g-— <|M|1/ gd:z/) ~H'M distributionally in (0,1)?
(0,

dpw = 0 on d(0,1)%

/ wdx’ = 0.
(0,1)2

Then with the universal constant C' = C(2,2) of Lemma 20

/ |v'w|2d:c’gcz3|M|—1/ lg|*dx’.
(0,1)2 0,1)2

)

Proof. We denote the density we want to put on M by

g:= |M|71/ gdx’.
(0,1)2

Without loss of generality we assume z7 < [ and let, for small ¢,
X = X(z%,21+eg) % (a,a+b)-
For 27 = we could use X = X(x7—cg,a7)x(a,a+b) InStead. Let we be the solution to

~Aw. = g—elxin (0,1)?
dywe = 0on 0(0,1)%

/ wedr = 0.
(0,1)2

We estimate the L2-norm of the gradient by testing with

-1
= ||V’u)5||221 (’LUE — (/del> /ws)(dII) .
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Using the Poincaré inequality from Lemma 20 we see that

1/2
(/( . |V'w€|2dac'> = o V'w:V'pdz’
0, 0,
= - o Aw.odx’
0,
= / gpdx’ —/ e xpda’
(0,1)2 (0,0)2

= gpdz’

(0,1

1/2 1/2
( / |g|2dz'> ( / |sa|2dz'>
(0,0)2 (0,0)2
1/2 1/2
Lemma 20 ll/2
S Cl/2l / g2d$1 / VIQD del
|M[Y2\ Jo)2 o1 (0,0) Vel

IN

For ¢ — 0 the equation converges to
—A'w=g—gH' M in (0,1)*
and the solutions to the linear equation converge w, — w weakly in H', so we have

l

2 /
d
] Sy lg|~dx’,

/ |V'w|?dz’ < CI?
(0.0)

the desired estimate. (]

Lemma 16. Given a square S = (0,1), a function f on 8S, x% € (0,1), and M C (0,1) a finite union
of intervals of measure H'(M) = al, there exists h' such that

Ve = ()t | fda’ - HM @} x M,
oS
vV -h = fondS
satisfying
sup |h'| < Cpisa ' sup|f|
S oS
and if a =1

/|h’|2d:c’§CL1gl/ |f|?da’.
S oS

The constant C1,16 is universal (e.g. the first estimate would work with Cp,16 = 16).

The condition that M is a finite union of intervals is motivated by the application in the proof of Lemma 15
and we would expect the assertion of the lemma to hold under more general conditions.
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Proof. Without loss of generality =7 < %l Define
ho(x') = (= f(0,22) = f(x1 — 22,0) — f(x1 + 22 — I, 1))er + (f(x1 — 22,0) — f(21 + 22 — ,1))e2
with the convention that f vanishes outside 0S5 and
flwa) = flwa) = V' - Iy,
Let Ay, be the rotated gradient of

(') = (

ea(al) ! [t + S [ e
0
on {a'|x; € (z7,1)} extended to (O,Z) by zero, i.e.

((1 e wl)fo F(E3)des(al) " xar(22) + ””l:f? f(:vz)) e
h{)(x/) = +[—lw’{ ( f (§2)déa — fo 52 d§2 ) 902 XM(&)d&) ez iw>ay,

0 otherwise.

We see that b/ = h!, + hj satisfies the right boundary conditions and with the estimates
|hi| S sup | f]
and (using o < 1) )
hy| < sup|f] < If]
we have the desired L*°-estimate. Similarly

[wpas s [ mas o[ s,
S S a8

proving our claim. O

The following lemma enhances the sketch of the ODE argument of the previous subsection to a rigorous
proof. We have two options to deal with the non-smoothness of E. In [ACO06] the non-differentiability is
dealt with directly by considering the upper limit of the difference quotient. We take a slightly different
route and use a good cuboid width near the suspected breakdown of the estimate. This adds variety and
is somewhat quicker at the expense of at most a factor in the constants.

