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Summary

This thesis consists of three parts all of which deal with questions related to
scalar extensions and derived categories.

In the �rst part we consider the question whether the conjugation of a com-
plex projective K3 surface X by an automorphism of the complex numbers can
produce a non-isomorphic Fourier�Mukai partner of X. The answer is a�r-
mative. The conjugate surface is thus in particular a moduli space of locally
free sheaves on X. The proof consists of constructing non-isomorphic conjugate
derived equivalent K3 surfaces over an extension �eld of Q and then lifting the
situation to the complex numbers. We use our result to give higher-dimensional
examples of derived equivalent conjugate varieties. We furthermore prove that
a similar result holds for abelian surfaces.

The topic of the second part is the behaviour of stability conditions under
scalar extensions. Namely, given a variety X over some �eld K and its bounded
derived category Db(X), one can associate to it a complex manifold of stabil-
ity conditions, denoted by Stab(X). We compare the manifolds Stab(X) and
Stab(XL) for a �eld extension L/K. For the most part we only consider the case
of a �nite Galois extension. In particular, we prove that in this case Stab(X)
embeds into Stab(XL) as a closed submanifold. Since the topology on the sta-
bility manifold is closely related to the numerical Grothendieck group of Db(X)
we also study the question whether the stability manifold can change under
scalar extension if the numerical Grothendieck group does not. The answer is
that Stab(XL) could only acquire new connected components. This result is
applied to the stability manifold of a complex K3 surface.

In the third and last part we consider the following question: Can one nat-
urally de�ne an L-linear triangulated category TL if a K-linear triangulated
category T and a �eld extension L/K are given? Our guiding example is the
passage from Db(X) to Db(XL). We propose a construction and prove that
our de�nition gives the expected result in the geometric case. It also gives the
anticipated result when applied to the derived category of an abelian category
with enough injectives and with generators. We furthermore prove that in the
just mentioned cases the dimension of the triangulated category in question does
not change for �nite Galois extensions.
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Introduction

Classical algebraic geometry deals with varieties over some �xed algebraically
closed �eld, usually the �eld of complex numbers. This point of view is the
source for geometric intuition, but one of the fundamental advantages of the
language of schemes is that it allows us to do algebraic geometry over arbitrary
�elds and, more generally, over commutative rings. This approach is much more
�exible, but probably sometimes not as intuitive.

One of the fundamental constructions in algebraic geometry is the �bre
product of geometric objects. A special case of this construction is the no-
tion of scalar extension or base change: Given a scheme X over some �eld K
and a �eld extension L/K, one can consider the base change scheme XL =
X ×Spec(K) Spec(L). This is an example of the general philosophy emphasised
by Grothendieck that instead of working with a variety over some �xed �eld and
study its properties, one should instead study the properties of the morphism
f : X // Spec(K). Clearly, from this point of view it is important to under-
stand the behaviour of properties of f under scalar extension. For example, if
X // Spec(K) is smooth, then also XL

// Spec(L) is smooth: One says that
smoothness is stable under base change. On the other hand certain geometric
concepts do not have this property: For instance, X might be a connected space,
whereas XL is not.

In his paper [44] Mukai proved that the Poincaré bundle on A×Â, where A is
a complex abelian variety and Â its dual abelian variety, de�nes an equivalence
between the derived categories of coherent sheaves on A and Â. Since the two
varieties in this example are in general not isomorphic, it became clear that
the derived category provides a new geometrical invariant. Generalising this
special case one calls two varieties X and Y over some �eld K Fourier�Mukai
partners (FMP) or derived equivalent if there is an exact K-linear equivalence
between the derived categories of coherent sheaves on X resp. Y . Usually only
smooth projective varieties are considered since in this case the derived category
is reasonably big and by a theorem of Orlov [53] every equivalence is induced
by an object on the product.

The purpose of this thesis is to study base change techniques in the context
of derived, or more generally triangulated, categories. Thus, we study the e�ect
scalar extensions can have on the derived category resp. on the geometry encoded
by it.

Since Mukai's paper quoted above one large area of research is the investiga-
tion of possible Fourier�Mukai partners of a given smooth projective variety (in
the literature the results are usually formulated over C but the arguments often
work over an arbitrary �eld). Let us review some of the results. The easiest ex-
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ample is the case of a curve. It turns out that two curves are derived equivalent
if and only if they are isomorphic, so the derived category already determines
the variety. Another instance where this behaviour appears was investigated in
[17]: The authors in particular prove that a surface of general type does not have
any non-trivial Fourier�Mukai partners. A very prominent case was studied in
[9]: If the canonical or the anti-canonical bundle of a variety X is ample, then
any Fourier�Mukai partner of X is already isomorphic to X. Furthermore, it
is possible to compute the group of autoequivalences of the derived category of
X.

The last quoted results suggest that the derived category of a smooth projec-
tive variety X with trivial canonical bundle should be a particularly interesting
object. It is known that any such X over the complex numbers is, up to a �nite
unrami�ed covering, isomorphic to a product of abelian, Calabi-Yau and irre-
ducible holomorphic symplectic varieties. Thus, it is natural to investigate the
derived categories of the varieties of the three mentioned types. In dimension
one one only has elliptic curves, which are both abelian and Calabi-Yau, and
they do not have any non-trivial Fourier�Mukai partners. Orlov further inves-
tigated the case of abelian varieties in [54] and gave conditions for two abelian
varieties to be derived equivalent. In particular, there are only �nitely many
non-isomorphic FMPs of a given abelian variety A. The next interesting case
are K3 surfaces, which are the irreducible holomorphic symplectic varieties of
the smallest possible dimension.

Due to results by Mukai [45] and Orlov [53] we have geometric and cohomo-
logical criteria for K3 surfaces to be derived equivalent. In particular, it follows
that any given K3 surface has only �nitely many non-isomorphic Fourier�Mukai
partners. It is also possible to view derived equivalent K3 surfaces as elements
in the orbit of the action of a certain discrete group on the moduli space of
(generalised) K3 surfaces (see e.g. [32]). An account of some of the results can
be found in Chapter 1.

There is a di�erent group acting on the moduli space, namely the group of
automorphisms of the complex numbers. Namely, given a complex projective
K3 surface X and a σ ∈ Aut(C), we have the notion of a conjugate K3 surface
Xσ given by base change with respect to σ, see De�nition 1.1.9. The K3 surfaces
X and Xσ will in general be non-isomorphic as schemes over C, but they are
isomorphic overK = Q and thus there is a Q-linear exact equivalence Db(X) 'Q
Db(Xσ). An obvious question is whether one can �nd examples where there is a
C-linear exact equivalence as well, without X and Xσ being isomorphic over C.
Thus, we would like to understand the connection between the actions of Aut(C)
and the above mentioned discrete group on the moduli space of projective K3
surfaces. This is precisely the question which is investigated in Chapter 1. The
�rst main result of this thesis is the following theorem which shows that the
orbits of the two group actions can intersect in more than one point:

Theorem 1 (Theorem 1.3.6) There exist a complex projective K3 surface X
and an automorphism σ ∈ Aut(C) such that the conjugate K3 surface Xσ is a
non-isomorphic complex K3 surface, but there exists a C-linear exact equivalence
Db(X) ∼ // Db(Xσ).

The basic idea of the proof is to �nd a curve C in the moduli space of K3
surfaces over Q which is invariant under a so called Mukai involution, the latter
being a map sending a K3 surface X to a certain moduli space MX(v) of stable
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sheaves on X. The induced automorphism of the function �eld K(C) will allow
us to produce two non-isomorphic derived equivalent K3 surfaces over C. Since
this automorphism of K(C) extends to an automorphism of C these two K3
surfaces will also be conjugate.

We use the above result to produce higher-dimensional examples. To be
more precise we prove that there exist derived equivalent irreducible holomor-
phic symplectic varieties which are also conjugate (cf. Theorem 1.3.10). We
furthermore show that a similar result holds for an abelian surface, namely that
there exists a complex abelian surface A such that Â is a conjugate surface (cf.
Theorem 1.4.1).

In Chapter 2 we turn our attention to stability conditions on triangulated
categories. This concept was introduced by Bridgeland in [14]. One motivation
was to understand a certain notion of stability in string theory. Another mo-
tivation is more general and was already alluded to previously: Try to extract
geometry from homological algebra. Bridgeland proved that under mild as-
sumptions the set of stability conditions forms a (possibly in�nite-dimensional)
complex manifold. If one considers so called numerical stability conditions on
the derived category of a smooth projective variety X, then the stability mani-
fold, denoted by Stab(X), is always �nite-dimensional.

The stability manifold always lives over the complex numbers, even for the
derived category of a smooth projective variety de�ned over a, say, �nite �eld.
Thus, considering a �eld extension L/K and a smooth projective variety X over
K it is interesting to ask how the stability manifolds of X and its base change
scheme XL are related. The description of the topology on the manifolds (cf.
Theorem 2.1.9) suggests that Stab(X) and Stab(XL) might be di�erent if their
numerical Grothendieck groups are. On the other hand one might expect that
if the numerical Grothendieck group does not change under scalar extension,
then neither does the stability manifold. In order to tackle these questions we
will, for the most part, assume that the �eld extension is �nite and Galois.

Our second main result is the following
Theorem 2 (Theorem 2.2.22) For any �nite and separable �eld extension
L/K the manifold Stab(X) is a closed submanifold of Stab(XL).

The proof consists of a detailed investigation of the maps between the stabil-
ity manifolds induced by the functors p∗ and p∗ in the case where L/K is Galois.
The more general case then follows easily. We use several results obtained in a
slightly di�erent context in [40]. One of the interesting facts in this situation is
that the pushforward functor induces a continuous map Stab(X) // Stab(XL),
whereas the pullback functor only de�nes a map Stab(XL)p // Stab(X), where
Stab(XL)p is a certain closed subset of Stab(XL). We prove that in the Galois
case the subset Stab(X) is a deformation retract of Stab(XL)p. Thus, in a sense,
the maps induced by the scalar extension only see a part of Stab(XL) which is
of the same homotopy type as Stab(X). It is not clear at the moment what the
distinguished features of the complement of Stab(XL)p in Stab(XL) are.

In the last section of Chapter 2 we investigate the behaviour of stability
manifolds if one assumes that the numerical Grothendieck group does not change
under scalar extension. The result is
Theorem 3 (Theorem 2.4.7) Let L/K be a �nite Galois extension. If the
map

N(X)⊗ C //N(XL)⊗ C
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induced by the pullback map is an isomorphism, Stab(X) is non-empty and
Stab(XL) is connected, then we have a homeomorphism Stab(X) ' Stab(XL).

Thus, in the case of a �nite Galois extension and under the above assump-
tion, the stability manifold can only acquire new connected components (note,
however, that we do not have an explicit example where new components ap-
pear). One of the most interesting examples where one distinguished connected
component of the stability manifold has been computed is the case of a complex
K3 surface (see [15] and Example 2.1.13 for a brief account). Under certain as-
sumptions on the K3 surface in question Theorem 3 applies and one can prove
that the component is de�ned over the real numbers. For the precise statement
see Proposition 2.4.8.

Let us further mention an auxiliary result obtained in Chapter 2 (Proposition
2.3.4): It gives a necessary and su�cient criterion for a t-structure on Db(XL)
to descend to a t-structure on Db(X), where L/K is a �nite Galois extension.

The goal of Chapter 3 is to introduce scalar extensions for triangulated
categories. Namely, to any �eld extension L/K and a K-linear triangulated
category T we would like to associate an L-linear triangulated category TL.
One possible motivation for this (apart from it being a very natural question) is
the following: If L/K is a �nite Galois extension with Galois group G, then one
could de�ne the category of G-linearised objects in Db(XL) as Db(CohG(XL)),
the bounded derived category of the abelian category of G-linearised coherent
sheaves on XL. By Galois descent we have an equivalence CohG(XL) ' Coh(X)
and therefore Db(CohG(XL)) ' Db(X). A reasonable construction should give
Db(XL) as the base change category of Db(X). Generalising this example,
one could start with any �nite subgroup H of the group of autoequivalences
Aut(Db(XL)), de�ne some triangulated category of H-linearised objects and
then perform base change for this category. The question is then whether this
encodes interesting geometric information.

We will use the example from geometry, namely the passage from Db(X) to
Db(XL), as our guide for a possible construction. We will often assume that
the �eld extension L/K is �nite, although some of the arguments do indeed
generalise to arbitrary extensions.

The problem one faces in proposing a reasonable construction is that tri-
angulated categories are not as rigid as, say, abelian categories. For the latter
categories, as well as for additive ones without additional structure, there is
in fact a well-known and fairly simple construction (see e.g. [1] or [38]), which
gives the expected results if applied to e.g. the abelian category of sheaves on a
scheme X. This construction is recalled in detail in Section 3.1. There is also a
slightly di�erent approach which appears e.g. in [67] and which is structurally
similar, but uses Ind-objects. We can avoid this more technical construction,
mostly because we usually work with �nite extensions. The reason why this ap-
proach cannot work for a triangulated category basically boils down to the fact
that the cone is not functorial. To circumvent this problem we shall apply the
construction to enhanced triangulated categories, i.e. categories where the cone
is in fact functorial. We will therefore recall the basic de�nitions and properties
of (pretriangulated) di�erential graded categories and introduce base change for
them.

After having established the necessary results we present the de�nition of
base change: The basic idea would be to choose an enhancement A of T , de�ne
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base change for the enhancement and consider the homotopy category of the
base change category. However, this simple direct approach does not work and
one has to make the de�nition slightly more involved. We then prove our
Theorem 4 (Propositions 3.3.4, 3.3.5 and 3.3.7) Let T be a triangulated
category over K with a �xed enhancement. Then an L-linear triangulated cate-
gory TL can be constructed in a natural way. If X is a smooth projective variety
over K and T = Db(X), then TL is equivalent to Db(XL). If L/K is �nite,
then the last statement holds for any noetherian scheme X. Furthermore, if C
is an abelian category with enough injectives and with generators, then Db(C)L
is equivalent to Db(CL).

Our construction relies on the choice of an enhancement of T . Unfortunately,
we were not able to prove that working with a di�erent enhancement produces
the same result. The result above therefore has to be read as a statement
involving one speci�c enhancement.

Disregarding the just mentioned problem one can still ask how certain prop-
erties of our triangulated category behave under scalar extension. We consider
one example: In [62] the notion of the dimension of a triangulated category was
introduced. In the last section of Chapter 3 we consider its behaviour under
base change and prove
Theorem 5 (Propositions 3.4.4 and 3.4.5) Let C be an abelian category with
enough injectives and with generators and let L/K be a �nite Galois extension.
Then dim(Db(C)L) = dim(Db(C)). One also has dim(Db(XL)) = dim(Db(X))
for any noetherian scheme X.

About the ground �eld: Since our goal in the �rst chapter is to produce
derived equivalent conjugate complex K3 surfaces, we work in characteristic
zero. In fact, we work with �elds lying between Q and C. In the second chapter
the characteristic is allowed to be �nite, but working with Galois extensions we
have, for the most part, to assume that the characteristic of the ground �eld is
prime to the order of the Galois group. In the last chapter no assumptions on
the characteristic are made.
Notations: We write (Q)Coh(X) for the category of (quasi-)coherent sheaves
on a scheme X. If C is any additive category we write Kom(C) for the category
of complexes over C, K(C) for the homotopy category and D(C) for the derived
category. We use the usual notations for the various boundedness conditions,
thus e.g. Db(Coh(X)) is the bounded derived category. The latter will also be
denoted by Db(X). We will not use special symbols to denote derivation of
functors. We will write GL+(2,R) for the group of real 2 × 2-matrices with
positive determinant.
Acknowledgements: First and foremost, I would like to thank my advisor
Prof. Daniel Huybrechts for his patience, his interest and a lot of fruitful dis-
cussions.
Gratitude is due to the members of the complex geometry working group for
creating a very pleasant working atmosphere.
I also thank Heinrich Hartmann for suggesting the proof of Lemma 1.5.3 and
Dr. Emanuele Macrì and Dr. Paolo Stellari for their comments on the results of
Chapter 2.
During the preparation of this thesis I was �nancially supported by the SFB/TR
45 `Periods, Moduli Spaces and Arithmetic of Algebraic Varieties' of the DFG
(German Research Foundation).
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Chapter 1

Derived equivalent conjugate

K3 surfaces

In this chapter we prove Theorem 1.3.6 which says that there exist derived
equivalent non-isomorphic complex projective K3 surfaces, which are also con-
jugate to each other via an automorphism of the complex numbers. The proof
is given in Section 1.3 through the construction of a certain curve in the moduli
space of projective K3 surfaces of degree 12 over Q. In order to be able to do
this we start with a presentation of some basic facts about K3 surfaces over an
arbitrary �eld K of characteristic zero in Section 1.1. In particular, we present
some classical results about ample line bundles on K3 surfaces. For a large part
of this �rst section we restrict to K = C and recall the classical theorems about
the surjectivity of the period map and the Global Torelli Theorem, which is one
of the most important results in the theory: It gives a criterion for two K3 sur-
faces to be isomorphic in terms of the existence of a certain isomorphism of their
second integral cohomology groups. We then deal with the Derived Torelli The-
orem, which addresses the question when two complex K3 surfaces are derived
equivalent, and recall what is known about the possible Fourier�Mukai partners
of a given K3 surface. In Section 1.2 we consider moduli spaces of polarised K3
surfaces over C and over Q and study certain maps, so called Mukai involutions,
on these spaces. We prove that these maps are in fact morphisms and consider
their �xed point locus in the case where the polarisation is of degree 12. In the
following section we prove our main theorem and show that it can also be used
to produce higher-dimensional derived equivalent conjugate varieties. In Sec-
tion 1.4 we show that an analogue of Theorem 1.3.6 holds for abelian surfaces
as well. Finally, in Section 1.5 we give an alternative proof of Proposition 1.2.8.

1.1 K3 surfaces

Let K be a �eld of characteristic zero, which in the following mostly will be the
�eld of algebraic or the �eld of complex numbers.

De�nition 1.1.1. A K3 surface is a smooth two-dimensional projective variety
X over K such that ωX ' OX and H1(X,OX) = 0.
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Although non-projective surfaces play an important part in the theory over
K = C, we will ignore those and work under the projectivity assumption.

Example 1.1.2. The following are some basic examples of K3 surfaces.
(1) Consider the hypersurface given by a generic polynomial of degree four in P3.
It is smooth by assumption. The long exact cohomology sequence associated to
the sequence

0 // OP3(−4) // OP3 // OX // 0

gives that H1(X,OX) = 0. Finally, the adjunction formula gives

ωX ' ωP3 ⊗O(X)|X = (O(−4)⊗O(4))|X ' OX .

An explicit example of such a quartic K3 surface is e.g. given by the Fermat
quartic

{
x ∈ P3 : x4

0 + . . .+ x4
3 = 0

}
.

(2) In a similar fashion one proves that a smooth complete intersection of a
quadric and a cubic in P4 or the intersection of three quadrics in P5 is a K3
surface.
(3) An elliptic K3 surface is given by a morphism X // P1 such that almost all
�bres are elliptic curves.
(4) Let A be an abelian surface (see Section 1.4). The involution map ι on A
sending a point x to −x has 16 �xed points. Blowing-up A in these 16 points
gives a surface Ã and the involution ι induces an involution ι̃ on Ã. It can then
be shown that the quotient X = Ã/ι̃ is a K3 surface. It is called the Kummer
surface associated to A. In fact, one can also construct X by taking the minimal
resolution of the 16 singular points of the quotient A/ι. The K3 surface X is
sometimes denoted by Kum(A).

If X is a K3 surface, then an ample line bundle L on X will be called a
polarisation. The self-intersection number (L,L) of such an L is called the
degree of the polarised K3 surface (X,L), so e.g. the intersection of a quadric
and a cubic in P4 has degree six. A polarisation is primitive if L is not a
power of any line bundle on X. Using the �rst assertion of the next lemma
one can see that, for example, a polarisation with self-intersection number 12 is
automatically primitive.

Lemma 1.1.3. The self-intersection number (L,L) = 2d is even for any line
bundle L on X. An ample line bundle L is e�ective and its Hilbert polynomial
is given by hL(t) = dt2 + 2.

Proof. Using Serre duality, the triviality of the canonical sheaf and the assump-
tion H1(X,OX) = 0 we immediately derive that χ(X,OX) = 2h0(X,OX) = 2.
Applying the Riemann�Roch theorem it is then easy to see that

χ(X,L) =
1
2

((L,L)− (L, ωX)) + χ(X,OX) =
1
2

(L,L) + 2

and hence (L,L) is even for any line bundle L on X.
As to the second assertion: First, note that H2(L) = 0, because H2(L) =

H0(L−1) and the anti-ample line bundle L−1 does not have global sections.

9



Rewriting the above formula and using that (L,L) > 0, we conclude that L has
global sections. Its Hilbert polynomial is given by

hL(t) = (
1
2

(L,L))t2 − (
1
2

(L, ωX))n+ χ(X,OX) = (
1
2

(L,L))t2 + 2

and this concludes the proof. �

Remark 1.1.4. We will also need results from [63], which, in particular, give
that if L is an ample line bundle on a K3 surface, then Ln is generated by global
sections for n ≥ 2 and is very ample for n ≥ 3.

A family of K3 surfaces is a proper and �at morphism π : X // S over a
scheme S, which as all schemes in this chapter will be assumed to be of �nite type
over the �eld in question, such that the geometric �bres of π are K3 surfaces.
A family of (primitively) polarised K3 surfaces is given by a map π as above
together with a line bundle L on X which de�nes a (primitive) polarisation
restricted to each geometric �bre. Note that Ln is relatively very ample over S
for n ≥ 3.

For the rest of this section we will work over the complex numbers. Con-
sider a complex K3 surface X and its singular cohomology groups. Since X
is projective (in fact, for what follows it is su�cient for X to be Kähler and
the non-projective complex K3 surfaces have this property by [66]), we can
use Hodge theory and by the Hodge decomposition we see that H1(X,C) =
H1,0(X) ⊕ H0,1(X) = 0, since by assumption H0,1(X) = H1(X,OX) = 0.
Therefore, using the cohomology sequence associated to the exponential se-
quence we conclude that H1(X,Z) is also 0. Clearly H0(X,Z) = H4(X,Z) = Z
and it is also possible to show that H1(X,Z) = 0 and hence by Poincaré du-
ality H3(X,Z) = 0. The only remaining cohomology group is thus H2(X,Z).
The intersection pairing on H2(X,R) endows it with a structure of a lattice,
i.e. a free abelian group of �nite rank with a non-degenerate symmetric bilinear
integer-valued form, abstractly isomorphic to the lattice

Λ = U⊕3 ⊕ E8(−1)⊕2.

Here, U is the hyperbolic plane, i.e. the free module Z2 with bilinear form given

by
(

0 1
1 0

)
, and E8(−1) is the standard root lattice changed by a sign, cf. [3,

I.2.7]. Thus, Λ is isomorphic to the unique unimodular even lattice of signature
(3, 19). Here, even means that for any element α in the lattice the integer (α, α)
is even, and unimodular means that the canonical embedding of Λ into its dual
Λ∗ = HomZ(Λ,Z) is an isomorphism.

De�nition 1.1.5. The lattice Λ = U⊕3 ⊕ E8(−1)⊕2 is the K3 lattice.

To shorten notation we will write ΛK for the vector space Λ⊗ZK for K = Q,
R or C.

There is a weight two Hodge structure on H2(X,Z) given by

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

Since
H2,0(X) = H0(X,ωX) ' H0(X,OX)
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is one-dimensional, we can write H2,0(X) = Cσ for some holomorphic two-form
σ. The line H2,0(X) determines the Hodge structure, since H0,2(X) is complex
conjugate to it and H1,1(X) is orthogonal to H2,0(X) ⊕H0,2(X) with respect
to the intersection pairing. We have

Pic(X) = NS(X) = H2(X,Z) ∩H1,1(X).

The �rst equality follows from the injectivity of c1 : H1(X,O∗X) //H2(X,Z)
and the second from the fact that the second integral cohomology group of a K3
surface is torsion-free. The rank of Pic(X) is denoted by ρ(X). The maximal
Picard rank of a K3 surface in characteristic zero is 20 (in characteristic p it is 22)
and the minimal one is, of course, 1 (recall that we work under the projectivity
assumption). A generic K3 surface is in fact of Picard rank 1. One de�nes
the transcendental lattice T (X) to be the orthogonal complement of Pic(X) in
H2(X,Z). It inherits a weight two Hodge structure.

To state one of the major results in the theory of K3 surfaces, the Global
Torelli Theorem, recall that if X and X ′ are complex K3 surfaces, then a Hodge
isometry between H2(X,Z) and H2(X ′,Z) is a lattice isomorphism f which
respects the quadratic forms and the Hodge structures, where the latter in this
case amounts to saying that (f ⊗ C)(H2,0(X)) ⊂ H2,0(X ′).
Theorem (Global Torelli): LetX andX ′ be two complex K3 surfaces. There
exists an isomorphismX ' X ′ over C if and only if there exists a Hodge isometry
H2(X,Z) ' H2(X ′,Z).

This is the weak version. The stronger one addresses the question when the
Hodge isometry is induced by an isomorphism, which actually turns out to be
unique. The history of the theorem is long with main contributions by Burns
and Rapoport [18] and by Piateckii-Shapiro and Shafarevich [56], see the last
remark in Ch. VIII in [3].

There is a version of the above theorem when one does not look for iso-
morphic K3 surfaces, but for derived equivalent ones. We �rst need to recall
the

De�nition 1.1.6. Two complex K3 surfaces X and Y are called Fourier�Mukai
partners (abbreviated FM-partners), or derived equivalent, if there exists a C-
linear exact equivalence between their derived categories of coherent sheaves.

Of course, the de�nition of derived equivalence makes sense for arbitrary
varieties. For information on the subject see the book [33].

We also have to introduce the Mukai lattice H̃(X,Z), which is the abelian
group H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) with the bilinear form given by

〈(a, l, b), (a′, l′, b′)〉 := ll′ − ab′ − ba′.

This pairing is called the Mukai pairing. Of course, this is nothing but the
usual intersection product pairing, up to signs. Using the above description of
H2(X,Z) we see that

H̃(X,Z) ' Λ⊕ U

and hence the signature of this lattice is (4, 20). There is a weight two Hodge
structure on H̃(X,Z) given by

H̃2,0 := H2,0(X), H̃0,2 := H0,2(X)andH̃1,1 := H1,1(X)⊕H0(X,C)⊕H4(X,C).

11



With this de�nition the embedding H2(X,Z)�
� // H̃(X,Z) clearly preserves the

Hodge structures.
We can now state the

Theorem (Derived Torelli): The following conditions are equivalent:
(1.) Two complex K3 surfaces X and Y are derived equivalent.
(2.) There exists a Hodge isometry between T (X) and T (Y ).
(3.) There exists a Hodge isometry between H̃(X,Z) and H̃(Y,Z).
(4.) Y is a �ne moduli space of stable sheaves on X with respect to a certain
polarisation.

Proof. Mukai proved in [45] that (1.) implies (3.). In [53] the converse and the
equivalence of (3.) and (4.) were shown. The equivalence of (2.) and (3.) is
proved as follows: It is clear that any Hodge isometry between the full cohomol-
ogy groups induces a Hodge isometry between the transcendental lattices, be-
cause T (X) is the smallest primitive sublattice of H2(X,Z) containing H2,0(X)
after complexi�cation. For the converse one uses [50, Thm. 1.14.1] which states
that an isometry of the primitive even sublattice T (X) can be extended to
an isometry of H̃(X,Z), since the orthogonal complement T (X)⊥ of T (X) in
H̃(X,Z) contains the hyperbolic plane H0(X,Z)⊕H4(X,Z). �

Remark 1.1.7. A priori, `stable' in (4.) means `Gieseker stable', but, in fact,
one can replace `Gieseker stable' by `µ-stable' and `sheaves' by `locally free
sheaves', cf. [34, Prop. 4.1]. For the de�nition and properties of the di�erent
notions of stability of sheaves see the book [35].

Remark 1.1.8. In some cases it is possible to compute the number of non-
isomorphic Fourier�Mukai partners of a given K3 surface X (cf. [30, Cor. 2.7]):
(a) If ρ(X) ≥ 12, then X does not have any non-trivial FM-partners.
(b) If ρ(X) ≥ 3 and the determinant of Pic(X) is square free, then X does not
have any non-trivial FM-partners.
(c) If X is an elliptic K3 surface (cf. (3) in Example 1.1.2) with a section, then
X does not have any FM-partners.
(d) If ρ(X) = 1, so Pic(X) = NS(X) = ZH with H2 = 2d > 0, then the
number of non-isomorphic FM-partners of X is equal to 2τ(d)−1, where τ(d) is
the number of distinct primes dividing d (cf. also [51, Prop. 1.10]).

The proof is via lattice theory. For example, (c) follows from [50, Thm.
1.14.1]: The Picard group of an elliptic K3 surface with a section contains a
hyperbolic plane, namely the span of a �bre and the section. Therefore any
Hodge isometry of the transcendental lattice extends to a Hodge isometry of
the second cohomology group and the Global Torelli Theorem applies.

The K3 surfaces arising in (d) can in fact be described fairly explicitly: One
uses part (4.) of the Derived Torelli Theorem and it turns out that it is pos-
sible to write down the numerical invariants of the moduli spaces in question.
Apart from the above results there is the following: It was proved in [51] and
later in [68] that for a given natural number N there are at least N pairwise
non-isomorphic derived equivalent K3 surfaces. These surfaces are elliptic, their
Picard rank is 2 and, in contrast to the Picard rank 1 case, they do not neces-
sarily have polarisations of the same degree.
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The above shows that there are interesting geometric connections between
derived equivalent K3 surfaces. There is a di�erent operation for complex K3
surfaces, which is somewhat arithmetic in nature:

De�nition 1.1.9. Let X be a complex projective K3 surface and let σ be an
automorphism of the complex numbers. We de�ne the conjugate K3 surface Xσ

by the �bre product
Xσ //

��

X

��
Spec(C) σ∗ // Spec(C).

Remark 1.1.10. Clearly this de�nition can be applied to any complex variety.
Note that if the variety in question is the vanishing set of some polynomials
fi, i = 1, . . . , k, then the conjugate variety is precisely the vanishing set of
σ(fi). Here, for a polynomial f =

∑
aJxJ , aJ ∈ C, we denote by σ(f) the

polynomial
∑
σ(aJ)xJ . For example, if the polynomials de�ning the variety all

have rational coe�cients, then conjugation by any σ is the identity.
In general the process of conjugation can change the homotopy type as was

shown in [64], where Serre constructs two conjugate complex projective varieties
with di�erent fundamental groups. In our special case the change in geometry
caused by conjugation is more subtle. Note that e.g. the Picard groups of X
and Xσ are the same.

Question: Is it possible to determine the number of non-isomorphic conjugate
surfaces of a given K3 surface X? Clearly, the �eld of de�nition of X will be a
part of the answer.

Remark 1.1.11. The K3 surfaces X and Xσ will in general be non-isomorphic
as schemes over C but clearly they are isomorphic over K = Q and thus there
is a Q-linear equivalence Db(X) 'Q Db(Xσ).

Theorem 1.3.6 below gives an a�rmative answer to the following
Question: Do there exist non-isomorphic derived equivalent complex K3 sur-
faces which are also conjugate?

We will see below (Corollary 1.2.3) that it is possible to view derived equiva-
lent K3 surfaces as elements in the orbit of the action of a certain discrete group
on the moduli space of projective K3 surfaces (see e.g. [32]). By de�nition the
group Aut(C) also acts on this moduli space. Thus, we would like to understand
the connection between the actions of Aut(C) and the mentioned discrete group
on the moduli space of projective K3 surfaces.

1.2 Moduli spaces of K3 surfaces and Mukai in-

volutions

Let K be an algebraically closed �eld of characteristic 0. Using the general
theory in [73] it is possible to construct a coarse quasi-projective moduli scheme
MK

2d for primitively polarised K3 surfaces of degree 2d over K as follows: Con-
sider the Hilbert scheme HilbPN representing subvarieties of PNK with Hilbert
polynomial P (x) := n2dx2 + 2, where n ≥ 3, d is a natural number (which
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should be thought of as ( 1
2 (L,L))) and N = P (1) − 1 (for some details on the

Hilbert functor see the end of Section 1.3). Then there exists on open subscheme
U of HilbPN representing primitively polarised K3 surfaces together with an em-
bedding into PNK and the GIT quotient U/PGL(N + 1) is the coarse moduli
scheme in question.

For K = C there is a di�erent construction, which shows that the moduli
scheme of polarised complex K3 surfaces MC

2d is actually a 19-dimensional re-
duced, irreducible and normal space. To do this, we need to recall quite a few
de�nitions.

De�nition 1.2.1. A marked K3 surface is a K3 surface together with the choice
of an isometry ϕ : H2(X,Z) ' Λ = U⊕3 ⊕ E8(−1)⊕2.

Recall that H2,0(X) = Cσ for some holomorphic two-form σ. The period of
a K3 surface is by de�nition the point [σ] ∈ P(H2(X,C)) ' P(ΛC). To be more
precise, [σ] is an element of the period domain

Ω =
{

[x] ∈ P(ΛC) | x2 = 0, xx > 0
}
.

This space is an analytically open subset of the 21-dimensional quadric de�ned
by the condition x2 = 0. The period map assigns to a marked K3 surface (X,ϕ)
its period point. The Global Torelli Theorem implies the

Corollary 1.2.2. Two complex K3 surfaces X and X ′ are isomorphic if and
only if there exist markings ϕ for X and ϕ′ for X ′ such that the corresponding
period points are equal. Equivalently, their period points lie in one orbit of the
action of O(Λ), where O(Λ) is the group of isometries of Λ. �

The Derived Torelli Theorem translates to

Corollary 1.2.3. Two complex K3 surfaces X and Y are derived equivalent if
their period points lie in one orbit of the action of O(Λ̃). �

One also has the following important

Theorem (Surjectivity of the period map) For any point x in Ω there
exists a K3 surface X and a marking ϕ such that the period point of (X,ϕ) is
x.

Similarly to the Global Torelli Theorem the proof of this result has a long
history, cf. the last remark in Ch. VIII in [3].

We will be interested in the polarised version of the above. A (primitive)
polarisation of degree 2d corresponds to a (primitive) vector h in Λ such that
h2 = 2d and a marked polarised K3 surface is a marked surface such that the
marking respects the polarisation. The orthogonal complement of h in Λ is
isometric to the lattice

Λ2d = 〈k〉 ⊕ U⊕2 ⊕ E8(−1)⊕2,

where k2 = −2d. Since a polarisation is an element in H1,1(X), it is orthogonal
to σ and hence the period point of a polarised K3 surface (X,L) lies in the
polarised period domain

Ω2d = Ω ∩ P(Λ2d ⊗ C).
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Now set

Γ(h) = {g ∈ O(Λ) | g(h) = h} and Γ2d = im(Γ(h) //O(Λ2d)),

where O() denotes the group of isometries of the lattice in parentheses. Then,
by the surjectivity of the period map and the Global Torelli Theorem we have
the equality

MC
2d = Ω2d/Γ2d.

Clearly, this space is 19-dimensional, being the quotient of a 19-dimensional
space by a discrete group. It is furthermore an irreducible reduced normal
scheme, see [4].

We would like to see thatMQ
2d inherits all the above mentioned properties.

A �rst step is the following

Lemma 1.2.4. MC
2d 'M

Q
2d ×Spec(Q) Spec(C).

Proof. Both schemes can be constructed as GIT-quotients and this is compatible
with �eld extensions, cf. [47, Prop. 1.14]. �

Using the lemma we can now deduce the

Corollary 1.2.5. MQ
2d is an integral 19-dimensional normal scheme.

Proof. Since MQ
2d ×Spec(Q) Spec(C) is irreducible, so is MQ

2d being its image

under the projection. Further,MQ
2d is reduced, sinceMC

2d is and we can check
this property using an a�ne cover. The statement about the dimension is clear.

To prove the normality we will use the following result from commutative
algebra:
Let R and S be two K-algebras such that R⊗K S is Noetherian. Then R⊗K S
is normal if and only if R and S are normal (this is a special case of [71, Thm.
6]).

Since normality is a local property, we may take an open a�ne subset Spec(A)
in MQ

2d. Then, by normality of MC
2d, we have that A ⊗Q C is normal (and of

course Noetherian) and hence A is. �

Remark 1.2.6. The normality can also be proved as follows: The scheme
MQ

2d is the coarse moduli space of a smooth Deligne-Mumford stack (cf. [60]).
It is thus normal being the quotient of a smooth scheme by a �nite group
(characteristic zero is needed here).

We will now study so called Mukai involutions onMQ
2d. We will use several

results obtained in [69], where the action of the group of Mukai involutions on
MC

2d was investigated.

Let (X,L) be a complex 2d-polarised K3 surface with L2 := (L,L) = 2d =
2rs such that gcd(r, s) = 1 and r ≤ s. The Mukai vector v(E) of a coherent
sheaf E on X is by de�nition

v(E) = ch(E) ·
√
td(X).

15



Thus, the numerical invariants of a sheaf E with Mukai vector

(a, l, b) = v ∈ H0(X,Z)⊕H2(X,Z)⊕H4(X,Z)

are given by rk(E) = a, c1(E) = l and χ(E) = a + b. We can consider the
moduli space MX = MX(v), where v = (r, L, s) with r, L, s are as above. With
these choices one has that MX is a �ne moduli space and, furthermore, a 2d-
polarised K3 surface, see [69]. We will use the same notation over Q. In this
case MX is also in MQ

2d, which follows from the fact that this is true over C
and that any line bundle on the K3 surface (MX)C is already de�ned over Q,
since Pic(X) = Pic(XC) for a K3 surface X over Q. For a proof of the last
statement cf. [31, Prop. 5.4]. We de�ne the Mukai involution g to be the map
over Q sending X to MX . For the discussion of the fact that gC, and therefore
also g, is indeed an involution cf. subsection 2.1 in [69].

Remark 1.2.7. If a complex K3 surface X has Picard rank one all Fourier�
Mukai partners can be determined explicitly by describing the Mukai vectors v
as above. To be more precise, any FM-partner of a complex 2d-polarised K3
surface (X,L) is of the form MX(r, L, s) with r, L, s as above. Furthermore,
MX(v) �MX(v′) for v 6= v′. Compare statement (d) in Remark 1.1.8.

Proposition 1.2.8. The Mukai involution g is a morphism.

Proof. Consider the universal family f : X //U , where U is the open sub-
scheme of the Hilbert scheme used above. Note that U is reduced. The mor-
phism f is projective and hence there exists a relative moduli spaceM(v) //U
such that over t ∈ U we have the moduli space MXt(v) (cf. [35, Thm. 4.3.7]).
By construction there exists a polarisation L̃ onM(v). Its intersection number
on the �bres is a quadratic multiple, say a, of the given degree 2d. This can be
seen by looking at K3 surfaces of Picard rank 1 and using that the intersection
number is (locally) constant. Now, the étale shea��cation of the relative Picard
functor is representable by a scheme PicM(v)/U (see e.g. [13, Ch. 8]) and the
image of the morphism f : U // PicM(v)/U de�ned by L̃ lies in the image of
the closed immersion [a] : PicM(v)/U

// PicM(v)/U (where [a] is the multipli-
cation by a; it is a closed immersion by [60, Lem. 3.1.6]). We therefore have a
commutative diagram

U
f //

f̃ ((PPPPPPPPPPPPPP PicM(v)/U

PicM(v)/U .