Lemma 17. There is a universal constant Cry7 > 1 permitting the following estimate. Given top and
bottom magnetization as functions

mga m3 : ( ! l) [ 17 1]7

and (—1,1)?-periodic cumulated fields Hy., Hf : (=1,1)> — R? at top and bottom with
-V'-Hyp = m3 in (—1,1)2,
~V'-Hf = mbin (=1,1)%

let ms : (=1,1)% x (0,1z5) — {+1,—1} and b’ : (—=1,1)? x (0,1,,) be energy-minimizing among all (—1,1)*-
periodic configurations on (—1,1)? x (0,1,,) satisfying

Osmaz + V' b = 0 distributionally in (—ly,1z)* x (0,1z,),

msz — m3B weakly as x3 — 0,
my — m3T weakly as v3 — Iz,
Lug
/ P'drs; = Hp— Hp in (=1,1)%
0
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Assume that there is Cgr > 1 such that

OH/Z2/3

T3

I > CuLiCuwl2®

IN

sup | Hy|, sup [Hg|

Then for any l, > CL17CH/Z§23 and any ' € (—1,1)? we have
~ 1
E(ly,2') = 2/ |V/'ms|dz +/ W — —(Hf — Hp)|2dw < CpaAdLB12,.
(& +[ =1y l0)2) X (0,l05) (@' (=l 1 )2)X (0lag)  bus
If H, — Hf; is curl-free then

E(ly, 2 = 2/ |V ms|dx + / W [*dx < (Criv+ 8CwH)ILPI12.
(" +[1yr 1y )?) X (0,lag) (" + (=1l m)2) X (0,l2g) ’

Proof. By translation we only need to be concerned with domains (—l,,1,)? x (0,1;,) and can write

E(ly) := E(lyr,0). Let us assume
Cri7 > 8Cps.

An initial application of Proposition 5 on (—1,1)? x (0,1y,) with f(a/,z3) = {~v/ - (H} — H}) yields
z3

E(l) < Cpsll/312.

We consider the energy on (—27%,27%) x (0,l,,). For i = 0 the energy is bounded as desired. Assume
that there is some smallest 7, such that

E(27'1) < 8Cpsll/?27%1% for 0 <i < i, (94)

and
(o —ix—1 1/36—2i,—272
E(2 1) > 8Cpsl2/%2 2. (95)

We now bound 27 %[. By Fubini’s theorem and because when computing a mean, not every value can be
above average, there exists a horizontal length [, € (2_(1*"’1)1, 27"[) such that

1
/ V- (4 = - (tr ~ Hp))Pda
A=l 1) x( l

0,lay) i
| 1
< 21*+1z—1/ V' (1 — —(Hy — Hg))[*dx
(2121 12X (0day) Lrs
< 2i*+1l_1E(2_i*l)- (96)

Eyeing (82) we recognize that

1/3

1/3
/ / 1 / / 2 / (96) det17—1 1 /0—ix
o )|V (W = (HY — HY))2da < (2 I71B(2 1))
—Li, )2 X (0,14

(94) . ) 1/3
< (2vrsces e )

_ 2(7éé3l;292-4*/3+4/311/3

< 201922313

< 27313

g T3 *
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for [, > 27Cl£é2l2é3. By definition, the restriction of H/. is compatible with the boundary values v’ - ',
Provided [, > %CH/ this allows us to plug (96) into the bound of Proposition 5 for I, and we see in
combination with (94) and (95) that
1/3 (9—ix\2
20p511/%(271)
_ 80P5li232_2i*_2l2

(05) .
< BN
< E)
4/3
Prop. 5 1
20 an( ([ /- (W = (0 — H) P
O(—Lu 12X (0,lay) Loy
1
sewtif | (' — (H — H)) P+ zz)
O(—1a,l)2 X (0,l0g) 3
(96) . . . ) _
< CP5131543 ((21*+1171E(271*1))4/3 + CHIZ;2321*+1171E(271*Z) + (271*1)2)
(94)
<