[a]

OO

The morphism f̃ de�nes an element of the étale Picard functor, which by
de�nition is represented by a line bundle L′ on the �bre product M(v)′ :=
M(v) ×U U ′, for some étale covering π : U ′ //U , with the property that
π̃∗(L̃) ' L′a (π̃ is the natural projection). Thus, M(v)′ //U ′ is a family
of K3 surfaces with a polarisation of degree 2d and we therefore get a map
α : U ′ //MQ

2d. Using descent theory described in [24, Exp. VIII] we know

that there exists a morphism β : U //MQ
2d such that βπ = α if and only if α
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commutes with the two projections from U ′ ×U U ′, i.e. αp1 = αp2. But the
latter condition is clear for closed, and hence for all (everything is reduced),
points by the fact that α is the classifying map of the family and the K3 sur-
faces over the closed points of a �bre of π are all isomorphic. Thus we have
a map β : U //MQ

2d sending t to MXt(v). Since α is equivariant, it descends

to a morphism h from the GIT-quotient U/PGL = MQ
2d to MQ

2d so that the
following diagram commutes

U
β //

��

MQ
2d

MQ
2d.

h

==

By de�nition we have that g = h and thus g is a morphism. �

Remark 1.2.9. Clearly the same proof works for MC
2d (and any other al-

gebraically closed �eld of characteristic zero). In particular, we shall need
gC :MC

2d
//MC

2d.

It follows from the Derived Torelli Theorem that XC = X ×Spec(Q) Spec(C)
and MXC(v) = MX ×Spec(Q) Spec(C) are FM-partners.

From now on we will consider the case 2d = 12. In this case there is only one
Mukai involution sending a K3 surfaceX to the moduli spaceMX = MX(2, l, 3).
This involution will be denoted by g. The �rst step is to investigate its �xed
point locus. It was proved in [69] that over C the �xed point locus of gC contains
a divisor D. We will now prove the

Proposition 1.2.10. There exists a divisor in the �xed point locus Fix(g) of

the morphism g :MQ
2d

//MQ
2d.

Proof. The �xed point locus of a morphism can be de�ned as the intersection of
the diagonal and the graph which are both de�ned over Q. Since this construc-
tion commutes with base change we have that Fix(gC) =Fix(g)×Spec(Q)Spec(C).
Therefore Fix(g) has to contain a divisor. �

Remark 1.2.11. The divisor in Fix(gC) corresponds to K3 surfaces whose
Picard lattice contains a certain rank two nondegenerate even lattice. From
[43, Cor. 1.9 and Cor. 2.5] we know that there exists a K3 surface X of Picard
rank 20 in D. By [65, Thm. 6] X can be de�ned over a number �eld and in
particular over Q. In fact, the points of D de�ned over Q are dense in D which
gives another proof of the above proposition.

1.3 A special curve in MQ
12

In this section we will prove Theorem 1.3.6. The basic idea of the proof is to
�nd a curve C in the moduli space of K3 surfaces over Q of degree 12 which
is invariant under the unique Mukai involution described above. The induced
automorphism of the function �eld K(C) will allow us to produce two non-
isomorphic derived equivalent K3 surfaces over C. Since this automorphism
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of K(C) extends to an automorphism of C these two K3 surfaces will also be
conjugate.

We want to construct an irreducible g-invariant curve inMQ
2d. The strategy

is rather simple: Take a curve in the quotient space MQ
2d/ 〈id, g〉 and pull it

back toMQ
2d. The curve C we get will clearly be g-invariant. The irreducibility

will be achieved by using Bertini's theorem.
We �rst recall the following

Proposition 1.3.1. The quotient K =MQ
2d/ 〈id, g〉 is an algebraic variety. The

projection map π :MQ
2d

//K is �nite and surjective.

Proof. SinceMQ
2d is quasi-projective, this follows from [46], pp. 66�69. �

To ensure that C is irreducible, we want it to be connected and regular. The
�rst property is provided by the following

Proposition 1.3.2. Let A be an irreducible curve in K which is not contained
in the image of the �xed point locus of g but intersects it in at least one point.

Then the pullback curve C = π−1(A) =MQ
2d ×K A is connected. Furthermore,

g acts non-trivially on C.

Proof. Assume the converse, then there exist disjoint closed non-empty subsets
C = W1

⊔
W2. Since A intersects the �xed point locus, there exists a point

x ∈ A whose reduced �bre is precisely one point y. We may assume that
y ∈ W1. The map π is �nite, therefore proper, and hence π(W1), π(W2) are
closed in A. Since A is irreducible and both sets are non-empty, we must have
π(W1) = π(W2). However, this is impossible, because π(W2) does not contain
x. The last assertion is obvious. �

Next we have to make sure that C is regular. To do this we use Bertini's
theorem: Let A be given as an intersection of hyperplanes. If these hyperplanes
are generic, then A is regular away from the singularities of K. In order to
control these we need the following

Lemma 1.3.3. Let R be a normal integral domain, let H be a �nite group of
automorphisms of R and let RH be the ring of invariants. Then RH is normal.

Proof. If z ∈ Q(RH) is integral over RH , it is also integral over R and hence
z ∈ R, since R is normal. On the other hand, h(z) = z for all h ∈ H and
therefore z ∈ RH . Thus, RH is normal. �

Since we knowMQ
2d to be normal, it follows from the lemma that K is normal

as well. Thus, if A is generic among those curves intersecting the �xed point
locus in a generic point of the divisor, it will be regular and the same will hold
for C (cf. [27, Ch. III, Cor. 10.9]). Thus, we have proved

Proposition 1.3.4. There exists a g-invariant connected and regular, hence

irreducible, curve C (on which g acts non-trivially) inMQ
2d. �

However,MQ
2d is just a coarse moduli space and thus a priori we do not have

a family over C. This problem is avoided by the following
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Proposition 1.3.5. There exists a family X ′ //C ′ over an irreducible curve
C ′ such that the classifying map of this family is a �nite surjective morphism
C ′ //C. Denoting the function �elds K(C) resp. K(C ′) by K resp. L we
furthermore have that the inclusion K // L is a Galois extension.

Proof. The �rst statement is well-known, cf. e.g. [73, Thm. 9.25] (the general
idea is that the wanted curve lives in the Hilbert scheme). Denote the covering
curve by C̃. Considering function �elds we have a �nite (and of course separable)
extension K = K(C) //L′ := K(C̃). If this extension is not normal, we can
take the normal closure L of L′ to get a Galois extension K //L. Geometrically
this just corresponds to a �nite surjective morphism from a new curve C ′ // C̃
and a (pullback-)family over C ′. Hence the result. �

The morphism g induces an automorphism of K which can be lifted to an
automorphism g̃ of K = L (see e.g. [74, Thm. 6]). Considering the composition
of g̃ with the inclusion L //K and using the normality of L, we see that we
get an automorphism g′ of L which clearly extends g. This automorphism then
gives an automorphism of the curve C ′. Since g′ is an extension of g, it has the
same geometric interpretation, namely sending a �bre X to a K3 surface which
is isomorphic to MX(v).

The geometric �bre of the generic point of C ′ is a K3 surface and therefore
the generic �bre itself is as well (use [27, Ch. III, Prop. 9.3]). Denote this K3
surface over L as XL. Base change via g′ gives a second K3 surface over L
which by construction is MXL(2, l, 3) =: X ′L. Now �x an embedding i of L into
C. Denoting the induced action of g′ on Spec(L) by g′∗, we have the following
diagram:

XC //

��

XL

��

X ′L
oo

��

X ′C

��

oo

Spec(C) i∗ // Spec(L) Spec(L)
g′∗oo Spec(C).i∗oo

Extending the automorphism g′ of L to ĝ ∈ Aut(C) we see that XC and X ′C are
conjugate via ĝ. Clearly X ′C ' MXC(2, l, 3) and thus X ′C is not isomorphic to
XC for a generic XC. Note that by construction X and X ′ are not isomorphic
over L, but they might become isomorphic over C and this is why the `generic'
assumption is needed. Hence, XC and X ′C are Fourier�Mukai partners. We now
derive the

Theorem 1.3.6. There exist a complex projective K3 surface X and an auto-
morphism σ ∈ Aut(C) with the property that the conjugate K3 surface Xσ is
a non-isomorphic complex K3 surface and there exists a C-linear equivalence

Db(X) ∼ // Db(Xσ).

Proof. Set X := XC and σ := ĝ. �

Remark 1.3.7. One might ask whether the phenomenon described above is
at all special, since a priori it might be that any Fourier�Mukai partner of a
complex K3 surface X is obtained by conjugation and/or vice versa. However,
this is not the case as illustrated by the following: A generic quartic X in P3

C
given by a polynomial P has Picard rank 1 and no non-trivial Fourier�Mukai
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partners by part (d) in Remark 1.1.8. However, conjugating X with a generic
automorphism σ of C will produce a non-isomorphic conjugate quartic Xσ, since
conjugation in this case amounts to applying σ to the coe�cients of P . Hence a
non-isomorphic conjugate of a K3 surface need not be a Fourier�Mukai partner.

It should also be true that there exists a complex K3 surface of Picard rank
1 having a Fourier�Mukai partner which is not a conjugate surface. By (d) in
Remark 1.1.8 it would e.g. be enough to have a K3 surface de�ned over Q (so
it remains �xed under conjugation) which has Picard rank 1 and is of degree
2d with d having several prime divisors. In [72] the author gives an explicit
example of a quartic K3 surface with Picard rank 1 which is de�ned over Q.
Hopefully the techniques in [72] can be used more generally to produce a K3
surface of su�ciently high degree.

Note that there are examples of derived equivalent K3 surfaces which cannot
be conjugate: These are the elliptic K3 surfaces of Picard rank 2 mentioned
after Remark 1.1.8 and they have non-isometric Picard lattices. It would be
very interesting to have a K3 surface of e.g. Picard rank 2 in the above theorem,
because this would give an example of non-generic derived equivalent K3 surfaces
with isometric Picard lattices.

Remark 1.3.8. We chose to work with K3 surfaces of degree 12 because it
simpli�es the exposition. The statements we needed from [69], in particular
that the �xed point locus contains a divisor, hold more generally for degree 4p,
where p is an odd prime such that p is not a square modulo 4 and 2 is not
a square modulo p. Even more generally, there are results in [69] describing
conditions on the involution which ensure that its �xed point locus contains a
divisor, thus giving us the possibility to use degrees with several prime factors.

We can use the above theorem to produce higher-dimensional examples of
derived equivalent conjugate varieties. To do this recall that given a projective
scheme W over C with an embedding W ⊂ PrC, a numerical polynomial P (t) ∈
Q[t] and a scheme S over C one de�nes

HilbWP (t)(S) = {Z ⊂ Y × S | Z proper and �at/S, P (Zs) = P ∀ s ∈ S} .

This gives a contravariant functor from the category of schemes over C to the
category of sets. This functor is representable by a projective scheme, cf. [35,
Ch. 2]. If P (t) = n is constant, then we will denote the functor by HilbnW and
the scheme representing it, the Hilbert scheme, by Hilbn(W ) (of course, this
construction works over other �elds than C).

For a K3 surface X the Hilbert schemes X [n] := Hilbn(X) are so called
irreducible holomorphic symplectic varieties or hyperkähler varieties. This, for
us, means that X [n] is a simply-connected projective variety such that the space
of global sections of Ω2

X[n] is generated by a closed non-degenerate holomorphic
two-form. The dimension of X [n] is 2n. We will need the following easy

Lemma 1.3.9. Let X be a complex projective variety. Then we have the equality
(X [n])σ = (Xσ)[n] for any automorphism σ of C.

Proof. First, note that the map f � // fσ de�nes an isomorphism Hom(S, T ) '
Hom(Sσ, Tσ) for schemes S, T over C and σ ∈ Aut(C), and, writing τ for σ−1,
the equality (Sσ)τ ' S holds. Furthermore we also have (S × T )σ ' Sσ × Tσ.
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The claimed equality now follows from

Hom(S,Hilbn(Xσ)) = {Z ⊂ S ×Xσ |Z proper& �at/S, P (Zs) = n ∀ s ∈ S} '

' {Zτ ⊂ Sτ ×X | Zτ proper& �at/Sτ , P (Zτs ) = n ∀ s ∈ S} =

= Hom(Sτ ,Hilbn(X)) ' Hom(S,Hilbn(X)σ),

since an object representing a functor is unique up to isomorphism. �

Now recall from [57, Prop. 8] that if we have an equivalence Db(X) ' Db(Y )
of two smooth projective surfaces X and Y , then there is also an equivalence
Db(Hilbn(X)) ' Db(Hilbn(Y )). Thus, we derive the

Theorem 1.3.10. There exist a hyperkähler variety Y and an automorphism
σ of C such that Y and Y σ are derived equivalent.

Proof. Set Y = Hilbn(X) with X as in Theorem 1.3.6 and use the lemma. �

Remark 1.3.11. If X and Y are non-isomorphic K3 surfaces, then it is not
true in general that Hilbn(X) and Hilbn(Y ) are also non-isomorphic for all n, cf.
[75, Ex. 7.2] where the author gives an example such that the Hilbert schemes
are indeed isomorphic for n = 2 and n = 3. Thus, in the above theorem we
might have produced isomorphic Fourier�Mukai partners. However, we believe
that the examples in [75] are rather special and that the theorem will indeed
produce non-isomorphic Hilbert schemes in the general case.

1.4 Abelian surfaces

Recall that an abelian surface A over a �eld K of characteristic zero is by
de�nition a complete algebraic surface over K with a group law m : A×A //A
such thatm and the inverse map are both morphisms of varieties. Such a surface
is necessarily smooth, projective and it is commutative as a group (cf. e.g. [46]).

The dual abelian surface is the variety Pic0(A), denoted by Â. Given an
ample line bundle L on A, there is an isogeny, i.e. a surjective morphism with
�nite kernel, φL : A // Â de�ned by x � // t∗xL⊗L−1, where tx is the translation
by x map. The kernel of this isogeny is isomorphic to (Z/d1Z × Z/d2Z)2 for
some positive integers di with the property d1|d2. The vector (d1, d2) is called
the type of the line bundle L. A polarised abelian surface is a pair (A,L), where
L is ample on A and the type of such a surface is by de�nition the type of L.
A polarisation L is principal if and only if it is of type (1,1), i.e. the isogeny
de�ned by L is an isomorphism.

Recall that for any algebraically closed �eld K of characteristic 0 there exists
a coarse moduli space A(1,t) for polarised abelian surfaces of type (1, t). This
moduli space is a quasi-projective normal threefold (see e.g. [47]).

Using [7, Thm. 1.1] we know that there exists an involution fK on A(1,t)

sending a polarised abelian surface (A,L) to the dual polarised abelian surface
(Â, L̂). Here, the dual polarisation is e.g. de�ned by demanding that its pullback
under the isogeny φL induced by L is tL. For other descriptions of L̂ (in the
case where the ground �eld is C) see [6].

In the case K = C we use [23, Thm. 3.4] to deduce that the �xed point locus
of fC contains at least one divisor. With the same arguments as in Proposition
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1.2.10 we see that Fix(fQ), the �xed point locus over K = Q, contains a divisor
as well. The techniques in Section 1.3 then apply and give an abelian surface A
and a σ ∈ Aut(C) such that Â ' Aσ. By the classical results of Mukai, see [44],
A and Â are always derived equivalent and therefore A is an abelian surface
such that its non-isomorphic Fourier�Mukai partner Â is a conjugate surface.
Thus we have proved the

Theorem 1.4.1. There exist an abelian surface A and an automorphism σ ∈
Aut(C) such that the non-isomorphic Fourier�Mukai partners A and Â are con-
jugate abelian surfaces. �

Remark 1.4.2. Similarly to the case of K3 surfaces one can associate a hy-
perkähler variety Kn(A), n ≥ 1, to any abelian surface A. It is of dimension
2n and is called the generalised Kummer variety of A. The name stems from
the equality K1(A) = Kum(A). One could hope to use the above theorem to
produce yet another example of derived equivalent conjugate hyperkähler va-
rieties. However, in the K3-case we used the fact that derived equivalent K3
surfaces have derived equivalent Hilbert schemes. Unfortunately, a similar re-
sult is missing for the generalised Kummer varieties. In [48] the author gives an
example which shows that the generalised Kummer varieties of derived equiva-
lent abelian surfaces need not be birational. It was shown in [29] (cf. also part
(a) in Remark 1.1.8, since the Picard rank of a Kummer surface is at least 16)
that for any two abelian surfaces A and B one has

Db(A) ' Db(B)⇐⇒ Db(Kum(A)) ' Db(Kum(B))⇐⇒ Kum(A) ' Kum(B).

It is open what kind of statement one has in higher dimensions.

1.5 Appendix to Chapter 1

In this section we will give a di�erent proof of Proposition 1.2.8. The strategy
is as follows: First prove that any Mukai involution is an analytic morphism of
the moduli space over C, then show that it is in fact algebraic and using this
conclude that a Mukai involution over Q is a morphism as well.

Proposition 1.5.1. Any Mukai involution is an automorphism of MC
2d con-

sidered as a complex-analytic space.

Proof. Let gC be an arbitrary Mukai involution sending X to MX(r, l, s) =:
M(v). We know from [45] that there exists a Hodge isometry α : Λ ' v⊥/Zv
(where v⊥ is the orthogonal complement of v in the Mukai lattice H̃(X,Z)).
It is clear that α induces an isomorphism P(Λ ⊗ C) ' P((v⊥/Zv) ⊗ C). This
isomorphism restricts to an isomorphism of the period domains Ω and Ω′ on
both sides.

Now recall that if X is a K3 surface, then we get its associated period point
x0 ∈ Ω by choosing an isometry ϕ : H2(X,Z) ' Λ. We get the period point
x̃0 of M(v) in Ω by using the isometry α−1 ◦ ψ−1 : H2(M(v),Z) ' Λ where

ψ : v⊥/Zv ' // H2(M(v),Z) is the isometry from [45]. The map gC sends
x0 to x̃0. Now, α(x0) is by de�nition the period point of M(v) considered as
a point in Ω′. Thus, on the level of period domains the Mukai involution gC
is just the isomorphism α. Factoring out the markings is compatible with this
process. The same proof works in the polarised setting. �

22



Proposition 1.5.2. A Mukai involution gC is an algebraic morphism.

Proof. We want to apply the following theorem of Borel (see [12]):
If Y is a quasi-projective variety and f : Y // Ω/Γ is a holomorphic map to the
quotient of a homogeneous symmetric domain Ω by an arithmetic torsion-free
group Γ, then f is algebraic.

We wish to apply the theorem to Y =MC
2d, Ω = Ω2d, Γ = Γ2d and f = gC.

Since Γ2d is in general not torsion-free, we cannot apply the theorem directly.
However, using results in [59] (compare also the proof of Prop. 2.2.2 in [28])
we can avoid this problem by using level covers and considering the algebraic
construction of MC

2d described in Section 1.2. Denote the open subset of the
Hilbert scheme used there by U .

For l ≥ 3 consider Γ2d(l), the l-th congruence subgroup of Γ2d. This group is
torsion-free and the projection Ω2d/Γ2d(l) // Ω2d/Γ2d is �nite. Since the group
of automorphisms of a polarised K3 surface that �x the polarisation is �nite and
this group acts faithfully on the cohomology of a K3 surface, we can apply [59,
Prop. 2.17], which gives us a �nite Galois covering U ′ of U such that U ′ //U
has Galois group Γ2d/Γ2d(l). Thus we get a commutative diagram

U ′/PGL

��

// Ω2d/Γ2d(l)

��
MC

2d

gC // Ω2d/Γ2d.

All the varieties in the diagram are quasi-projective and the vertical arrows are
�nite and surjective maps given as quotients of the action of a �nite group. By
Borel's result the upper map is algebraic and thus so is gC. �

To conclude one has to check that g is also a morphism. Since we are working
over algebraically closed �elds we can switch to the classical language and only
consider closed points. So, g is a map of sets and by the above gC is a morphism,
i.e. locally on a�ne sets given by polynomials which a priori could have non-
algebraic coe�cients. However, we know that applied to points with Q-entries
these polynomials give algebraic values.

Lemma 1.5.3. Let X ⊂ AnQ be an a�ne variety with coordinate ring K[X] and
let p ∈ K[XC] be a function having algebraic values on X. Then p ∈ K[X].

Proof. Set
H :=

{
σ ∈ Aut(C) : σ|Q = id

}
,

then CH := {c ∈ C : σ(c) = c ∀σ ∈ H} = Q. It follows that C[x1, . . . , xn]H =
Q[x1, . . . , xn] and K[XC]H = K[X]. Now consider p− hp for a polynomial p as
above and h ∈ H. By assumption we have that p − hp is zero on XC(Q) and
therefore also on XC(C) since XC(Q) ⊂ XC(C) is dense. Therefore p−hp = 0 ∈
K[XC] and thus p ∈ K[X]. �

Thus we have re-proved the

Proposition 1.5.4. The map g is a morphism. �
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Chapter 2

Stability conditions under

change of base �eld

In this chapter we investigate the behaviour of Bridgeland stability conditions
under change of base �eld, with particular focus on the case of a �nite Galois
extension. The main results are Theorem 2.2.22 which says that for a �nite and
separable extension L/K the stability manifold Stab(X) of a smooth projective
variety X over a �eld K embeds as a closed submanifold into Stab(XL) (where
XL is the base change scheme) via some naturally de�ned map, and Theorem
2.4.7 which states that if the numerical Grothendieck group does not change
under �eld extension, then the stability manifold can only acquire new connected
components over the larger �eld. Thus, if Stab(X) is non-empty and Stab(XL)
is connected, then these manifolds are homeomorphic.

We start by recalling the basic de�nitions of the theory of stability conditions
in Section 2.1. One of the fundamental facts is that a stability condition can
be viewed in two di�erent ways: Via so called slicings or via hearts of bounded
t-structures. Section 2.2 investigates base change from the point of view of
slicings, whereas in Section 2.3 the latter point of view is used. Somewhat
surprisingly, computations via hearts are fairly elusive and we can only prove
some auxiliary results.

In the last section we work under the assumption that the Grothendieck
group does not change under �eld extension, prove our second main result and
apply it to the case of K3 surfaces.

2.1 Stability conditions

In this section we recall basic de�nitions and properties of Bridgeland's frame-
work. Throughout we �x a K-linear essentially small triangulated category T ,
which is furthermore assumed to be of �nite type, that is, for any two objects
E,F in T the K-vector space ⊕iHomT (E,F [i]) is �nite-dimensional over K.

De�nition 2.1.1. A stability condition σ = (Z,P) on T consists of a group
homomorphism Z : K(T ) //C, where K(T ) is the Grothendieck group of T ,
and a collection of full additive subcategories P(φ) ⊂ T for φ ∈ R, satisfying
the following conditions:
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(i) If 0 6= E ∈ P(φ), then Z(E) = m(E) exp(iπφ) for some m(E) > 0.
(ii) P(φ)[1] = P(φ+ 1) for all φ.
(iii) For φ1 > φ2 and Ei ∈ P(φi) we have Hom(E1, E2) = 0.
(iv) For any 0 6= E ∈ T there exist �nitely many real numbers φ1 > . . . > φn
and a collection of triangles Ei−1

//Ei //Ai, i ∈ {1, . . . n}, with E0 = 0,
En = E and Ai ∈ P(φi).

Recall that there is a bilinear form onK(T ), known as the Euler form, which
is de�ned by the formula

χ(E,F ) =
∑
i

(−1)i dimK Hom(E,F [i]).

A stability condition is numerical, if Z factors over the numerical Grothendieck
group N(T ), which by de�nition is the quotient of K(T ) by the nullspace of
the Euler form.

The map Z is called the central charge, the collection P the slicing and an
object in P(φ) semistable of phase φ. Given any interval I ⊂ R one de�nes P(I)
to be the extension-closed subcategory of T generated by P(φ) for φ ∈ I. Recall
that a subcategory D in T is called extension-closed, if the following condition
if ful�lled: Whenever A //B //C is a triangle in T and A,C are in D, then
B is also in D.

Using this de�nition we can describe a connection to an important notion in
the theory of triangulated categories, namely that of a t-structure, �rst intro-
duced in [5]. Recall the

De�nition 2.1.2. A t-structure on a triangulated category T is a full subcat-
egory F ⊂ T , such that F [1] ⊂ F and with the property that if one de�nes

F⊥ = {E ∈ T | HomT (F,E) = 0 for all F ∈ F} ,

then for every object T ∈ T there exists a triangle F // T //E with F ∈ F
and E ∈ F⊥.

A t-structure is called bounded if T =
⋃
i,j∈Z F [i] ∩ F⊥[j].

Note that the above categories F and F⊥ are in fact additive. This is easy
to prove and will be used later on.

One often writes a t-structure as a pair of subcategories (T ≤0, T ≥0) satisfy-
ing the following conditions (i) and (ii). We use the notation T ≤n = T ≤0[−n]
and T ≥n = T ≥0[−n] for any n ∈ Z.
(i) Hom(X,Y ) = 0 for every X ∈ T ≤0 and Y ∈ T ≥1.
(ii) Every object T ∈ T �ts into a triangle τ≤0T // T // τ≥1T with τ≤0T ∈
T ≤0 and τ≥1T ∈ T ≥1.

The connection with the de�nition is given by the identi�cation T ≤0 = F
and T ≥1 = F⊥. The category A = T ≤0∩T ≥0 is abelian and called the heart of
the t-structure. The short exact sequences in A are precisely the exact triangles
in T all of whose vertices are objects of A. There are truncation functors τ≤0

and τ≥1 which are adjoint to the natural inclusions T ≤0 // T resp. T ≥1 // T .
Using shifts one can also de�ne the functors τ≤n and τ≥n for any n ∈ Z. We
then de�ne the cohomology objects of an object T by H0(T ) := τ≤0τ≥0(T ) and
Hi(T ) = H0(T [i]). The guiding example is the standard t-structure on the
bounded derived category Db(C) of an abelian category C, where one de�nes
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F to consist of those complexes E whose cohomology objects Hi(E) are zero
for i > 0. The heart of this t-structure is then precisely C and the abstractly
de�ned cohomology objects are the usual ones.

We have the following easy

Lemma 2.1.3. If σ = (Z,P) is a stability condition, then the category P(> t)
de�nes a bounded t-structure on T for all t ∈ R. Similarly, the category P(≥ t)
also de�nes a bounded t-structure.

Proof. Property (ii) in the de�nition of a stability condition gives P(> t)[1] ⊂
P(> t), by (iii) the category P(> t)⊥ is precisely P(≤ t) and the required
triangle is given by (iv). The proof of the second statement is the same. �

The heart of the t-structure P(> t) is the category P(t, t+ 1]. As a matter
of convention, one de�nes the heart of the slicing P to be P(0, 1]. Clearly, one
could alternatively work with the abelian category P(t, t+1] for any t ∈ R. One
could equally well use hearts of the form P[t, t+ 1).

The collection of triangles in (iv) is the Harder�Narasimhan �ltration (ab-
breviated HN-�ltration) of E and the Ai are the semistable factors. The HN-
�ltration is unique up to a unique isomorphism. Given an object E ∈ T
one de�nes φ+

σ (E) = φ1, φ−σ (E) = φn and the mass of E to be the number
mσ(E) =

∑n
i=1 |Z(Ai)|. With these de�nitions one for example has that the

subcategory P(a, b), for an interval (a, b), consists of the zero object in T to-
gether with those non-zero objects E satisfying a < φ−(E) ≤ φ+(E) < b.

There is an equivalent way of giving a stability condition. To do this de�ne
a stability function on an abelian category A to be a group homomorphism
Z : K(A) //C such that for all 0 6= E ∈ A the complex number Z(E) lies in
the space H := {r exp(iπφ) | r > 0 and 0 < φ ≤ 1} ⊂ C. The phase of an object
E ∈ A is then de�ned to be

φ(E) = 1/π arg(Z(E)) ∈ (0, 1].

The phase allows one to order objects of A and it is thus possible to de�ne
semistable objects and HN-�ltrations: An object E ∈ A is said to be semistable
if every subobject 0 6= F ⊂ E satis�es φ(F ) ≤ φ(E). Equivalently, an object
is semistable if for any nonzero quotient E // //G one has φ(E) ≤ φ(G). Also
recall the

De�nition 2.1.4. Let Z : K(A) //C be a stability function on an abelian
category A. A Harder�Narasimhan �ltration of a nonzero object E ∈ A is a
�nite chain of subobjects

0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E

such that the factors Fi = Ei/Ei−1 are semistable objects of A and

φ(F1) > φ(F2) > · · · > φ(Fn).

This generalises the classical case, where A is the category of coherent
sheaves on a smooth projective curve and the ordering is done with respect
to the slope µ = deg /rk.

A stability function Z is said to have the Harder�Narasimhan property if any
object possesses a HN-�ltration (historically this property was �rst proved in
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[26] for the slope function on the category of vector bundles on a curve). In this
case we will call Z a stability condition. There is the following handy criterion
for checking the HN-property:

Proposition 2.1.5. [14, Prop. 2.4] Suppose a stability function Z : K(A) //C
satis�es the chain conditions
(a) there are no in�nite sequences of subobjects in A

· · · ⊂ Ei+1 ⊂ Ei ⊂ · · · ⊂ E2 ⊂ E1

with φ(Ei+1) > φ(Ei) for all i,
(b) there are no in�nite quotients in A

E1
// //E2

// // · · ·Ei // //Ei+1
// // · · ·

with φ(Ei) > φ(Ei+1) for all i. Then A has the Harder-Narasimhan property.

The connection between the two concepts is given by

Proposition 2.1.6. [14, Prop. 5.3] To give a stability condition on a triangu-
lated category is equivalent to giving the heart A of a bounded t-structure and a
stability function with HN-property on A.

Proof. First, recall that K(A) = K(T ). Given σ = (Z,P) one sets A = P(0, 1]
and checks that Z de�nes a stability condition on A. In the other direction
given (Z,A) one de�nes P(φ) for φ ∈ (0, 1] to be the semistable objects of phase
φ with respect to Z. �

Remark 2.1.7. Again note that one could equally well de�ne a stability con-
dition on an abelian category A by replacing the subspace H ⊂ C by a strict
half-plane

Hα := {r exp(iπφ) | r > 0 and α < φ ≤ α+ 1} ⊂ C.

This is what Bridgeland calls a skewed stability condition. It will be important
to us that one could also work with strict half-planes of the form

H ′β := {r exp(iπφ) | r > 0 and β ≤ φ < β + 1} ⊂ C.

Proposition 2.1.5 still applies and, clearly, Proposition 2.1.6 still holds.

In order to exclude fairly pathological examples one only considers stability
conditions with an additional property:

De�nition 2.1.8. A stability condition is locally �nite, if there exists some
ε > 0 such that for all φ ∈ R the category P(φ− ε, φ+ ε) is of �nite length, i.e.
Artinian and Noetherian.

The same de�nition applies to the above presented point of view via hearts.
Note that the de�nitions clearly coincide as long as P(φ− ε, φ+ ε) ⊂ P(0, 1] (or
more generally P(φ− ε, φ+ ε) ⊂ P(t, t+ 1]). Assume now that we have to prove
that e.g. P(1 − ε, 1 + ε) is of �nite length. Any object E in this category by
de�nition is an extension of some objects A ∈ P(1 − ε, 1] and B ∈ P(1, 1 + ε).
Both these categories are of �nite length, hence A and B are Noetherian and
Artinian and therefore E is as well.
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Convention: From here on all stability conditions will be locally �nite. The
set of locally �nite stability conditions on T will be denoted by Stab(T ).

Recall that a generalised metric is a distance function on a set satisfying
the usual metric space axioms except that it need not be �nite. Bridgeland
introduces a generalised metric on Stab(T ) ([14, Prop. 8.1]):

d(σ1, σ2) = sup
06=E∈T

{
|φ−σ1

(E)− φ−σ2
(E)|, |φ+

σ1
(E)− φ+

σ2
(E)|,

∣∣∣∣log
mσ1(E)
mσ2(E)

∣∣∣∣}
and proves the

Theorem 2.1.9. [14, Prop. 1.2] For each connected component Σ ⊂ Stab(T )
there is a linear subspace V (Σ) ⊂ HomZ(K(T ),C) with a well-de�ned linear
topology and a local homeomorphism Z : Σ // V (Σ) sending a stability con-
dition (Z,P) to its central charge Z. A similar result holds if one considers
StabN (T ), the set of numerical stability conditions, i.e. one substitutes K(T )
by N(T ).

In particular, if K(T ) ⊗ C is �nite-dimensional, then Stab(T ) is a �nite-
dimensional manifold.

There are two groups acting on the stability manifold: The group of exact
autoequivalences Aut(T ) and G̃L

+
(2,R), the universal cover of GL+(2,R). The

former acts from the left by isometries as follows: For σ = (Z,P) and Φ ∈
Aut(T ) we set Φ(σ) = (Z ◦ Φ−1,P ′) with P ′(t) = Φ(P(t)).

For the second action �rst recall that G̃L
+

(2,R) can be thought of as pairs
(T, f), where f : R //R is an increasing map with f(φ + 1) = f(φ) + 1, and
T : R2 //R2 is an orientation-preserving automorphism such that the induced
maps on S1 = R/2Z = R2/R>0 are the same. Now for a σ ∈ Stab(T ) and

(T, f) ∈ G̃L
+

(2,R) de�ne a new stability condition σ′ = (Z ′,P ′) by setting
Z ′ = T−1 ◦ Z and P ′(φ) = P(f(φ)).

Notation: If Y is a smooth projective variety and Db(Y ) its bounded de-
rived category of coherent sheaves, we will write Stab(Y ) for the manifold of
numerical locally �nite stability conditions StabN (Db(Y )). The Grothendieck
group K(Coh(Y )) = K(Db(Y )) will be denoted by K(Y ) and the numerical
Grothendieck group by N(Y ).

Convention: From here on, unless stated otherwise, we will only consider
numerical stability conditions.

Let us now have a look at the examples of smooth projective varieties where
the numerical stability manifold is at least partially known. Since usually all
results in the literature are formulated for schemes over the complex numbers,
it might be useful to see whether the arguments used generalise to other �elds.

Example 2.1.10. In [52] Okada proves that the stability manifold of P1
C is

isomorphic to C2. The main ingredients of the proof are Grothendieck's theorem
about locally free sheaves on P1, namely that any such sheaf is a direct sum of
the line bundles O(ai), and the fact that the derived category of representations
of the Kronecker quiver is equivalent to Db(P1). These results are valid over an
arbitrary �eld and therefore the stability manifold of P1

K is isomorphic to C2

for any �eld K.
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Example 2.1.11. Let C be a smooth projective curve of genus g ≥ 1. There is
a stability condition σ on the heart of the standard t-structure Coh(C) de�ned
by Z(E) = −deg(E) + irk(E), for E ∈ Coh(C). In [14] Bridgeland proved that

for an elliptic curve G̃L
+

(2,R) acts freely on Stab(C) and that

Stab(C) = σ · G̃L
+

(2,R).

Later Macrì ([39]) showed that the statement also holds for any g ≥ 1. The
proofs use Serre duality, the fact that the numerical Grothendieck group of
a curve is isomorphic to Z2 and, in the case g > 1, the following technical
statement proved in [22]:
Lemma [22, Lem. 7.2]: If C is a smooth projective curve of genus g ≥ 1 and
E ∈ Coh(C) is included in a triangle

Y // E // X // Y [1]

with Hom≤0(Y,X) = 0, then X,Y ∈ Coh(C).
The proof of this lemma is purely homological and, therefore, valid over an

arbitrary �eld. Hence, the stability manifold of a smooth projective curve of
genus g ≥ 1 is isomorphic to G̃L

+
(2,R) over an arbitrary �eld.

Example 2.1.12. The case of varieties with complete exceptional collections,
in particular projective spaces, was investigated by Macrì in [39], who was able
to determine a connected component of the stability manifold. Inspection of
the arguments shows that they are valid over an arbitrary �eld.

We see that in the above cases the description of the stability manifold does
not depend on the ground �eld. An explanation for this phenomenon seems
to be that in these examples the structure of the derived category and/or the
numerical Grothendieck group is particularly simple. Without these features
the situation becomes more complicated:

Example 2.1.13. Let X be a complex projective K3 surface. We will use
notation from Chapter 1. By the Riemann�Roch Theorem the Mukai vector
map identi�es the numerical Grothendieck lattice (N(Db(X)),−χ) with the
lattice

N(X) = Z⊕NS(X)⊕ Z ⊂ H∗(X,Z)

with the Mukai pairing as the bilinear form. The set

∆(X) = {δ ∈ N(X) | 〈δ, δ〉 = −2}

is called the root lattice and for an element δ ∈ ∆(X) we denote by δ⊥ the
orthogonal complement of δ in N(X) ⊗ C with respect to the complexi�ed
Mukai pairing. We need some more notation: Write P± ⊂ N(X) ⊗ C for the
two connected components of the set of those vectors whose real and imaginary
part span a positive-de�nite two-plane in N(X)⊗R. Furthermore, note that a
stability condition (Z,P) is numerical if the central charge takes the form

Z(E) = (π(σ), v(E)),

where π(σ) is some vector in N(X)⊗C and v(E) is, as before, the Mukai vector.
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The main result in [15] is

Theorem [15, Thm. 1.1]: There is a connected component Stab†(X) ⊂ Stab(X)
which is mapped by π onto the open subset

P+
0 (X) = P+(X) \

⋃
δ∈∆(X)

δ⊥ ⊂ N(X)⊗ C

Moreover, the induced map π : Stab†(X) //P+
0 (X) is a covering map, and the

subgroup of autoequivalences Aut(Db(X)) which act trivially on the cohomology
and preserve the connected component Stab†(X) acts freely on Stab†(X) and is
the group of deck transformations of π.

If X is a complex abelian surface, one has the following

Theorem [15, Thm. 15.2]: There is a connected component Stab†(X) ⊂ Stab(X)
which is mapped by π onto the open subset P+(X). Moreover, the induced map
π : Stab†(X) //P+(X) is the universal cover, and the group of deck transfor-
mations is generated by the double shift functor [2].

Note that the formulation of similar results over �elds other than C needs
certain adjustments. We will come back to this example later.

2.2 Base change via slicings

Consider a �eld extension L/K, a smooth projective variety X over K, the base
change scheme XL over L and the �at projection p : XL

//X which yields
the exact faithful functor p∗ : Db(X) // Db(XL). Given a stability condition
σ = (Z,P) ∈ Stab(XL) one is tempted to de�ne p∗(σ) := σ′ = (Z ′,P ′) as

Z ′ = Z ◦ p∗

P ′(φ) =
{
E ∈ Db(X) | p∗(E) ∈ P(φ)

}
∀φ ∈ R.

It is very easy to see that p∗(σ) satis�es conditions (i)-(iii) of the de�nition of
a stability condition. Unfortunately the Harder�Narasimhan property need not
hold: Looking at the de�nition of p∗(σ) we see that an object E ∈ Db(X) has a
HN-�ltration with respect to p∗(σ) if and only if the HN-�ltration of p∗(E) with
respect to σ is de�ned over the smaller �eld. For a possible counter-example cf.
Remark 2.2.6.

Thus, this de�nition does not give a stability condition for an arbitrary σ ∈
Stab(XL). Therefore, in general there is no natural map Stab(XL) // Stab(X).

De�nition 2.2.1. For a �eld extension L/K de�ne Stab(XL)p to be the subset
of stability conditions on Db(XL) having the property that p∗(σ) admits HN-
�ltrations. Thus we have a map

p∗ : Stab(XL)p // Stab(X).