Cpsl}/? <(2i*+1z180p5z;g322i*z2))4/3 + Crr 1332 T 18Cps 1327212 + (2“1)2)
_ 0;232411292—41‘*/3+4/3l4/3 + 802, Crprly, 271 + Cp5l;é3(2_i*l)2.
Absorbing the last term into the left hand side we obtain
(2—1‘*[)2 < 0;1)231%92—41‘*/%16/314/3 +Cp5C’H/l§£32_i*+4l
and somewhat lazily conclude
97141 < max{ 219202, 12/3, 25 Croy Oy 13},

This is as desired when we choose

CL17 = 4max{219/20f2>5, 2501:'5, ?, 270Pé }
and recall Cg > 1. The factor 4 is to extend the estimate from 27%] to arbitrary l,,. The second estimate
is analogous to the second statement in Proposition 5. It is not useful as long as we need very precise
bounds but allows a nicer formulation in the final theorem. O

8.3 Decay of the cumulated field and local energy bounds

We now use the z’-local estimate of Lemma 17 to obtain information on H’ that allows us to consider
cuboid subdomains with smaller z3-extension. The technique and result of the next lemma resembles
[Con00, Proposition 2.11] and the preparatory lemmas. We prefer to postpone specializing the boundary
conditions for one more step, though. This is the point where we choose the C'ys that we carefully tracked
throughout Section 8.2.

Lemma 18. Given a constant Cy there is lower bound C(Cy) depending only on Cy such that for any
Crr > C(Cy) the following estimate is valid: Let
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and

2/3
1>Cu L2

and let (ms, h') be of minimal energy among (—1,1)2-periodic configurations on (—1,1)? x (0,1,,) satisfying

Osms + V' -B' = 0 distributionally in (—1,1)* x (0,1,,),
mg — m? weakly as r3 — 0,

ms — mg weakly as v3 — Iz,

where the top magnetization and bottom magnetization are functions
mg,mg : (_171)2 - [_15 1]5

such that the (—1,1)*-periodic curl-free fields Hy, Hfy satisfy

~V'-HL = mj in (=1,1)?
~V'-H = mbin (=1,1)%

le

/ hdrs = Hp— Hp in (=1,1)%
0

Assume
1/371/3
sup |[Hy — Hp| < Cr L1/

and that for any ' € (—1,1)*

1
/ \h' — —(H} — Hp)|Pdz < CoCR 1L/PLA3. (97)
B

/ l
Cyr Liég (I )X(O’lms) 3

Then the strength of the cumulated field

x3

H'(&! ) = Hp + / W (!, €)des

is close to the cumulated field at the boundary in the sense that at x3 = l,,/2
[H' (& 10y /2) = Hp ("), [H'(2',10,/2) = Hy(2)| < Croly Ly
and for arbitrary x € (—1,1) x (0,1;,)

|H'(x) — Hy(2')|,|H' (x) = Hy(2')] < 2C L0,

The two lengths I,, and L., should be thought of as the length of the cuboid and (after translation)
the distance to the sample boundary. The latter influences the typical domain size. When we use the
lemma for estimates at the sample boundary I, and L., coincide, but they differ substantially when we
apply the lemma in the interior of the sample. The fact that we do not distinguish between them in the
previous section can be compensated by scaling the constant C'y: to be used in Lemma 17 by 1532/3L%3.
We should expect a better behavior of the energy in the interior, but that would require comparison
constructions taking into account the fact that the top and bottom boundary magnetizations are not

arbitrary in the interior.
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Proof of Lemma 18. Let
T3

Hiy, (', w3) = Hp + 7— (Hp(2') — Hp(a"))

los

and consider for some fixed v € (0,1)

sup |H' — Hy,|.
(_lvl)2 X{'Ylw3}

We may assume that the supremum is attained at 2’ = 0. By definition, H' — HJ,, vanishes for
x3 € {0,1,,}. Thus we can estimate

|(H' = Hiip) (2", ylas)| =

Y
| - ) - gy

(Vlzg)*/? /%3
? 0

Lo
[ w6 - ) - Hp (e

IN

(Hr(a") — Hp(2'))

5 1/2
B (2’ &) — d§3> and

9 1/2
d§3> .

1
oy

|(H' = Hiip) (2", ylas)| =

lag

lz3
s«hwawf/
'leg

Combining the square of the two, we have

W (! &) - (Hp(a!) - Hy ("))

las

1 1 1
H/ _ H/' / lz 2 — H/ _ H/' / lm 2
e = HE )P = (S e ) 0 = Hi) )
Lo 1 2
< [T e - U - )| de
T3
Integrating in 2’ over a ball B, := B,(0) yields
1
10 = H) @ ) P <= )y [ W~ S (Hy — H)Ps!(98)
B, Bpx(0,lzg) 3
By |[V'- H'| = |m3| = 1 we have
sup V' (H' — Hy,)| < sup [ms(2',791e,) — yms (@', 1) < 147 (99)
(=002 x{vleg} @

From, say, [ACO06, Lemma 3.6] we take the standard estimate
V'ul2(0) < cl/ V'ul2da’ + Cy sup |Auf?
Bl Bl

and rescale to
|V'ul?(0) < Clp_2/ |V'ul?dz’ + Cyp? sup |Aul?.
B, B,

Because we assumed (h',ms3) to be minimal, we know that A’ is minimal for fixed mg and thus A’
is a gradient field for almost every z3 and so is H' because Hf(z') is curl-free. Thus we can write
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H' — H,

lin

= —V'u and obtain with (98) and (99) and assumption (97)

|(H/ - H{in)(ov’ylws)'z < Clp_2/ |HI - Hllin|2dx/ + Clp2 sup |v/ : (H/ - Hllin)|2'
BPX{71I3} (—l,l)2><{vlz3}

_ 1
< Cry(1 = )layp 2/ W — —(Hy = Hp)Pdz + C1p*(1 4 7)?
B, x(0,lz5) T3
S N74/3 -2 2 14/3 2 2
< Ory(1 =L p =CoChp Lyl” + C1p™(1 + )7,

provided p < Cy Liég. By requiring Cy, > 03/2 we may optimize in p to obtain

|(H/ - Hllin)(oa ’Ylm'a)|2

IN

0108/271/2(1 _ 7)1/2(1 + ”Y)CH'lgégLiég
CLCyPC 2P L23,

N

Let us emphasize the scaling in H’ here: Keeping in mind that our goal is to estimate H' in terms of
Chr Lglcé3lglcé3, the bound is quadratic in C'ys on the left hand side but only linear on the right.

We focus on v = % By choosing C'ys to satisfy

1 1 1/2 1/4 1/2
(2% - 5) Ccy > Clci*cy,
or equivalently

Crr > 4(2Y3 = 1)720,C)?

we can estimate

1
sup |H — Hy| < = sup |Hp— Hg|+ sup |H' — H{,,
(=112 x{5lag} 2 (<12 (=L,)2x{Ll.4}
—2/3 1/371/3
< 272cy kALY

and similarly
sup |H' — Hy| < 27*/°Cu P Ly,
(7l,l)2><{%lx3}

For arbitrary v our information is not as precise and we lose the exact scaling, but we still achieve

1 1
sup |H' — Hf|,  sup |H' — H}| < (— + W) CllPLY3,
(—L)2 % (0,Lag) (—1,0)2x (0,lz3) 2 2%

as claimed. O
Iterating Lemma 18 we obtain the two-dimensional equivalent of [Con00, Theorem 2.1].
Theorem 5. There is a universal constant C'y: such that the following holds. Let

1> 401207

and let (ms, h') be of minimal energy among (—1,1)?-periodic configurations on (—1,1)*x (0,14, 0) satisfying

Dsmz +V'-h = 0 distributionally in (—1,1)* x (0,14,.0),
ms — 0 weakly as x3 — 0,
msz — mg weakly as v — g,
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where the top magnetization is a function
my : (=10)% = [-1,1],
such that the (—1,1)?-periodic field H(z") = fol” (2!, x3)dxs satisfies
~V'-Hp =m3 in (—1,1)?