Remark 2.2.2. The geometric analogue of this is the following: Let π : Y //Z
be a �nite unrami�ed covering of smooth projective varieties and consider µ-
semistability of coherent sheaves on Z resp. on Y with respect to OZ(1) resp.
OY (1) := π∗(OZ(1)). Then it is well-known that a coherent sheaf F on Z is
µ-semistable if and only if π∗(F ) is µ-semistable, cf. [35, Lem. 3.2.2].
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Lemma 2.2.3. The map p∗ is continuous and, more precisely, for any σ, τ ∈
Stab(XL)p we have d(p∗(σ), p∗(τ)) ≤ d(σ, τ). Its domain of de�nition Stab(XL)p
is a closed subset of Stab(XL).

Proof. The �rst assertion follows from the second one and we recall the proof
given in [40, Lem. 2.9]: Consider a σ ∈ Stab(XL)p and the HN-�ltration of E ∈
Db(X) with respect to p∗(σ) = σ′. The image of the �ltration via the functor
p∗ is precisely the HN-�ltration of p∗(E) with respect to σ. Therefore, there are
equalities φ+

σ′(E) = φ+
σ (p∗E)), φ−σ′(E) = φ−σ (p∗(E)) and mσ′(E) = mσ(p∗(E)).

Consequently, setting τ ′ = p∗(τ) and writing Ẽ for p∗(E) one has

d(σ′, τ ′) = sup
06=E∈Db(X)

{
|φ+
σ′(E)− φ+

τ ′(E)|, |φ−σ′(E)− φ−τ ′(E)|,
∣∣∣∣log

mσ′(E)
mτ ′(E)

∣∣∣∣}

= sup
06=E∈Db(X)

{
|φ+
σ (Ẽ)− φ+

τ (Ẽ)|, |φ−σ (Ẽ)− φ−τ (Ẽ)|,

∣∣∣∣∣log
mσ(Ẽ)

mτ (Ẽ)

∣∣∣∣∣
}

≤ sup
06=F∈Db(XL)

{
|φ+
σ (F )− φ+

τ (F )|, |φ−σ (F )− φ−τ (F )|,
∣∣∣∣log

mσ(F )
mτ (F )

∣∣∣∣}
= d(σ, τ)

Thus, p∗ is continuous. The second assertion follows immediately from this
computation. For the proof of the last assertion see [40, Lem. 2.8]. �

Remark 2.2.4. The continuity of p∗ also follows from the local description of
the topology on the stability manifolds (cf. Theorem 2.1.9) and the fact that
the map Hom(N(XL),C) // Hom(N(X),C) induce by pullback is continuous.

Remark 2.2.5. The reader will note that we did not address the question
of local �niteness in the proof. In fact, it is automatic and we present the
explanation given in [40, Rem. 2.7 (ii)]): The pullback functor induces a functor
P ′(φ− ε, φ+ ε) //P(φ− ε, φ+ ε), which maps strict short exact sequences to
strict short exact sequences. Let i : E // F be an inclusion of objects E,F ∈
P ′(φ − ε, φ + ε) and assume that p∗(i) : p∗(E) // p∗(F ) is an isomorphism.
Then i is an isomorphism, because if i were not surjective, then there would
exist a cokernel C which would then be mapped to zero by p∗. This is clearly
impossible. Using this it is easy to check that P ′(φ− ε, φ+ ε) is of �nite length,
provided P(φ− ε, φ+ ε) is.

Remark 2.2.6. Consider a heart A of a bounded t-structure D≤0 on Db(XL)
which is of �nite length and such that D≤0 does not descend to a t-structure on
Db(X), i.e.

C≤0 =
{
E ∈ Db(X) | p∗(E) ∈ D≤0

}
is not a t-structure on Db(X). We can de�ne a stability condition on A by
e.g. sending all simple objects to i. Thus, P(1/2) = A and P(φ) = 0 for all
1/2 6= φ ∈ (0, 1]. The HN-�ltration of an object p∗(E) in this example is nothing
than the �ltration of p∗(E) with respect to the cohomology functors de�ned by
A. Since by assumption A does not descend, there exists an object E0 ∈ Db(X)
such that the HN-�ltration of p∗(E0) is not de�ned over the smaller �eld. Hence
in general the subset Stab(XL)p will not be equal to Stab(XL).
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Lemma 2.2.7. The map p∗ is G̃L
+

(2,R)-equivariant and thus Stab(XL)p is.
In particular, for σ = (Z,P) ∈ Stab(XL)p the stability condition σ̃ := (rZ,P)
is in Stab(XL)p for any r ∈ R>0.

Proof. Consider a stability condition σ = (Z,P) ∈ Stab(XL)p, σ′ = (Z ′,P ′) =

p∗(σ) and an element (T, f) ∈ G̃L
+

(2,R). The stability condition (T, f) ·
(p∗(σ)) = σ′′ = (Z ′′,P ′′) is given by

Z ′′ = T−1 ◦ Z ′ = T−1 ◦ Z ◦ p∗

and
P ′′(φ) = P ′(f(φ)) = {E | p∗(E) ∈ P(f(φ))} .

On the other hand, σ̃ = (T, f)·σ is de�ned by Z̃ = T−1◦Z and P̃(φ) = P(f(φ)).
It is now clear that p∗(σ̃) is equal to σ′′ and the lemma is therefore proved. �

Obviously one would like to to be able to say something about the structure
of Stab(XL)p, e.g. whether this set is always non-empty or connected. To tackle
these questions we will further assume that the �eld extension is �nite. We then
also have the exact functor p∗ : Db(XL) // Db(X) at our disposal.

In this situation we have p∗(OXL) = OdX , where d = [L : K]. An immediate
consequence of this is that for any stability condition σ′ = (Z ′,P ′) on Db(X)
one has

p∗(OXL)⊗ P ′(φ) = OdX ⊗ P ′(φ) ⊂ P ′(φ) ⊂ P ′[φ,+∞)

since the categories P ′(φ) are additive (in fact abelian). Since p is �at, it is
trivially of �nite Tor dimension and therefore we can apply [58, Cor. 2.2.2].
Note that in the statement of Cor. 2.2.2 the t-structure P ′(> t) is used, whereas
we use the t-structure P ′(≥ t) (which is actually what is needed for the example
following Cor. 2.2.2 in [58]). Thus, one has the

Proposition 2.2.8. For a �nite �eld extension L/K the map p : XL
//X

de�nes a continuous map

p∗ : Stab(X) // Stab(XL).

Here, for a σ′ = (Z ′,P ′) ∈ Stab(X) we de�ne p∗(σ′) := σ = (Z,P) by Z =
Z ′ ◦ p∗ and P(φ) =

{
F ∈ Db(XL) | p∗(F ) ∈ P ′(φ)

}
for any φ ∈ R.

Proof. The only thing left to check is the continuity which is proved along the
same lines as in Proposition 2.2.3. �

Remark 2.2.9. Similarly to p∗ the map p∗ satis�es d(p∗(σ′), p∗(τ ′)) ≤ d(σ′, τ ′)
for all σ′, τ ′ ∈ Stab(X). Also note that the local �niteness is again automatic,
cf. Remark 2.2.5.

Remark 2.2.10. Once again, there is a geometric analogue of the above: With
the assumptions of Remark 2.2.2 a coherent sheaf F ′ on Y is µ-semistable if
and only π∗(F ′) is µ-semistable, cf. [70, Prop. 1.5].

Recall that the group of automorphisms of XL acts on Stab(XL). In par-
ticular, we have an action of G := Aut(L/K) on the stability manifold. Of
course, these autoequivalences are not L-linear but only K-linear, but this is
not relevant in our setting. Note that Db(XL) is of �nite type as a K-linear
category.

We can describe the image of p∗ by formulating the
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Proposition 2.2.11. Let L/K be a �nite extension and let σ′ be an ele-
ment of Stab(X). Then p∗(σ′) is invariant under the action of the group
G = Aut(L/K).

Proof. If g ∈ G and σ = p∗(σ′), then g(σ) = (Z ◦ (g−1)∗, g∗(P)). Firstly,
for E ∈ P(φ) one has g∗(p∗(E)) = p∗(g∗(E)) = p∗(E). Secondly, for any
E ∈ Db(XL) the following holds:

Z(g−1)∗(E) = Z ′p∗((g−1)∗(E)) = Z ′(g−1)∗(p∗(E)) = Z ′(p∗(E)) = Z(E)

We conclude that g∗(σ) = σ as claimed. �

Remark 2.2.12. Clearly the statement of the lemma is only interesting in the
case when G is non-trivial, e.g. for a �nite Galois extension.

Remark 2.2.13. In the case of a �nite Galois extension one has p∗p∗(E) = E⊕d

for any E ∈ Db(X) and p∗p∗ =
∑
g∈G g

∗, cf. e.g. [61].

Lemma 2.2.14. If L/K is �nite and Galois, then the composition p∗ ◦ p∗ :

Stab(X) // Stab(X) is equal to the action of h := ( 1
d · id, 1) ∈ G̃L

+
(2,R).

Proof. Consider a stability condition σ′ = (Z ′,P ′) in Stab(X). Then p∗p∗(σ′) =
σ′′ = (Z ′′,P ′′) is de�ned as

Z ′′ = Z ◦ p∗ = Z ′ ◦ p∗ ◦ p∗ = dZ ′

P ′′(φ) =
{
F ∈ Db(XL) | p∗p∗(F ) = F⊕d ∈ P ′(φ)

}
Clearly P ′(φ) ⊂ P ′′(φ). Let us prove the other inclusion. Assume F ∈ P ′′(φ).
Since σ′ is a stability condition, F has a HN-�ltration given by certain triangles
Fi−1

// Fi //Ai, i ∈ {1, . . . , n}. Since the direct sum of triangles is a triangle,
we can take the d-fold direct sum of these and get a �ltration of F⊕d. But HN-
�ltrations are unique and by assumption F⊕d ∈ P ′(φ), so its HN-�ltration is
just

0 // F⊕d
id // F⊕d

Therefore n = 1, φ1 = φ and F ∈ P ′(φ). Thus, p∗ ◦ p∗((Z ′,P ′)) = (dZ ′,P ′) as
claimed. �

Corollary 2.2.15. For a �nite Galois extension, the map p∗ ◦ p∗ is a homeo-
morphism, thus p∗ is injective and p∗ surjective. �

We will now investigate the domain of de�nition for the morphism p∗. To
do this we need the following

Lemma 2.2.16. If G is a �nite group acting on a variety Y over a �eld K
of characteristic prime to the order of the group, then any linearised object in
Db(Y ) is isomorphic as a complex to a complex of G-linearised sheaves (cf. [16]
and [57]).

Proof. First recall that a linearised object is a pair (E, λ), where E ∈ Db(Y )
and λ is a collection of isomorphisms λg : E // g∗(E) satisfying the usual
cocycle condition, and morphisms between two such pairs are morphisms in
Db(Y ) which are compatible with the linearisations. Denote the category of
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linearised objects by T and write DG(Y ) = Db(CohG(Y )) for the bounded
derived category of the abelian category CohG(Y ) of linearised coherent sheaves
on Y . Clearly, there is a functor Φ : DG(Y ) // T , which was proved to be
an equivalence in [57]. We will use that it is fully faithful, but to make the
dissertation more self-contained we will show the statement of the lemma (which
is weaker than essential surjectivity) by induction on the number of cohomology
objects. The case n = 1 is obvious. Let E be a complex with n cohomology
objects. We may assume Hi(E) = 0 for i ≥ 2. Consider the triangle given by
the standard t-structure on Db(Y ):

τ≤0(E) =: E′ //E // τ≥1(E) = H1(E)[−1] // τ≤0(E)[1].

For any λg we get, since truncation is a functor, corresponding morphisms on
E′ and H1(E) and these morphisms de�ne linearisations of these complexes.
By induction E′ ' Φ(F ) and H1(E)[−1] ' Φ(G) in T for some complexes
F,G ∈ DG(Y ). Since the morphisms in the triangle and the isomorphisms are
compatible with the linearisations, the map G[−1] // F is a map in DG(Y )
and hence a cone is in DG(Y ). This cone is isomorphic to E in Db(Y ). This
concludes the proof. �

Remark 2.2.17. We needed the assumption on the characteristic for the ap-
plication of the result from [57].

Note that this proof does not show Φ to be essentially surjective, since the
isomorphism does not need to respect the linearisations of E respectively the
cone.

One could try to generalise the above statement to arbitrary faithfully �at
morphisms replacing linearisations of sheaves resp. complexes by descent data.
Note that the fully faithfulness used above is ful�lled in this situation.

Convention: From here on we assume that the characteristic of the ground
�eld is prime to the order of the Galois group.

We also need the following

Lemma 2.2.18. Let L/K be �nite and Galois and consider σ = (Z,P) ∈
Stab(XL)p. Then p∗ ◦ p∗(σ) = (Z̃, P̃), where

Z̃(E) =
∑
g∈G

Z(g∗(E)) and

P̃(φ) = {E | ⊕g∈G g∗(E) ∈ P(φ)} =
{
E | {g∗(E)}g∈G ⊂ P(φ)

}
.

Proof. Using Remark 2.2.13 we immediately get the formula for Z̃ and the �rst
equality for P̃(φ). As to the second equality: �⊃� holds because the categories
P(φ) are abelian, so in particular additive, and �⊂� holds because the categories
P(φ) are closed under direct summands. Let us prove this last statement: Let
A ⊕ B be an element in P(φ). We have to show that A and B are in P(φ).
Since P(φ) is an abelian category, the kernel of the morphism

A⊕B

id 0
0 0


// A⊕B,
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which is of course B, is an element of P(φ). Similarly one shows that A ∈
P(φ). �

We can now prove the

Proposition 2.2.19. For a �nite Galois extension L/K with Galois group
G a stability condition σ = (Z,P) is in Stab(XL)p if and only if its slicing
P is invariant under the action of the Galois group, i.e. E ∈ P(φ) implies
g∗(E) ∈ P(φ) for all g ∈ G. In particular, the subset of G-invariant stability
conditions is contained in Stab(XL)p.

Proof. If p∗(σ) is a stability condition on Db(X), then we can consider σ̃ =
p∗ ◦ p∗(σ) ∈ Stab(XL). Lemma 2.2.18 shows that the slicing P̃ of σ̃ is invariant
under the action of the Galois group and that P̃(φ) ⊂ P(φ) for all φ ∈ R. In
fact, we have an equality. To see this, consider φ ∈ R and E ∈ P(φ). We know
that E has a HN-�ltration with respect to σ̃, i.e. it can be �ltered by objects in
P̃ ⊂ P. Since E is semistable with respect to σ, this �ltration has to be trivial.
Thus, E ∈ P̃(φ).

For the converse implication assume the slicing P of σ to be G-invariant.
Consider the HN-�ltration of an object p∗(E), E ∈ Db(X). Applying an arbi-
trary element g ∈ G yields the HN-�ltration of g∗p∗(E) = p∗(E) with respect
to σ, because the slicing is G-invariant. It follows that all the objects of the
�ltration are linearised objects of Db(XL). By Lemma 2.2.16 any such object is
isomorphic to a complex of G-equivariant sheaves on XL. Using Galois descent
we see that a complex of equivariant objects is de�ned over K, and hence the
HN-�ltration is de�ned over K. �

Remark 2.2.20. The stability function of a stability condition σ ∈ Stab(XL)p
need not be G-invariant, since we only assume that the phase is constant on the
orbits of semistable objects under the action of G. For an unstable object E
the numbers Z(E) and Z(g∗(E)) (g ∈ G) will in general not even be multiples
of each other.

Using Lemma 2.2.18 we see that the restriction of p∗ ◦ p∗ to the subset of
G-invariant stability conditions

Stab(XL)G = {σ ∈ Stab(XL) | gσ = σ ∀g ∈ G}

is equal to the action of h = ( 1
d · id, 1) ∈ G̃L

+
(2,R). In particular, the map

p∗ : Stab(X) // Stab(XL)G is surjective. Therefore p∗ is a homeomorphism,
since we already have seen that it is injective. Thus, we have the following
diagram

Stab(XL)p
p∗

''NNNNNNNNNNN
Stab(XL)G?oo

Stab(X).

p∗ '

OO

We also need the following

Lemma 2.2.21. [40, Lem. 2.15] The set of Galois-invariant stability conditions
Stab(XL)G is a closed submanifold of Stab(XL).

35



Proof. Since in [40] the result is formulated for the action of a �nite group on
a smooth complex projective variety, we will give the �rst part of the proof to
demonstrate that the arguments carry over to our case without di�culties: The
subset Stab(XL)G is closed, because

Stab(XL)G =
⋂
g∈G

(g, id)−1(∆),

where ∆ is the diagonal in Stab(XL)× Stab(XL) and every g ∈ G acts contin-
uously. The rest of the proof also works without changes. �

Using the lemma and the above discussion we immediately derive

Theorem 2.2.22. For any �nite and separable �eld extension L/K the map p∗

realises Stab(X) as a closed submanifold of Stab(XL).

Proof. The statement is clear for a �nite Galois extension from the discussion
above and the previous lemma. The general case follows by considering the tower
K ⊂ L ⊂ Ln, where Ln denotes the normal closure, the induced commutative
diagram

Stab(X)

p∗ &&MMMMMMMMMM
(p′′)∗ // Stab(XLn)

Stab(XL)
(p′)∗

88ppppppppppp

(where p : XL
//X, p′ : XLn

//XL and p′′ : XLn
//X are the projections)

and the fact that L //Ln is Galois. �

Corollary 2.2.23. Let L/K be a �nite and separable extension and Ln the
normal closure of L. Consider the commutative diagram

Stab(XLn) ⊇ Stab(XLn)p′′
(p′)∗

**VVVVVVVVVVVVVVVVVV
(p′′)∗ // Stab(X)

Stab(XL) ⊇ Stab(XL)p(p′)∗

ee

p∗

66lllllllllllll

(where the notation is as in the proof of Corollary 2.2.22). Then

σ ∈ Stab(XL)p ⇐⇒ (p′)∗(σ) ∈ Stab(XLn)p′′ .

Proof. If σ ∈ Stab(XL)p, then applying Lemma 2.2.14 to the pair (p′)∗ and
(p′)∗ and using Lemma 2.2.7 we see that (p′)∗(p′)∗(σ) ∈ Stab(XL)p and hence
(p′)∗(σ) ∈ Stab(XLn)p′′ . The converse is clear (Stab(XLn)p′′ ⊂ Stab(XLn)p′).

�

Until the end of the section we will work in the Galois case. We know from
Proposition 2.2.19 that the G-invariant stability conditions Stab(XL)G (which
we identi�ed with Stab(X)) are contained in the set Stab(XL)p. The next two
results establish geometric connections between the two sets.

Lemma 2.2.24. The subset Stab(XL)G is a retract of Stab(XL)p.

36



Proof. Recall that if i : S ⊂ T is a pair of topological spaces, then by de�nition
S is called a retract of T if there exists a map f : T // S such that f ◦ i = idS .

De�ne a map f : Stab(XL)p // Stab(XL)G as follows: For σ = (Z,P) ∈
Stab(XL)p we set f(σ) := σ′ = (Z ′,P ′), where Z ′(E) = (1/d)

∑
g∈G Z(g∗(E))

and P ′ = P. It is fairly easy to show that σ′ is a stability condition: Since by
Proposition 2.2.19 the slicing of σ is G-invariant, the HN-�ltrations of σ and
σ′ coincide. Furthermore, any object in P(φ) clearly still has phase φ, since
Z(g∗(E)) is of phase φ, for all g ∈ G.