and

sup || < 2L,

Then the strength of the cumulated field
T3
Hl(xlu ,'Eg) = / hl(xlu g3)d§3
0

decays as
sup  |H'| < Cpl2l®  for any Ly, < lyy0. (100)
(=502 x{la3}

n any cuboi + ((—lgry ) x (0,1, C (-1, X (0,1lp,.1) with 1y > Cri7Ch the energy is
9, boid y Loty )2 % (0, 1y 1,1)2 x (0, Ly, hl CrainCl2l?, th
bounded by

1
2 / |V'ms|dx + |h’(3:)—l—(H’(x’,yg—l—lm)—H’(:z:’,yg))|2d:c < C’Lml;égli,,
(y/+[—lz/,lz/)2)><(y37y3+lm3) (y/+(—lz/,lz/)2)X(yg,yg-‘rlms) "

in particular, for cuboids at the sample boundary

2/ |V’ ma|dx +/ |h|2dz < CL/*12,.
(' +[=1pr12)?) % (0,ley) (' +(=1pr,15)2) % (0,l235)

Furthermore H' € COY/3((=1,1) x (0,14,.1)) with

2/3
|H'(2) = H'(y)] < Crr (14 1) | — /%,
Proof. We iterate Lemma 18 with I, := Ly, := 27%1,, o and Cy := C¥,, and Hj = 0 to obtain (100)
for I, of this form and, after enlarging C by a factor of two, also on Iy, € (27%1,5.0,27% ., 0), iee.
all I, < lgy 0 after the iteration. For the local energy bound, we use Lemma 18 with Cp+ replaced by

1532/3@27310]{,_
We now turn to the Holder continuity. Iterating Lemma 18, this time with L, 1= [, 1, I3, 1= 2_"“1%717
Hi(x") == H'(2', (1 — 27 %)y, 1), and H(2) := H'(2',1z,,1), We obtain

' (2!, w5) = H' (@', y3)| < Crroly) s — s/,

For the horizontal direction we employ the standard interior elliptic estimates after writing H' as a
gradient again. From

[V~ Fuly)
z',y'€B1/2 |‘TI - ylla

< C@)(|A ullp2ra-a s,y + 1V ull2(81)),
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valid for any 0 < a < 1, see e.g. [HL97, Theorems 3.1 and 3.13], we conclude
H (2 — H'(4
sup |H'(z', x5) (v, 23)]

'y’ €B1y2 |‘T/ _y/|a

< C(sup |V'- H'| +sup |H'(z',z3)|) < C(1 + Cr123).
B1 Bl

Combined with the boundedness of H' we have that H' € C%'/? with norm bounded by Cp (1 + 123 )

Ig,l

after replacing Cys with CCpqy. O

We remark that the theorem is applicable with H/. = 0 in order to bootstrap the argument starting from
the full sample.

8.4 Blowup at the sample boundary

Using the local energy bound from Theorem 5 we can prove Ll -compactness (for mg3) of blow-up
sequences.

Lemma 19. Let m3, h' be a minimizing (—1,1)?-periodic configuration as in Theorem 5.

Consider msz, h' as periodically extended to R? x (0,1,,). Then any blow-up sequence

mgj) (JI/, 1'3) = m3(9] (JI/ - :EIO)u 93j/2$3)7
h/(j)(xl,fﬂg) — 9j/2h/(9j (I/ _ :Eé), 93j/2$3)

for some 8 < 1 has a subsequence such that
mgj) — mj} in L, and a.e.,
W9 R weakly in L2,
o9 - g il
HY H"™ weakly in HL,,

in the sense that for any given compact domain after dropping finitely many items the restriction of the
functions in the sequence converges.

Proof. We fix some cuboid Q := Q(a) := (—a,a)? x (0, (Cr17Cr)~/?a3/?) and show convergence on Q
for a subsequence. Taking a diagonal subsequence for a series of cuboids, say Q(2*), yields the full result
on R? x (0, 00).