Next, one has to verify that f is continuous: Let σ and τ be two stability
conditions in Stab(XL)p such that d(σ, τ) < δ. Recall the de�nition of the
generalised metric

d(σ1, σ2) = sup
0 6=E∈Db(XL)

{
|φ−σ1

(E)− φ−σ2
(E)|, |φ+

σ1
(E)− φ+

σ2
(E)|,

∣∣∣∣log
mσ1(E)
mσ2(E)

∣∣∣∣}
and note that since the HN-�ltrations do not change, neither do the �rst two
numbers in the expression, i.e. the �rst two numbers are the same for the pairs
(σ, τ) and (f(σ), f(τ)). As for the last one note that for any semistable object
A and any g ∈ G one has Z(g∗(A)) = λgZ(A) for some λg > 0 and hence
|Z(A) + Z(g∗(A))| = |Z(A)|+ |Z(g∗(A))|. Therefore

mf(σ)(E) =
1
d

∑
g∈G

mσ(g∗(E))


for an arbitrary object E and hence the supremum over all E of | log mf(σ)(E)

mf(τ)(E) |

is small if the same holds for | log mσ(E)
mτ (E) |. We have thus proved that f is con-

tinuous.
Denoting the embedding of Stab(XL)G into Stab(XL)p by i we immediately

conclude that the composition f ◦ i : Stab(XL)G � � // Stab(XL)p // Stab(XL)G

is equal to the identity map and we therefore have a retraction. �

In fact, a stronger statement is true:

Proposition 2.2.25. The inclusion Stab(XL)G � � // Stab(XL)p is a deforma-
tion retract.

Proof. Recall that S ⊂ T is a deformation retract if there exists a homotopy
H : T × [0, 1] // T such that H(−, 0) = idT , H(−, 1) ⊂ S and H(s, 1) = s for
any s ∈ S. For details see [19].

The strategy of the proof is the following. Consider an element σ = (Z,P)
in Stab(XL)p. Since P is already G-invariant, it seems natural to only deform
Z until it also becomes G-invariant.

Assume for simplicity that d = 2 and consider the map

H : Stab(XL)p × [0, 1] // Stab(XL)p

sending (σ, t) to (Z̃, P̃), where Z̃(E) = Z(E) + tZ(g∗(E)) and P̃ = P. Clearly
H(σ, 0) = σ andH(σ, 1) ∈ Stab(XL)G. Of course, with this de�nitionH(−, 1) 6=
id on Stab(XL)G, but this small problem is easily solved: Since for a (Z ′,P ′) =
σ′ ∈ Stab(XL)G we have the equality H(σ′, 1) = (2Z ′,P ′), it is easy to write
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down a homotopy from H(−, 1) to the identity map on Stab(XL)G. The more
challenging issue is the continuity of H. Inspecting the proof of the previous
lemma it is easy to see that H(−, t) : Stab(XL)p // Stab(XL)p is continuous,
for any t ∈ [0, 1]. Now �x a σ in Stab(XL)p and consider for simplicity only
the question of continuity in 0. Looking at the de�nition of the metric on
Stab(XL), we see that the �rst two factors are zero, because the HN-�ltrations
of H(σ, 0) = σ and H(σ, ε) =: τ are the same. Therefore we only need to
consider the last factor. Take an arbitrary semistable object A ∈ P(φ) for
some φ ∈ R. We know that g∗(A) is again semistable of the same phase. Now,
mσ(A) = |Z(A)| andmτ (A) = (1+ε·λA)|Z(A)|, where λA = |Z(g∗(A))|/|Z(A)|.
Thus the quotient (mτ (A))/(mσ(A)) is (1 + ε · λA) and we need λA to be
bounded, if the last factor in the metric is to remain small. Since the nu-
merical Grothendieck group has �nite rank and the linear operator (Z ◦ g∗)/Z
on N(XL)⊗C ⊃ N(XL) has bounded norm, the quotient |Z(g∗(A))|/|Z(A)| is
indeed bounded by some constant C. Thus, for an arbitrary object E ∈ Db(XL)
we get

mτ (E)/mσ(E) =
∑
i |Z(Ai)|+ ε

∑
i |Z(g∗(Ai)|∑

i |Z(Ai)|
=

= 1 +
ε(|Z(g∗(A1))|+ . . .+ |Z(g∗(An))|
|Z(A1)|+ . . .+ |Z(An)|)

≤ 1 + εC

and thus | log(mτ (E)/mσ(E))| is small provided ε is small enough. We conclude
that H is continuous. For d > 2 one writes G = {g1, . . . , gn} and divides the
interval [0, 1] up accordingly, so that in the �rst segment one changes Z to
Z1 := Z + Z ◦ g1, in the second Z1 to Z2 := Z1 + Z ◦ g2 and so on. �

Remark 2.2.26. The proofs of all results in this chapter with the exception of
Proposition 2.2.25 work for non-numerical locally �nite stability conditions.

2.3 Base change via hearts

Recall that a stability condition σ = (Z,P) can also be viewed as a pair consist-
ing of a heart D and a stability condition Z on it, cf. Proposition 2.1.6. Thus,
the stability manifold of a triangulated category T is partitioned with respect
to the hearts of bounded t-structures on T . Given a heart D in Db(XL) we
can try to understand whether a stability condition σ = (D, Z) descends to a
stability condition on Db(X). One could apply a result like this to e.g. prove
that Stab(X) is non-empty. In fact, this is precisely what we will do in the case
of K3 surfaces at the end of this chapter. We start with the following

Proposition 2.3.1. Let F : C //D be an exact functor between abelian cate-
gories such that ker(F ) = {c ∈ C : F (c) ' 0} = 0. If Z is a stability condition
on D, then composition with F induces a stability condition Z ′ on C.

Proof. The composition Z ◦ [ ] ◦F , where [ ] : D //K(D) sends an object to its
class, is clearly an additive function from C to C and hence by the universal prop-
erty of the Grothendieck group we get a group homomorphism Z ′ : K(C) //C.
By Proposition 2.1.5 we have to check whether there exists an in�nite chain of
subobjects/subquotients with increasing phases. By de�nition of Z ′ we have
φ(C) = φ(F (C)) for any C ∈ C. Assume e.g. that there exists an in�nite chain
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of subobjects with increasing phases in C. Using the triviality of the kernel
and the exactness of F one gets an in�nite chain in D with the same property.
Since this is not possible, Z ′ has the Harder�Narasimhan property and thus is
a stability condition. �

Remark 2.3.2. If C and D are hearts of bounded t-structures in some trian-
gulated categories and F is the restriction of an exact functor preserving the
Euler forms, then the above statement holds for numerical stability conditions.

Consider a bounded t-structure with heart D on Db(XL). It de�nes a t-
structure with heart C on Db(X) if for any object E ∈ Db(X) the �ltration
with respect to cohomology objects given by D

0 = F0
// F1

//

~~~~~~~~~~
· · · // Fn−1

// Fn = p∗(E),

xxrrrrrrrrrr

B1

ccF
F

F
F

F
Bn−1

ccG
G

G
G

G

where Bi ∈ D[i] for all i, is de�ned over the smaller �eld. Equivalently, the
t-structure D≤0 on Db(XL) descends if the full subcategory

C≤0 =
{
E ∈ Db(X) | p∗(E) ∈ D≤0

}
de�nes a t-structure on Db(X).

Assume that a t-structure on Db(XL) given by a heart D descends to a
t-structure on Db(X), so in particular the category

C =
{
E ∈ Db(X) | p∗(E) ∈ D

}
is abelian. Note that since p∗ respects the Euler forms, we can work with
ordinary or numerical stability conditions and will restrict to the latter class.
Denote the set of numerical stability conditions on the abelian category C resp.
D by Stab(C) resp. Stab(D).

Corollary 2.3.3. There exists a morphism α : Stab(D) // Stab(C).

Proof. Since short exact sequences in C are nothing but distinguished triangles
in Db(X), the pull-back functor F := p∗ : C //D is exact. Furthermore, F is
faithful, since the stalk of an object p∗(E) in a point y ∈ XL equals the stalk of
E in p(y) tensorized with L. �

Note that even if a t-structure D≤0 descends to a t-structure on Db(X), it
is not necessarily true that D≤0 is Aut(L/K)-invariant. A priori one only has
that if

D1
// p∗(E) // D2

// D1[1]

is the decomposition of p∗(E), where E ∈ Db(X), with respect to the t-structure,
i.e. D1 ∈ D≤0 and D2 ∈ D≥1, then the objects D1 and D2 are Aut(L/K)-
invariant. We cannot conclude this for objects not appearing in the decomposi-
tion of some p∗(E). Under additional assumptions we can say something about
the descent of a t-structure:
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Proposition 2.3.4. Let L/K be a �nite Galois extension and let D≤0 be a
t-structure on Db(XL). Then the t-structure descends if and only if it is Galois-
invariant, i.e. for any g ∈ G and E ∈ D≤0 one has g∗(E) ∈ D≤0.

Proof. Assume that D≤0 descends. First, note that for an element E ∈ D≤0

one has that p∗(E) ∈ C≤0. To see this consider the decomposition of p∗(E) with
respect to C≤0:

C1
// p∗(E) // C2.

Pulling back to XL gives the decomposition of p∗p∗(E) with respect to D≤0:

p∗(C1) // p∗p∗(E) // p∗(C2).

Since p∗p∗(E) =
∑
g∈G g

∗(E) we conclude that this sequence is the direct sum
of the decompositions of the g∗(E) (use the easy fact that D≤0 is an additive
category), so, in particular, E is a direct summand of p∗(C1). But then p∗(E)
a direct summand of p∗p∗(C1) = C⊕d1 and hence p∗(E) ∈ C≤0 as claimed. We
now proceed to the proof that D≤0 is Galois-invariant. Take E is above. By
what we just proved

∑
g∈G g

∗(E) ∈ D≤0. Considering decompositions of g∗(E)
and taking the direct sum of these, which gives the decomposition∑

g∈G g
∗(E) //

∑
g∈G g

∗(E) // 0,

we then immediately conclude that g∗(E) ∈ D≤0 for any g ∈ G.
The other direction is equally easy: Take an element F ∈ Db(X), pull it back

to XL and consider its decomposition with respect to D≤0. Applying elements
g ∈ G to this triangle and using the invariance of D≤0 gives, via Galois descent,
that the triangle is de�ned over K and hence the t-structure descends. �

Having established this easy result, we now return to our discussion. The
morphism α a priori does not correspond to the morphism p∗ of the previous
section. Of course, the stability function Z ′ is de�ned in the same way and
the pullback of a semistable object E of phase φ in C by de�nition has the
same phase in D, but p∗(E) is not necessarily semistable. Thus, the following
de�nition is reasonable.

De�nition 2.3.5. For a �eld extension L/K de�ne Stab(XL)α to be the set of
stability conditions σ = (D, Z) ∈ Stab(XL) such that D descends to a heart in
Db(X) (i.e. the corresponding t-structure D≤0 descends).

Remark 2.3.6. In contrast to Stab(XL)p it seems di�cult to show that the
set Stab(XL)α is closed in Stab(XL) or that α : Stab(XL)α // Stab(X) is
continuous, the problem being that the pullback of the HN-�ltration of an object
E ∈ Db(X) is not necessarily the HN-�ltration of p∗(E). What one can say is
that Stab(XL)α is preserved by the action of Aut(L/K). One further property
of Stab(XL)α is described in Proposition 2.3.9.

Under some additional assumptions we can establish a connection between
α and p∗.

Proposition 2.3.7. Let L/K be a �nite Galois extension and let σ = (D, Z)
be a stability condition on Db(XL) such that for any φ ∈ (0, 1] the subcategory
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of semistable objects in D of phase φ is invariant under the action of the Ga-
lois group (cf. Proposition 2.2.19), so, in particular, the heart D descends to
Db(X). Then α(Z) corresponds to p∗(σ) = σ′. We therefore have an inclusion
Stab(XL)p ⊂ Stab(XL)α and α|Stab(XL)p = p∗.

Proof. We only have to show that for a semistable object E ∈ C of phase
φ ∈ (0, 1] the object p∗(E) is again semistable (the converse is clear). Assuming
the converse there exists a semistable object F ⊂ p∗(E) such that φσ(F ) >
φσ(p∗(E)). Now, the functor p∗ is exact and sends any object X ∈ D to an ob-
ject in C, since C =

{
Y ∈ Db(X) | p∗(Y ) ∈ D

}
and p∗(p∗(X)) = ⊕g∈Gg∗(X) ∈

D. Thus, we can apply p∗ to the inclusion F ⊂ p∗(E) and get an inclusion
p∗(F ) ⊂ p∗p

∗(E) = E⊕d. Since E is semistable in C, so is E⊕d and the phases
are equal. But p∗(F ) is a destabilizing object of E⊕d since

φσ′(p∗(F )) = φσ(p∗p∗(F )) = φσ(⊕g∈Gg∗(F )) =

= φσ(F ) > φσ(p∗(E)) = φσ′(E) = φσ′(E⊕d).

This is a contradiction, therefore an object E is semistable if and only if p∗(E)
is semistable. �

We can say a little bit more about descent of hearts using the theory of
tilting. To do this �rst recall that a torsion pair in an abelian category A
consists of two full additive subcategories (T ,F) such that for any T ∈ T and
F ∈ F we have Hom(T, F ) = 0 and furthermore for any object A ∈ A there
exists an exact sequence

0 // T //A // F // 0

with T ∈ T and F ∈ F . Note that the exact sequence is unique up to isomor-
phism.

The importance of torsion pairs is visible in the following

Proposition 2.3.8. [25, Prop. 2.1] Let (T ,F) be a torsion pair in the heart A
of a bounded t-structure on a triangulated category T . Then the full subcategory

A] =
{
E ∈ T | Hi(E) = 0 ∀ i /∈ {−1, 0} , H0(E) ∈ T , H−1(E) ∈ F

}
is the heart of a bounded t-structure on T . �

In the case of a �nite Galois extension L/K we will say that (T ,F) is a
Galois-invariant torsion pair, if g∗(T ) ∈ T and g∗(F ) ∈ F for any T ∈ T ,
F ∈ F and g ∈ G.

Proposition 2.3.9. Assume that L/K is �nite Galois, let σ = (D, Z) be a
stability condition on Db(XL) such that its heart D descends to Db(X) and
assume that there is a Galois-invariant torsion pair (T ,F) in D. Then the
heart D], the tilt of D with respect to the torsion pair, also descends to Db(X).

Proof. We could simply invoke Proposition 2.3.4, but let us give a direct proof.
Denote the descended heart de�ned by D by C. It is fairly easy to see that the
categories

T ′ := {E ∈ C | p∗(E) ∈ T } and F ′ := {E ∈ C | p∗(E) ∈ F}
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de�ne a torsion pair in C: Clearly T ′ and F ′ ful�l the �rst requirement of a
torsion pair. To see the second, consider an arbitrary object C ∈ C and the
decomposition of its pullback with respect to the pair (T ,F)

0 // T // p∗(C) // F // 0.

Applying an arbitrary g ∈ G to this sequence and using that the torsion pair
is invariant, we conclude that the objects T and F are linearised and therefore
T ' p∗(T ′) and F ' p∗(F ′) for some uniquely determined T ′ ∈ T ′ and F ′ ∈ F ′.
Thus, T ′ and F ′ indeed de�ne a torsion pair and this gives a new heart C].
Thus, D] descends as claimed. �

Corollary 2.3.10. The subset Stab(XL)α is closed under tilting with respect
to Galois-invariant torsion pairs. �

Remark 2.3.11. Not every heart descends, even for a �nite Galois extension
and a structurally fairly simple derived category. Consider the extension C/R
and the derived category of X = P1

C. Let P ⊂ X be a non-empty set. We have
a torsion pair in Coh(X) given by (see [22])

T = 〈Ox, x ∈ P 〉 and F = 〈Oy, y /∈ P, O(n), n ∈ Z〉 .

This gives a t-structure

Db(X)≤0 =
{
E ∈ Db(X)≤0 | H0(E) ∈ T

}
.

Taking P to be a set which is not Galois-invariant, e.g. P = [i : 0], we see
that this t-structure does not descend to Db(P1

R). Note however that there are
no stability conditions on the heart of this t-structure (see [52]), but it seems
plausible that in higher dimensions one can indeed �nd hearts which do not
descend but have stability conditions on them.

2.4 Grothendieck groups

In this section we will return to the general case and consider non-numerical
stability conditions as well. To maintain continuity we will keep the notation
Stab(Y ) for the numerical stability manifold of a variety Y and we will write
Stab∗(Y ) for the manifold of all locally �nite stability conditions.

Theorem 2.1.9 tells us that the (numerical) stability manifold of a variety Y is
locally homeomorphic to a subspace of Hom(K(Y ),C) (resp. Hom(N(Y ),C)).
Thus, it is natural to ask what happens with the (numerical) stability mani-
fold under scalar extension if we have an isomorphism K(XL) ' K(X) (resp.
N(XL) ' N(X)).

The next proposition gives a �rst answer under a slightly weaker assumption:

Proposition 2.4.1. Assume that L/K is a �nite Galois extension and that the
group homomorphism

K(X)⊗ C //K(XL)⊗ C (2.4.1)

induced by p∗ is an isomorphism. Then Stab∗(XL)p = Stab∗(XL)G. Simi-
larly, if we have an isomorphism for the numerical Grothendieck groups, then
Stab(XL)p = Stab(XL)G.
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Proof. Let σ = (Z,P) ∈ Stab∗(XL)p. We need to show that Z is constant on
the orbits of the action of the Galois group G. Note that our assumption gives
an isomorphism

Hom(K(X),C) ' // Hom(K(XL),C).

We therefore can write Z = Z ′ ◦p∗ for some Z ′ ∈ Hom(K(X),C). For an object
E ∈ Db(XL) and any g ∈ G we then have

Z(g∗(E)) = Z ′p∗(g∗(E)) = Z ′g∗(p∗(E)) = Z ′p∗(E) = Z(E)

as claimed. The proof in the numerical case is similar. �

Remark 2.4.2. Note that the homomorphism p∗ : N(X) //N(XL) is always
injective.

Remark 2.4.3. If (2.4.1) is an isomorphism, then we have the equalities

Stab(X)α = Stab(X)p and α = p∗.

To see this recall that we only need to check that if E is a semistable object
in Db(X) with respect to α(σ) = (C, Z ′ = Z ◦ p∗), then p∗(E) is semistable
with respect to σ = (D, Z). Assume for simplicity that E and p∗(E) are in the
corresponding hearts and let F ⊂ p∗(E) be a destabilising object, i.e. φσ(F ) >
φσ(p∗(E)). By (2.4.1) we can write Z = Z̃◦p∗. Therefore, we have the equalities

Z ′(p∗(F )) = Z ◦ p∗(p∗(F )) = Z̃(p∗(F )⊕d) = dZ(F )

and
Z ′(p∗p∗(E)) = Z ′(E⊕d) = dZ ′(E) = dZ(p∗(E)).

Hence, φσ′(p∗(F )) > φσ′(E), which is a contradiction.

Now recall from [14, Sec. 6] that for any σ = (Z,P) in a connected component
Σ of the stability manifold of a variety Y one can de�ne a generalised norm on
the vector space Hom(K(Y ),C) by

‖U‖σ = sup {|U(E)|/|Z(E)| , E semistable in σ} ∈ [0,∞]

In fact, the subspace V (Σ) of Theorem 2.1.9 is the subspace of functions U for
which the norm is �nite. Bridgeland proves furthermore that if σ and τ are
in the same connected component Σ, then the norms de�ned by these stability
conditions are equivalent on V (Σ).

Lemma 2.4.4. Assume that (2.4.1) is an isomorphism and consider σ =
(Z,P) ∈ Stab∗(XL)p and p∗(σ) ∈ Stab∗(X). Then the map

Hom(K(X),C) ' // Hom(K(XL),C)

induced by p∗ is continuous with respect to the topologies induced by σ and p∗(σ).
The same assertion holds for

Hom(K(XL),C) ' // Hom(K(X),C),

where we consider the topologies induced by some σ′ ∈ Stab∗(X) and p∗(σ′).
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Proof. Let V = U ◦ p∗ ∈ Hom(K(X),C) and recall that p∗(σ) = (Z ◦ p∗,P ′).
Then

‖V ‖p∗(σ) = sup {|V (F )|/|Zp∗(F )| , F semistable in p∗(σ)} =

sup {|Up∗(F )|/|Zp∗(F )| , F semistable in p∗(σ)} ≤ ‖U‖σ
since F by de�nition is p∗(σ)-semistable if p∗(F ) is σ-semistable. The proof for
p∗ is similar. �

Corollary 2.4.5. Assume σ ∈ Stab∗(XL)p is contained in some connected
component ΣL of dimension k and assume that (2.4.1) is an isomorphism. Then
p∗(σ) lies in a connected component Σ of dimension k. Similarly, the dimension
remains the same under p∗. The same holds for numerical stability conditions.

Proof. Follows immediately from the fact that k is the dimension of V (ΣL) =
{U , ‖U‖σ <∞}, the above computation and the fact that p∗p∗(σ′) respectively
p∗p∗(σ) are in the same connected component as σ resp. σ′ by Lemma 2.2.14
resp. Lemma 2.2.18. The same proof works in the numerical case. �

Proposition 2.4.6. Let (2.4.1) be an isomorphism, let Σ be a component in
Stab∗(X) and ΣL the component of the same dimension in Stab∗(XL) contain-
ing p∗(Σ). Then we have p∗(Σ) = ΣL. The same assertions hold for numerical
stability conditions.

Proof. Recall that we have an isomorphism between V (Σ) and V (ΣL). Let
σ = (Z,P) = p∗(σ′) = p∗((Z ′,P ′)) be an element in p∗(Σ) ⊂ ΣL, U ⊂ ΣL
be an open neighbourhood of σ homeomorphic to U ′ ⊂ V (ΣL) and V be an
open neighbourhood of σ′ homeomorphic to V ′ ⊂ V (Σ). Restricting to the
intersection p∗(V ′)∩U ′ if necessary and abusing notation we have a commutative
diagram

V
p∗ //

'
��

U

'
��

V (Σ) ' // V (ΣL).

This shows that p∗(Σ) ⊂ ΣL is open. Since it is also closed by Theorem 2.2.22
and ΣL is connected, we have the claimed equality. The proof for numerical
stability conditions is similar. �

The proposition immediately implies

Theorem 2.4.7. If N(X) ⊗ C ' N(XL) ⊗ C, Stab(XL) is connected and
Stab(X) is non-empty, then Stab(X) ' Stab(XL). A similar statement holds
for the manifolds of all locally �nite stability conditions. �

We will now apply the above results to the case of K3 surfaces. Recall the
notation and the statements of Example 2.1.13.

Assume that the K3 surface SC is de�ned over the real numbers and possesses
an R-rational point. Further assume that all line bundles on SC are also de�ned
over R. This is e.g. the case if SC is generic, i.e. of Picard rank 1, since in this case
the Galois group has to act as the identity on Z = Pic(SC). These conditions
ensure that (2.4.1) (or rather its numerical version) is an isomorphism.
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It is well-known that there cannot exist any numerical stability conditions
on the standard heart Coh(SC). Bridgeland therefore uses the theory of tilting
to produce new hearts on which stability conditions can indeed be constructed.
The method works as follows: One takes R-divisors β and ω so that ω is in the
ample cone

Amp(SC) =
{
ω ∈ NS(SC)⊗ R | ω2 > 0 and ω · C > 0 for any curve C ⊂ S

}
.

Recall that the slope µω(E) of a torsion-free sheaf E on SC with respect to ω is
de�ned by

µω(E) =
c1(E) · ω

rk(E)
.

This gives us the possibility to de�ne semistability with respect to the slope.
It turns out that any torsion-free sheaf has a HN-�ltration with respect to µω.
One can then show that there exists a torsion pair (T ,F) on Coh(SC) de�ned
as follows: The category T consists of those sheaves whose torsion-free parts
have µω-semistable HN-factors of slope µω > β ·ω and F consists of torsion-free
sheaves on S all of whose µω-semistable HN-factors have slope µω ≤ β · ω.

It follows from this construction that the torsion pair does not depend on
β, but only on ω and the product β · ω. If ω is an ample line bundle (and
therefore by our assumption de�ned over R), then the HN-�ltration of a sheaf
pulled back from S is de�ned over R, cf. [35, Thm. 1.3.7]. The torsion pair
therefore descends and so does the heart obtained by tilting with respect to it.
Corollary 2.3.3 then implies that the stability manifold Stab(S) is non-empty.
Ignoring other possible components and using the corollary above we thus see
that the distinguished component described by Bridgeland is de�ned over R.
We thus proved the

Proposition 2.4.8. Let S be a K3 surface over R and denote by SC the com-
plex K3 surface obtained by base change. Furthermore, assume that S has an
R-rational point and that Pic(S) = Pic(SC). Then there exists a connected
component Stab†(S) ⊂ Stab(S) such that there is a homeomorphism between
Stab†(S) and Bridgeland's distinguished component Stab†(SC) ⊂ Stab(SC). �
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Chapter 3

Scalar extensions for

triangulated categories

In this chapter we propose a construction which associates an L-linear triangu-
lated category to a K-linear triangulated category and a �eld extension L/K.
We use the notion of L-modules: If C is an object in some arbitraryK-linear cat-
egory C, then an L-module structure is by de�nition a morphism of K-algebras
from L to the endomorphisms of C in C. This notion is well-known in the con-
text of additive and abelian categories and we give a review in the �rst section.
Since we believe that triangulated categories are not rigid enough for this con-
struction to be applied, we take a detour via pretriangulated di�erential graded
categories. The necessary facts and results are presented in the second section.
In Section 3.3 we give our de�nition of scalar extension and prove our main
results, Propositions 3.3.4, 3.3.5 and 3.3.7, which state that our construction
produces the expected results in some standard examples. In the last section
we study the behaviour of the dimension of a triangulated category under base
change and prove that it does not vary if the extension is �nite and Galois, for
the precise statement see Propositions 3.4.4 and 3.4.5.

3.1 Scalar extensions for additive categories

De�nition 3.1.1. Let C be a K-linear additive category and let L/K be a �eld
extension. The base change category CL is de�ned as follows:
• Objects of CL are pairs (C, f), where C ∈ C and f : L // EndC(C) is a
morphism of K-algebras.
• Morphisms between (C, f) and (D, g) are given by morphisms α : C //D in
C compatible with the given actions of L, i.e. for any l ∈ L the diagram

C
f(l) //

α

��

C

α

��
D

g(l) // D

commutes.

We call the datum (C, f) an L-module structure on C.
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Lemma 3.1.2. The category CL is additive and comes with a natural L-linear
structure.

Proof. The veri�cation is straightforward: The zero object is (0, 0), the direct
sum of (C, f) and (D, g) is given by (C ⊕D, f ⊕ g), the K-linearity is obvious.
As to the L-linearity: For a scalar l ∈ L and an α ∈ HomCL((C, f), (D, g))
de�ne l ·α := α◦f(l) = g(l)◦α. It is then easy to check that this is well-de�ned
and thus CL is indeed L-linear. �

Lemma 3.1.3. If C is an abelian category, then CL is also abelian.

Proof. Let α : (C, f) // (D, g) be a morphism in CL. We �rst have to show the
existence of a kernel and a cokernel. We will show the existence of the former,
the latter is similar. Forgetting the additional structures there exists a kernel
A in C. One can de�ne a canonical morphism h : L // EndC(A) as follows: Let
l ∈ L be arbitrary and consider the commutative diagram

A
i // C

α //

f(l)

��

D

g(l)

��
A

i // C
α // D

Since α ◦ f(l) ◦ i = g(l) ◦ α ◦ i = 0, there exists a unique morphism A
h(l) // A

making the diagram commutative. This de�nes h and makes i a morphism in
CL. The axiom about the equality of the image and the coimage is equally easy
to check. �

Let us now consider base change for functors:

De�nition 3.1.4. Let F : A // B be a functor between K-linear abelian
(or additive) categories. The functor FL : AL // BL is de�ned as follows:
For an L-module (A, f) ∈ AL de�ne a module structure f̃ on F (A) by the
composition L // EndA(A) // EndB(F (A)), i.e. f̃(l) = F (f(l)). For any α :
(A, f) // (A′, g) the map F (α) is then compatible with the module structures
on F (A) and F (A′) and this de�nes F on morphisms.

Note that with this de�nition FL is exact if F is. Furthermore one has

Lemma 3.1.5. If F is an equivalence, then FL is also an equivalence.

Proof. Let (A, f) and (A′, g) be objects in AL. We have a commutative diagram

Hom((A, f), (A′, g))

��

FL // Hom((F (A), f̃), (F (A′), g̃))

��
Hom(A,A′) F

'
// Hom(F (A), F (A′))

where the vertical maps are the inclusions. The functor FL is therefore faithful.
Let β : F (A) // F (A′) be compatible with the module structures. Since F is
full, there exists an α such that F (α) = β and we have

F (α ◦ f(l)) = F (α) ◦ F (f(l)) = F (α) ◦ f̃(l) = g̃(l) ◦ F (α) = F (g(l) ◦ α)
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for any l ∈ L. Since F is faithful, this shows α ◦ f(l) = g(l) ◦ α. We conclude
that α is a morphism in AL and FL is full.
Finally, let (B, h) be an element in BL. Using the inverse functor F−1 we get
an object (A, f) ∈ AL such that FL((A, f)) = (B, h) and thus FL is essentially
surjective. �

Example 3.1.6. Let A be a K-algebra and let C = Mod(A) be the abelian
category of (left) A-modules. As one would expect, one has an equivalence

Φ : Mod(A)L ' Mod(A⊗K L).

The de�nition of the functor is straightforward: If (M,f) is an element in
Mod(A)L, then one can de�ne an (A⊗K L)-module structure on M as follows:

(A⊗K L)×M //M, (a⊗ l,m) � // f(l)(am)

A morphism α : (M,f) // (N, g) is simply sent to itself, since the compatibility
with the L-module structures translates into linearity over A⊗KL. It is obvious
that Φ is faithful. It is full since for any (A⊗K L)-linear map ϕ : M //N one
has

ϕf(l)(am) = ϕ((a⊗ l)m) = (a⊗ l)ϕ(m) = g(l)(aϕ(m)) = g(l)ϕ(am)

and therefore ϕ can be considered as a map from (M,f) to (N, g). Finally, the
functor is essentially surjective since any (A⊗K L)-moduleM can be considered
as an A-module and the L-module structure is given by

L // EndA(M), l � //
[
f(l) : m � // µ(1⊗ l)m

]
,

where µ is the scalar multiplication.
Using similar arguments one also proves QCoh(X)L ' QCoh(XL) for any

scheme X over K.
Note that the same argument shows that for a �nite �eld extension the base

change of the abelian category of all �nitely generated A-modules is equivalent
to the category of all �nitely generated (A⊗K L)-modules. It follows that for a
noetherian scheme X over K one has an equivalence Coh(X)L ' Coh(XL).

Remark 3.1.7. The group Aut(L/K) acts on CL in the following way: Let
α ∈ Aut(L/K) and (A, f) ∈ CL, then α(A, f) := (A, f ◦ α). If C is equal to
Mod(A) for a K-algebra A, then it is easy to see that this action corresponds
to the usual action of Aut(L/K) on modules.

Lemma 3.1.8. Let C be a K-linear additive category. Then we have an equiv-
alence:

F : Kom(C)L
' // Kom(CL).

Proof. Let (A• = . . . //Ai //Ai+1 // . . . , f) be an object in Kom(C)L so
that for any l ∈ L one has a morphism of complexes f(l) : A• //A•. For
any n ∈ Z the component f(l)n de�nes an L-module structure on An and
the di�erentials are compatible with these structures, hence are morphisms in
CL. Therefore, A• ∈ Kom(CL) and F is de�ned on objects. A morphism
α : (A•, f) // (B•, g) is simply sent to α considered as a morphism of complexes
in Kom(CL). It is now obvious that F is an equivalence. �
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There is a forgetful functor Λ : CL // C from the base change category to
the original one, which is exact in the abelian case. It is also possible to de�ne
a functor in the other direction as follows:

If C is a K-linear additive category, V a �nite-dimensional K-vector space
and X ∈ C one can consider the functor

FXV : C // V ecK , C � // HomK(V,HomC(X,C)).

This functor is representable by the object X⊕ dimK(V ) which will, for obvious
reasons, be denoted by V ⊗KX. Here we tacitly assume that either the �eld ex-
tension is �nite or that C has arbitrary direct sums. Using the de�ning property
of V ⊗K X one has an isomorphism

µ : FXV (V ⊗K X) = HomK(V,HomC(X,V ⊗K X)) ' End(V ⊗K X).

Let us now specialize to V = L, where L is our �nite �eld extension. We can
de�ne an L-module structure on L⊗K X as follows. Consider the element f0 =
µ−1(id) ∈ HomK(L,HomC(X,L ⊗K X)). Any element l ∈ L gives a K-linear
map from L to itself and therefore we can de�ne α(l) to be µ(f0 ◦ l). It is easy
to check that this de�nes a homomorphism of algebras α : L // End(L⊗K X)
and thus an L-module structure on L ⊗K X. One could equally well just use
the following

Lemma 3.1.9. Let A be an additive category with arbitrary direct sums. There
exist canonical maps Mat(I × J,K) // HomA(⊕IX,⊕JX), where I and J are
some index sets, which are compatible with the inclusions and projections. Via
these maps, matrix multiplication corresponds to composition of maps.

Proof. This is a special case of [1, Lem. B3.3]. Note that in [1] the authors work
with abelian categories, but the quoted lemma only needs the additivity. �

Mapping X to X ⊗K L de�nes an exact K-linear functor

Ξ : C // CL

by sending an exact sequence X // Y //Z to its d-fold sum. One has the

Lemma 3.1.10. The functor Ξ is left adjoint to Λ, i.e. for objects C ∈ C and
(D,α) ∈ CL one has a natural isomorphism

HomCL(Ξ(C), (D,α)) ' // HomC(C,Λ(D,α)).

Proof. We recall the proof from [67] where an inverse is constructed as fol-
lows: Let f be an element in HomC(C,D). Using α one de�nes a morphism
L // Hom(C,D) by l � // α(l) ◦ f . By de�nition of the tensor product this cor-
responds to a morphism Ξ(C) //D which is compatible with the L-module
structures. One could also just quote [1, Prop. B3.16]. Note that in [1] the
authors de�ne tensor products in a more general setting and therefore abelian