We have three uniform bounds for the sequence to work with. Trivially

(5)
3

[~ = 1

and by the energy bound of Theorem 5

/|V’mgj>|d;c < Cla),

Q

/|h/(j)|2d$ < Cla)
Q

By the L*°-bound for méj) we know that for a subsequence

mgj) — mj weakly-* in L>°(Q).
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We want to use the other two bounds to see that the convergence is in fact strong in L*. We thus want
to show that
/ m @ + )~ s)lde < Cly) (1on)
(—at+a,a—a)2x(0,(CrLi7Cxs)~3/2a3/2)
for |y'| < a,

IN

Clys|'/? (102)

1/2

/ |m§j)(x’,x3—|—y3) —m (2, z3)|?dx
(—ata,a—a)2x(a3/2,(Cri7Cyr)~3/2a3/2—a3/2)

for |y3| < a3/27

and then apply the compactness criterion of M. Riesz (see e.g. [Ada75, Theorem 2.21]).

The first inequality (101) is a direct consequence of the BV -bound, i.e.

/ m) @+ v/ s0) = P (@)l < |y [ (9o <l |C.

(—at+a,a—a)2x(0,(CL17Cyr)~3/2a3/2) Q

For the inequality (102) we use a compensated-compactness argument leveraging the weak control over
O3mg with the stronger control on V'ms. Let (f), denote the convolution (w.r.t. ') of any function f
with a scaled standard mollifier o, (2') = a™2¢1(ata’), 1 € C(B1(0)), ¢1 > 0 with mass 1. From
the compatibility equation for mgj), W9 we deduce

83(mgj))a + V. (hl(j))a -0
in (—a+a,a—a)? x (0,(CLi7Cr)~3/%a/?).

In particular, by the standard trick of estimating the divergence of the convolution by differentiation of
the mollifier

105(m$)all L2((—atara—oy x @ CorsCy -2y = IV (D )all 2((Catasa—ay x (0.(Cons Copr)-3/2a5/2))
S Oa_l||hl(j)||L2(Q)
< Ca %

Integrating over an zs-interval of length 7 we obtain

a5 +7) = (), 20) | 22—ty (s o) 20272y < Clrla ™
Finally, we bound the difference of the convolution to mgj) with the help of estimate (101) for the
2'-modulus of continuity. This yields

||m§j)(1?/a T3+ 7T) — mgj) («, $3)||L2((—a+a,a—o¢)2><(T,(CL17CH/)*3/2¢13/2—T))

< mP)ala’ w5+ 1) = (1)o@, 23) | L2((—ataa—a)x(m(CrarCun) /a3 —2)
+2[[(m5)a = 15[l 12((atas—a)x (0,(CrasCrr)-3/2a/2))
Clrla™ +2 sup Im (@' + ', 23) = m§ (2, 08) | L2((—ato,0-0)2x (0.(Curr Cp)—2/203/2)

IN

< Clrla +2 sup [lmg(@” 43/, 5) =m0 23)l L2 -ataa-a)x(0Curo o) /7072)
y'|<a

B ) ) 1/2
< O|T|a Ly 93/2 ISLIIE ||mg3)(;p/ + y’, IES) - mgj)(;p/, ‘T3)”L/l((faJra,afa)zX(O,(CL17CH/)*3/2¢13/2))
y'|<fa

< Clrla™t + Cal/?
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Choosing the optimal o = |7]?/3 we obtain (102). The uniform L>-bound implies that the L'-norm
in a boundary layer vanishes uniformly as the width converges to 0. This combined with (101) and
(102) allows us to conclude with the theorem of M. Riesz that the sequence is precompact in L'. Thus
a subsequence mgj) converges in L' (and any LP with p < oo) and almost everywhere to mj and in
particular [mj| =1 a.e.

From interior elliptic regularity theory (writing H' as a gradient) we know that

Q
(7(171,(14’1)2X(O,(CL17CH/)73/2(13/2) (7(171,(14»1)2X(O,(CL17CH/)73/2(13/2)
< C(a).

Thus H') is bounded in W2(Q) and so for a subsequence

9 o g weakly in W'2(Q).

Finally, boundedness in C?? implies compactness in C° by Arzela-Ascoli’s theorem and, taking a further
subsequence if necessary, we have

a9 g strongly in C%(Q),

so we have established convergence for ). As indicated in the beginning, we obtain the full result by
taking a diagonal sequence over some exhaustion of the half space. O

9 Appendix

9.1 Stray field

For the reader’s convenience we collect some facts related to the treatment of the stray field and our
notation involving the inverted divergence in this appendix.