categories have to be used for some of the arguments. In our situation the
additivity is in fact su�cient for the quoted statement. �
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Example 3.1.11. Consider the situation of Example 3.1.6. It is easy to see
that the functor Ξ corresponds to tensoring an A-module with the ring A⊗K L
and the functor Λ is nothing but considering a module over A ⊗K L as an A-
module. Going from the a�ne situation to an arbitrary scheme X over K we
see that Ξ corresponds to p∗ and Λ to p∗, where p : XL

//X is the projection.
Of course, p∗ is exact, since p is �at. Thus, the above lemma translates into the
usual adjunction of the functors p∗ and p∗.

Corollary 3.1.12. If (C, f) is an injective object in CL, then C = Λ(C, f) is
an injective object in C. Furthermore, if CL has enough injective objects, then
the same holds for C.

Proof. By the above lemma the functor Hom(−, C) is isomorphic to the functor
Hom(Ξ(−), (C, f)) which is exact, being the composition of the exact functors
Ξ and Hom(−, (C, f)). This proves the �rst statement. As to the second one:
Consider an arbitrary element C ∈ C. The object Ξ(C) can, by assumption, be
embedded into an injective object (D, g). Applying the exact functor Λ to this
embedding we get an injection C⊕d //D. Thus, C can be embedded into the
injective object D. �

Remark 3.1.13. In fact, the converse implication of the second statement also
holds, cf. [38, Prop. 4.8].

Corollary 3.1.14. There is a fully faithful functor I(CL) // I(C)L sending
(I, f) to (I, f) (where I(C) resp. I(CL) denotes the category of injective objects
in C resp. CL). Furthermore, I(CL) is closed under direct summands in I(C)L.

Proof. Only the second statement needs a proof. Let (I, f) and (J, g) be two
elements in I(C)L such that their direct sum (I ⊕ J, f ⊕ g) is in I(CL). Now use
that a direct summand of an injective object is injective. �

3.2 Di�erential graded categories

Let us now discuss why such an approach cannot work for triangulated categories
(of course, the main example we have in mind is the derived category of a scheme
X over K). Let α : (X, f) // (Y, g) be an arbitrary morphism in a triangulated
category T commuting with the given L-module structures on X and Y . One
now has to de�ne an L-module structure on C(α), a cone of α. It seems that the
only way to do this would be the following: Let l ∈ L and consider the diagram

X
α //

f(l)

��

Y
i //

g(l)

��

C(α) π // X[1]

f(l)[1]

��
X

α // Y
i // C(α) π // X[1]

By TR3 one has a mophism h(l) : C(α) //C(α). However, this morphism
is not unique and from the equalities f(l′l) = f(l′)f(l) and g(l′l) = g(l′)g(l)
(l, l′ ∈ L) and the commutativity of the appropriate diagrams we only get

h(l′l)i = h(l′)h(l)i and πh(l′l) = πh(l′)h(l).
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Hence, we cannot conclude that one gets an L-module structure on C(α)
and it seems that the underlying problem is the non-uniqueness of the cone.
Therefore, it seems natural to take a detour via enhanced triangulated cate-
gories. We start with di�erential graded categories (for details see e.g. [36]) by
recalling the

De�nition 3.2.1. A di�erential graded category or DG-category over a �eld
K is a K-linear category A such that for any objects X,Y ∈ A the space of
morphisms Hom(X,Y ) is a complex and the composition of morphisms

Hom(X,Y )⊗Hom(Y,Z) // Hom(X,Z)

is a chain map.

Since for any X ∈ A the algebra End(X) is a DG-algebra (i.e. an algebra
which has a structure of a complex such that the Leibniz rule holds for the
di�erential), it seems reasonable to take this into account when de�ning an L-
module structure in this setting. Regarding L as a DG-algebra over K with
trivial di�erential this consideration leads to

De�nition 3.2.2. If X is an object of a DG-category A, then a stucture of an
L-module on X is given by a morphism f : L // EndA(X) of DG-algebras over
K.

In particular, the image of L under f lies in the kernel of d0 of EndA(X).
We thus have a category AL of L-modules. It is easy to prove the

Lemma 3.2.3. For a DG-category A over K the category AL has the structure
of a DG-category over L.

Proof. One only needs to check that the space of morphisms between two
L-modules (X, f) and (Y, g) is a complex in a natural way. For this it is
enough to show that for any α ∈ Hom((X, f), (Y, g)) the map d(α) is again
in Hom((X, f), (Y, g)), in other words that the di�erential in Hom(X,Y ) re-
stricts to the subgroup Hom((X, f), (Y, g)).
We know that αf(l) = g(l)α for any l ∈ L. Di�erentiating both sides gives

d(α)f(l) + αd(f(l)) = d(αf(l)) = d(g(l)α) = d(g(l))α+ g(l)d(α).

Since f and g are morphisms of DG-algebras, d(f(l)) = f(d(l)) = f(0) = 0 and
similarly for g. This completes the proof. �

Convention: If f : L // EndA(X) and g : L // EndA(Y ) are two given
module structures, we will sometimes write Homf,g(X,Y ) for the subcomplex
Hom((X, f), (Y, g)) of Hom(X,Y ) de�ned above.

Example 3.2.4. The most basic example of a K-linear DG-category is the
category of complexes of K-vector spaces. For two complexes X and Y we
de�ne Hom(X,Y )n to be the K-vector space formed by families α = (αp) of
morphisms αp : Xp // Y p+n, p ∈ Z. We de�ne HomDG(X,Y ) to be the graded
K-vector space with components Hom(X,Y )n and whose di�erential is given
by

d(α) = dY ◦ α− (−1)nα ◦ dX .
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The DG-category CDG(K) has as objects complexes and the morphisms are
de�ned by

CDG(K)(X,Y ) = HomDG(X,Y ).

Of course, starting with the category of complexes over an arbitrary K-linear
abelian (or additive) category one can associate a DG-category to it in a similar
manner.

Clearly, we get back the usual category of complexes by taking as morphisms
only the closed morphisms of degree zero and we get the usual homotopy cate-
gory if we replace HomDG(X,Y ) by ker(d0)/ im(d−1).
Let us show that the base change category CDG(K)L is naturally equivalent
to the category CDG(L). If (X, f) is an L-module, then the image of the map
f : L // EndDG(X) is contained in ker(d0), i.e. in the space of chain maps.
Therefore, as in Lemma 3.1.8, we see that (X, f) gives an object in CDG(L)
and we therefore have a functor CDG(K)L //CDG(L). The rest of the proof
is clear.

Recall that a DG-functor F : A // B between DG-categories A and B is
by de�nition required to be compatible with the structure of complexes on the
spaces of morphisms.

De�nition 3.2.5. Let F,G : A // B be two DG-functors. We de�ne the com-
plex of graded morphisms Hom(F,G) to be the complex whose nth component
is the space formed by families of morphisms φX ∈ HomB(F (X), G(X))n such
that (Gα)(φX) = (φY )(Fα) for all α ∈ HomA(X,Y ), where X,Y ∈ A. The
di�erential is given by that of HomB(F (X), G(X)). Using this we de�ne the
DG-category of DG-functors from A to B, denoted by Hom(A,B), to be the
category with DG-functors as objects and the above described spaces as mor-
phisms.

The next proposition provides a di�erent description of the base change
category.

Proposition 3.2.6. Let 1L be the K-linear DG-category with one object whose
endomorphism ring is L. For a K-linear DG-category A de�ne A′L to be the
category Hom(1L,A). Then there exists an equivalence A′L ' AL.

Proof. Let F : 1L //A be a functor. It determines a unique object X ∈ A.
Furthermore, if F is a DG-functor, we get a homomorphism of DG-algebras
f : L // End(X). Thus F corresponds to (X, f), an L-module. By de�nition
the natural transformations between two functors F and G correspond precisely
to morphisms fromX to Y compatible with the module structures which �nishes
the proof. �

Remark 3.2.7. Let A be an additive DG-category and assume that either L/K
is �nite or that A has arbitrary direct sums. In this situation there exists a nat-
ural DG-functor A //AL de�ned as in Section 2. Using the above description
it is given as the functor mapping A ∈ A to the functor sending the unique
object of 1L to A⊕ dimK(L).

Remark 3.2.8. Note that there is a second possibility to associate to aK-linear
DG-category A an L-linear DG-category, namely by taking the tensor product
of A with the category 1L. Recall that the tensor product of two DG-categories
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A and B is de�ned to be the DG-category where the objects are pairs (A,B)
and the space of morphisms of two such pairs (A,B) and (A′, B′) is de�ned
to be the tensor product of complexes HomA(A,A′)⊗ HomB(B,B′). However,
this cannot be the right construction in the geometric case, since we do not get
any new objects. It rather seems that in a sense this construction corresponds
to associating to Coh(X) (for a scheme X over K) the category p∗(Coh(X)),
where p : XL

//X is the projection.

Recall that to any DG-category A one can naturally associate two other cat-
egories: Firstly, there is the graded category Ho•(A) having the same objects as
A and where the space of morphisms between two objects X,Y is by de�nition
the direct sum of the cohomologies of the complex HomA(X,Y ). Secondly, re-
stricting to the cohomology in degree zero we get the homotopy category Ho(A).
Recall further that a DG-functor F : A // B is called a quasi-equivalence if for
any two objects X,Y in A the map

Hom(X,Y ) // Hom(F (X), F (Y ))

is a quasi-isomorphism and furthermore the induced functorHo(F ) is essentially
surjective. A DG-functor F : A // B is a DG-equivalence if it is fully faithful
and for every object B ∈ B there is a closed isomorphism of degree 0 between B
and an object of F (A). We also have to recall the following construction from
[8].

De�nition 3.2.9. Let A be a DG-category. De�ne the pretriangulated hull
Apretr of A to be the following category. Its objects are formal expressions
(⊕ni=1Ci[ri], q), where Ci ∈ A, ri ∈ Z, n ≥ 0, q = (qij), qij ∈ Hom(Cj , Ci)[ri −
rj ] is homogeneous of degree 1, qij = 0 for i ≥ j, dq + q2 = 0. If C =
(⊕nj=1Cj [rj ], q) and C

′ = (⊕mi=1C
′
i[r
′
i], q) are objects in Apretr, then the Z-graded

K-module Hom(C,C ′) is the space of matrices f = (fij), fij ∈ Hom(Cj , C ′i)[r
′
i−

rj ] and the composition map is matrix multiplication. The di�erential d :
Hom(C,C ′) // Hom(C,C ′) is de�ned by d(f) = (dfij)+q′f−(−1)lfq if deg fij =
l. The category A is called pretriangulated if the natural fully faithful functor
Ψ : A //Apretr is a quasi-equivalence and A is strongly pretriangulated if Ψ is
a DG-equivalence.

Remark 3.2.10. There is an equivalent way of describing the pretriangulated
hull. To do this, recall that for any K-linear DG-category A the category
of DG-functors Hom(A, CDG(K)) is called the category of DG-modules and
denoted by Mod(A). As in the classical setting there is a Yoneda embedding
A // Mod(A) and an element in the image is called representable. A DG-
module Φ is called semi-free if there exists a �ltration 0 = Φ0 ⊂ Φ1 ⊂ · · · ⊂
Φ such that Φk+1/Φk is isomorphic to a direct sum of shifts of representable
modules. A semi-free DG-module is �nitely generated if Φn = Φn+1 for all
n � 0 and Φk+1/Φk is a �nite direct sum. As explained in [8] there is a
canonical embedding Apretr // Mod(A) and under this embedding Apretr is
DG-equivalent to the category of semi-free �nitely generated DG-modules (cf.
[20]).
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3.3 Scalar extension of a triangulated category

De�nition 3.3.1. Let T be a K-linear triangulated category and let L/K be
a �eld extension. We de�ne the base change category TL as follows: Choose an
enhancement of T , i.e. an additive pretriangulated DG-category A such that
Ho(A) ' T , and de�ne TL to be the smallest thick (i.e. closed under taking
direct summands) full triangulated subcategory of Ho((AL)pretr) containing the
image of T under the functor induced by A //AL � � // (AL)pretr.

Remark 3.3.2. In the above de�nition and in the following we tacitly assume
that A has in�nite direct sums or that L/K is �nite.

Remark 3.3.3. Clearly one would like to see that this de�nition does not
depend on the enhancement. Unfortunately we were not able to prove this
statement so far. The di�culty is that the internal Hom-functor (which we use,
cf. Proposition 3.2.6) in the 2-category of DG-categories does not respect quasi-
equivalences. Therefore, in the following the notation should probably re�ect
that an enhancement has been chosen, but we will not do this.

Let us now consider the results this construction produces in some standard
examples.

Proposition 3.3.4. Let X be a smooth projective variety over K and consider
Db(X). Then (Db(X))L is equivalent to Db(XL).

Proof. We know that T ' K̃+(I(C)), where I(C) is the additive category of
injective objects in C = QCoh(X) and K̃+(I(C)) is the homotopy category of
bounded-below complexes of injectives having only �nitely many coherent coho-
mology objects. It is well-known that the DG-category of bounded-below com-
plexes of injective objects with bounded coherent cohomology A = CDG(I(C)) is
an enhancement of T . Base change for this DG-category produces CDG(I(C)L),
which is a pretriangulated DG-category and therefore taking the pretriangu-
lated hull does not change its homotopy category. Using Corollary 3.1.12 it
is easy to see that I(CL) can be embedded as a full thick subcategory into
I(C)L and hence Db(XL) = K̃+(I(CL)) is a full triangulated thick subcategory
in K̃+(I(C)L) = Ho(AL) (where K̃+ is de�ned similarly as above). Clearly,
Db(XL) contains Db(X). In fact, Db(XL) is the smallest thick triangulated
subcategory of Ho(AL) with this property: In [55] it is shown that the cate-
gory Db(XL) has a classical generator, i.e. an object E with the property that
the smallest triangulated thick subcategory of Db(XL) containing E is every-
thing. Now use that the classical generator E is a direct sum of tensor pow-
ers of the very ample line bundle and therefore is in the image of the functor
Db(X) // Db(XL). �

There is a slight variation of the above:

Proposition 3.3.5. If X is a noetherian scheme over K and L/K is a �nite
Galois extension, then (Db(X))L ' Db(XL).

Proof. As in the previous proposition one shows that Db(XL) contains Db(X).
To show that Db(XL) is indeed the smallest thick triangulated subcategory of
Ho(AL) (notation as before) one uses the formula

p∗p∗(E) =
∑
g∈G

g∗(E),
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where p : XL
//X is the projection and G is the Galois group. �

Remark 3.3.6. There exists a di�erent enhancement of Db(X) if X is smooth
and projective. We will need some notation: Denote by C(X) the pretrian-
gulated DG-category consisting of bounded-below complexes of OX -modules
with bounded coherent cohomology. Now, we know that Db(X) is equivalent
to the category Perf(X) of perfect complexes, that is, �nite complexes of vec-
tor bundles. Choosing a �nite a�ne covering U of X, one has the (strongly)
pretriangulated DG category P(U) ⊂ C(X) which, by de�nition, is the small-
est full DG-subcategory of C(X) containing all �ech resolutions of elements of
Perf(X) and closed under taking cones of closed morphisms of degree zero. This
category is an enhancement of Db(X) by [11, Lem. 6.7]. It is easy to see that
the category P(U)L is equivalent to P(UL) (where UL is the a�ne covering of
XL given by pulling back U) and hence its homotopy category is equivalent to
Db(XL). Using the same arguments as in the above propositions one sees that
our de�nition produces the expected result if one works with this enhancement.

We also have the following result in the non-geometric situation:

Proposition 3.3.7. Let C be an abelian category with enough injectives and
with generators (for details see e.g. [42, Ch. II, 15]). Then Db(C)L is equivalent
to Db(CL).

Proof. One uses enhancements as above and the fact that if (Ci)i∈I is a set of
generators for C, then (Ξ(Ci))i∈I is a set of generators for CL, cf. [38, Prop.
4.8]. �

Remark 3.3.8. Let C be an abelian category. It is an interesting question
whether one could actually de�ne the base change category of Db(C) (or Kb(C))
simply as Ho((AL)pretr) for an enhancement A of Db(C). Let us investigate
the general case: Let C be an abelian category with enough injectives and con-
sider T = Db(C). Then Ho((AL)pretr) = K̃+(I(C)L), where the latter denotes
bounded-below complexes of objects in I(C)L with �nitely many cohomology
objects. The proof of the statement Ho((AL)pretr) = Db(CL) boils down to
proving the equivalence K̃+(I(C)L) ' K̃+(I(CL)), where of course I(CL) de-
notes the category of injective objects in CL and hence Db(CL) ' K̃+(I(CL)).
As above it is easy to see that K̃+(I(CL)) is a full triangulated subcategory in
K̃+(I(C)L). In order to prove that the embedding is essentially surjective, one
would in particular have to show that for any injective object I ∈ I(C) and
any module structure f the object (I, f) is in the image. This reduces to the
statement that (I, f) is isomorphic to an injective object in CL. Thus, one has
to show the equality I(C)L ' I(CL). It is unclear under which conditions this
can be proved.

Remark 3.3.9. There are several notions and constructions in the theory of
triangulated categories whose preservation under scalar extensions can (and
should) be investigated. For example, one could consider the case of quotients:
Let T be aK-linear triangulated category and let T ′ ⊂ T be a thick triangulated
subcategory (recall that this means that T ′ is closed under direct summands
in T ). Then there exists a triangulated category T /T ′, which is the Verdier
quotient of T by T ′ (for the de�nition and properties see e.g. [49, Ch. 2]). Let
us consider a simple example: Take an abelian category with enough injectives
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C, consider its homotopy category T = Kb(C) and T ′, the thick subcategory
of acyclic complexes. The quotient is then the derived category of C. Using
enhancements as above one can easily see that

TL/T ′L ' Kb(CL)/T ′L ' (T /T ′)L ' Db(CL).

An obvious question is whether the scalar extension construction is always com-
patible with taking quotients.

Another interesting question is the following: Let T be a K-linear triangu-
lated category endowed with a Serre functor S. Does the base change category
TL then also have a Serre functor? The statement holds in the geometric situa-
tion but it is unclear whether it can be proved in general.

We conclude this section by sketching a di�erent approach towards the de�-
nition of base change which was suggested to us by Prof. V. A. Lunts. Following
Keller one calls a triangulated category T algebraic if it is the stable category
of a Frobenius exact category (for the de�nition of the latter see [21, Ch. IV.3,
Ex. 4-8]). There is a close connection between algebraic triangulated categories
and derived categories of DG-categories (see [37]). We illustrate it in a special
case: Namely, by a result of Rouquier [62] the derived category Db(X) of a quasi-
projective scheme X over a perfect �eld K is equivalent to Perf(A), the category
of perfect complexes over a DG-algebra A, i.e. the smallest thick subcategory
of the derived category of A containing A. Here, A is determined by a strong
generator (see De�nition 3.4.1 in the next section) E of Db(X). To be more
precise, A = RHom(E,E). One could simply de�ne the base change category
Db(X)L as Perf(A ⊗K L). Let us check that this gives the wanted result: We
can assume E to consist of injective objects and therefore RHom(E,E) is just
the complex HomDG(E,E). Then by [10, Thm. 2.1.2 and Lem. 3.4.1] the object
p∗(E) is a generator of Db(XL) (here we tacitly assume that the �eld extension is
�nite since we need Spec(L) to be a scheme of �nite type over Spec(K)). Hence
Db(XL) ' Perf(B), where B = RHom(p∗(E), p∗(E)) = HomDG(p∗(E), p∗(E)),
where the second equality holds because the pullback of an injective sheaf is
injective. But

B = HomDG(p∗(E), p∗(E)) = HomDG(E,E)⊗K L = A⊗ L.

Hence Db(XL) ' Perf(A⊗K L).
If one chooses a di�erent generator E′, the same proof shows that Perf(A′⊗K

L) is again equivalent to Db(XL). Here, the choice of an enhancement is some-
what hidden, but it is indeed present, because we need the DG-structure to
de�ne the DG-algebra A.

This de�nition is certainly more elegant and one could apply it to a vast class
of examples, since most triangulated categories arising in algebraic geometry
(and representation theory) are in fact algebraic. In the general case one does
not have an equivalence between T and the category of perfect complexes over
some DG-algebra, but T is rather equivalent to (a full subcategory of) the
derived category D(A) of some DG-category A (for the de�nition of D(A) see
[36]). For the last statement one has to impose some conditions on T . One could
then de�ne the base change category as (a certain subcategory of) the derived
category of A⊗K 1L. The disadvantage of this approach is that the DG-algebras
resp. DG-categories that appear are in general very di�cult to describe.
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3.4 Dimension under scalar extensions

In [62] the dimension of a triangulated category was introduced. To recall the
de�nition we need some notation. If I is a subcategory of a triangulated category
T , then 〈I〉 denotes the smallest full subcategory of T which contains I and is
closed under isomorphisms, �nite direct sums, direct summands and shifts. If
I1 and I2 are two subcategories, then I1 ∗ I2 is the full subcategory of objects
M in T such that there exists a triangle I1 // M // I2 with Ii ∈ Ii. We
also de�ne I1 � I2 = 〈I1 ∗ I2〉 and set inductively 〈 I〉k = 〈I〉k−1 � 〈I〉. If I
consists of one object E we denote 〈I〉 by 〈E〉1 and set 〈E〉k = 〈E〉k−1 � 〈E〉1.

De�nition 3.4.1. An object E of T is called a strong generator if 〈E〉n = T
for some n ∈ N. The dimension of T is the smallest integer d such that there
exists an object E with 〈E〉d+1 = T . The dimension spectrum of T is the set
of all integers k such that there exists an E with the property that 〈E〉k+1 = T
but 〈E〉k 6= T .

Example 3.4.2. For a smooth a�ne scheme Rouquier showed that dim(X) =
dim(Db(X)) (cf. [62]). In [55] Orlov showed that the dimension of the bounded
derived category of a smooth projective curve C of genus g ≥ 1 is 1 and conjec-
tured that for any smooth quasi-projective varietyX the equality dim(Db(X)) =
dim(X) holds. In the preprint [2] the conjecture was veri�ed for triangulated
categories possessing a so called tilting object, which is true e.g. for the derived
categories of del Pezzo surfaces with Picard rank at most seven and Hirzebruch
surfaces.

One can now ask the following natural

Question: How does the dimension of a triangulated category behave under
scalar extensions?

Lemma 3.4.3. Let L/K be a �nite Galois extension with Galois group G, let C
be a K-linear abelian category and CL the base change category de�ned in Section
3.1. Then G acts on CL and Galois descent holds, i.e. one has an equivalence
between C and the category (CL)G of objects with Galois-action in CL together
with Galois-equivariant morphisms.

Proof. By the Mitchell embedding theorem [41] there exists a full exact embed-
ding of C into the abelian category Mod(A) of modules over some K-algebra A.
By Example 3.1.6 the category CL can then be embedded into Mod(A⊗ L). It
is classical that the pair Mod(A) and Mod(A⊗ L) satis�es Galois descent. Let
(M,f) be an object with Galois-action in CL. By Galois descent there exists an
A-module N such that N⊗AL is isomorphic to (M,f). Considering these mod-
ules as modules over A gives an isomorphism M ' Nd. Since the embedding of
C into Mod(A) is full and exact, this implies that N is indeed an element in C
(e.g. because it can be written as a kernel of an endomorphism of M). Hence,
the pair C and CL ful�ls Galois descent as claimed. �

Proposition 3.4.4. Let C be an abelian category with enough injectives and
with generators and let L/K be a �nite Galois extension. Assume that the
dimension of Db(C) is �nite. Then dim(Db(C)L) = dim(Db(C)).
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Proof. We know that Db(C)L ' Db(CL) (Proposition 3.3.7). By the above
lemma the category Db(C) is dense in Db(CL), since for any object A ∈ Db(CL)
the object ⊕g∈Gg∗(A) is invariant under the Galois action and hence is iso-
morphic to an object of Db(C). Denote the functor Ξ of Section 3.1 by p∗.

If 〈E〉D
b(C)

n = Db(C) for some E in Db(C), then, by the above argument,

〈p∗(E)〉D
b(CL)

n = Db(CL). This gives the inequality �≤�.
For the converse consider a strong generator F in Db(CL) and denote the

dimension of Db(CL) by n. Assume that an object M ∈ Db(C) can be reached
from F in one step, i.e. that there exists a triangle

F [−1] // F // p∗(M) // F.

Applying all g ∈ G to this triangle, taking the direct sum and denoting the
object ⊕g∈Gg∗(F ) by Ẽ gives the triangle

Ẽ[−1] // Ẽ // ⊕g∈Gg∗(p∗(M)) = p∗(M)⊕d // Ẽ.

By Galois descent this is a triangle in Db(C) and, therefore, the object M⊕d

can be built from E, where p∗(E) = Ẽ, in one step. Induction on the number
of steps gives the inequality �≥�. �

Proposition 3.4.5. Let X be a noetherian scheme over K and L/K be a �nite
Galois extension. If dim(Db(X)) is �nite, then dim(Db(X)) = dim(Db(XL)).
In particular, if dim(Db(X)) = dim(X), then dim(Db(XL)) = dim(XL) =
dim(X) for any �nite Galois extension.

Proof. Repeat the proof of the previous proposition. �
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