As the magnetization induces a stray field h, the conceptually simplest way to include its contribution
to the energy is to explicitly include the squared L?-norm

/ |h|2dx
R3

in the energy. The stray field h satisfies Maxwell’s equations (greatly reduced in the magnetostatic case
to)

V-(h+m)=0and V xh=0, (103)
both understood in the sense of distributions on R3. For notes on the derivation, see e.g. [DKMOO5.
Being curl-free, h is a gradient field and, in fact, the Helmholtz projection of —m onto the space of
gradient fields. One way to compute h is setting h = —Vu where

Au=V-m in Q,
[%] =m-v on 0f, (104)
Au=0 outside €.
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We can similarly define h for periodic domains, then (104) reduces to the first equation Au =V - m.

An alternative approach to the stray-field energy is to include h in the minimization in order to make
the problem more local. Observe that the L2norm of (—[,1)2-periodic h : R? — R? defined by (103) can
be rewritten in terms of the minimization problem

/ |h|?dz = min {/ |h|2dz| h: R® — R3 is (—I,1)%-periodic in 2,
(—L1)2xR (—L1)2xR
V - (h 4+ m) = 0 distributionally in R?’}, (105)

and the second equation in (103) is just the Euler-Lagrange equation for the minimization. Hence, setting

1
eg.ati(m,h) = —(d* | |[VmPdz+Q [ |m/'|Pdz+ [ |h|*dx
Y 412 Q Q R3
we have
e(Q,d,t,l) = min {eQ,dﬁt,l(m, h)’ m, h : R® — R? are (—I,1)*periodic in 2/,

iml? = {1 for x5 € (—t,1),

0 otherwise,

V - (h 4+ m) = 0 distributionally in R?’}.

There is a third way to think about h that we want to illustrate with the stray-field term in the reduced
energy concerning mz : R® — {—1,1} and A’ : R® — R2, both (—I,)*periodic in x3 and satisfying
m3 = 1if 23 € (—1,1) and m3 = 0 otherwise and

V'h+ O3mz = 0.

We are tempted to invert the operator V’ in the above equation. Indeed we define for any distribution f
(with zero slicewise average)

2 _ -
/ ‘|V'|_1f‘ dx = min {/ |P/|2dz| b : R® — R3 is (—I,1)*periodic in a2/,
(—1,1)? xR (1,12 xR
V' i = f distributionally in R?’}

and can thus write in the spirit of (105)

2
/ |h’|2d;v:/ ’|V’|_183m’ dz.
(—=1,0)2xR (—=1,0)2xR

Another way to look at |V’|~! is by taking Fourier series in z’-direction. With
/ ’ 1 .y ! ’ ’
FQ)(n") == exp | —min’ - — ) {(z")dx
2l (7l7l)2 l
and )
1.2 l 2
VP e = [ S Sl s
/(—1,1)2 XR‘ | R Z w2 |n’|?

n’€Z?
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we can rewrite the energy as
l2
/ W |2dz = / 1V~ 0ms|? dax = / S o |(F (Bsma)) () P,
(=1,D)2 xR (—1,1)2xR R ez T /|

This also aligns well to the method of defining the energy via (104), when we plug in the usual Fourier-
series solution formula for Poisson’s equation on periodic domains.

Let us briefly look at the role of this inverse norm as a dual of the H'-seminorm making a brief appearance
in the proof of the interpolation inequality Lemma 4. Fix two (—[,[)?-periodic functions f, g with average
0, thought of as smooth, and let u be a solution to Au = g. Then by the divergence theorem and the
Cauchy-Schwarz inequality, the duality estimate is but a simple calculation

/ fgdx = —/ fAudx
(=10)? (=10)?

/ Vf-Vudx
(_lvl)2

1/2 1/2
(/ |Vf|2d:c’> (/ |Vu|2dx’>
(=11)? (=L

1/2

1/2
</(”)2|Vf|2d:c’> </(”)2“v|1g|2d:c’> . oo

IN

9.2 A Poincaré inequality

There are so many variants of the Poincaré inequality in the literature that it seems hard to find one
matching our specific needs. We include the following for convenience.

Lemma 20. Let Q1 := (0,1)". Any function
f:0,0)" >R

with derivatives in LP such that the mean over some subcuboid Qo =[]} (a;,a; + b;) vanishes satisfies

the Poincaré estimate ,
[ i< conp e [ vsra
. Q0] .

where the Q) are the projections of the Q; into one axis-parallel n — 1-dimensional subspace. The constant
C(n,p) only depends on the dimension n and exponent p and not on f, 1, a;, or, importantly, b;.

Considering a smooth function vanishing on (0,1)™ and constant 1 on (0,7)™ \ (0,2)™ we see that the
scaling is optimal for p = 1. For larger p it is just good enough for our purposes.

Proof. We start in one dimension and so consider

f:00,0)—=R

1 a-+b
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where (a,a + b) C (0,1). Averaging

+ / f'(r)dr
t
we obtain
1
flz) = b f )dr
a a+b
1
= —/ / f/(T)drdt
b (a,a+Db)
t
= - / / f/(r)drdt —/ / f/(r)drdt
b (a, mm{a-i—b z}) (max{a,z},a+b)
b—
= / mln{ 1}f dt—/ min{a+ 1}f
(a,z) (z,a+b)
Note that for t; < t» we use the usual conventions ftt; =— ;12 but (t2,t1) = 0 and so f(tz ty = 0. We
plug this expression into the integral for the LP-norm and get
1 l p
b—
/ |fPdx = / / mln{ l}f dt—/ min{a+ l}f t)dt| dx
0 0 (a,z) (z,a+b)
! . oca+ b ?
< mln{— L}Hf(¢)|dt + min { ——— 1}|f )|dt| dx
0 (a,x) (z,a+b)
U pl P
< / / |f(t)|dt| dx
o |Jo
l
< v [ 7P,
0
This is the desired estimate in one dimension.
For higher dimensions we assume w.l.o.g. that b, is minimal among the b; and let Q1 := (0,1)",

Qll = (Ovl)n_lz Q2 = H?:l(a/iuai + bz) and Ql2 = H? 11(a17a1 + b) and fy = |M|_1 fM fdx(/)
We note that

oy = (Far@n = gy oy + (Nat @
and thus with Jensen’s inequality and its elementary variant (a + b)? < 2P~ 1(a? + bP)
1for@ml? < 207 (1f Qs @) — FID) s + 287 () @y wm [P (107)
Applying the one-dimensional estimate to
9(xn) = fay(en)

we have that

/( ) | fQy ()P dan < l”/( ) |0 f oy @ Pdan < PFHIVFIP) 0 x 0.)-

) )
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Integrating (107) we obtain

folp < 17 /( e P

)

< l—lzp—l/ (Ifoi _f|p)Q6(zn)dﬂcn+l_l2p_l/ Ny don
(0,0) D

< ol / (frten) = )y dan + 207 P (IVFP) gy 0.)

< 112p1/( ) |Q6|*1/ [fQ(on) — FIPda!dzy + 2P P (IV £1P) s x (0,)-
0,1 i

1 Tn

Appealing to the usual Poincaré inequality

/ 1F = (Fowe|” dz < CpaI? / IV /[Pda
(0,1)@ (0,1)¢

we estimate

ol < 72 [T [ ey P, + 29 g
s 1(&n
< Cporpl PP Qg / IV 1Pdx + 207 HP(IVF1P) gy 0.0y

1

< (Cpo1p + 1)1*1+P2P*1|Q6|*1/ IV f[Pda.
Q1
With this estimate and the regular Poincaré inequality for d = n we conclude

/ fPde < oo /{D2 1 — foulPde + 207 1|Qu] |fu

< 2C [ (VIPds 4 G, V@I [ V5P
1 Q1
/
< C|Q,1|lp/ |V f|Pda.
|QO| 1
This covers the case of arbitrary dimension. O
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