RIEMANNIAN COMPARISON
CONSTRUCTIONS

Hermann Karcher

When S. Kobayashi wrote his chapter for the first edition of this
book he reported on amazing results which had just been obtained.
Those results triggered a rapid development of comparison theory:
in 1975 the book by Cheeger and Ebin [CE] dealing mostly with
curvature >0 appeared. In 1978 Gromov’s theorem classifying
almost flat manifolds appeared, see [BK]. In 1985 the case of
curvature <0 was treated in a book by Ballman, Gromov, and
Schroeder [BGS]. In survey articles, by Burago and Zalgaller [BZ]
and M. Berger [B], the field was explained to a wider audience. The
article, “Comparison and Finiteness Theorems in Riemannian
Geometry,” by T. Sakai [S] contains a very complete bibliography.

I have been asked to present, “with complete proofs,” part of
this development. I selected material which the reader will, hope-
fully, see as a direct continuation of the research portrayed by
Kobayashi. It therefore seemed natural to assume his chapter as
background; I refer to its sections as (K.1), (K.2), etc. In particular
I will use the exponential map, minimizing geodesics, conjugate
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and cut points, Jacobi fields, and the second variation formula
without further motivation and almost without separate introduc-
tion. The only other prerequisite I am aware of is: not to be scared
by the covariant derivative. I am using notation which resembles as
closely as possible the use of Euclidean directional derivatives. The
following three examples should explain the notation.

0.1

0.2

0.3

The fact that the Riemannian scalar product g(, ) is parallel
for the covariant derivative D but usually not constant for
the local derivative d of a chart is expressed by the following
formula (U and V are vector fields):

8(DXU’V)+8(U’ DyV)

Ix(g(U,V)) = {(3,\'8)(U’V)+ g(a,U,V)+g(U,a,V).

The so-called symmetry of the covariant derivative is ex-
pressed as

DyY-DyX=[X,Y] (=04Y-3d,X),
or with the help of amap ¢: I XI— M as (D/ds)d/dt)c
=(D/dt)3/ds)c. Both identities follow from the local
expression of D in terms of the chart derivative and the
symmetric Christoffel symbols:
D,Y=9,Y+T(X,Y), I'(x,Y)=TI(Y, X).

Usually this symmetry is (axiomatically) assumed; then one
finds with (0.1):

28(T(X,Y),Z) = —(928)(X,Y) +(3,8)(Y, Z)
+(9,8)(2Z, X).
The gradient of a function f is the vector field defined by

Oxf=g(gradf, X).
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Further covariant differentiation gives the Hessian
D)Z{,Yf =dy(dyf)— aD,,yf= g(Dygrad f,Y)
=0%yvf—9rxyf  (local chart expression).

The local formula shows the symmetry of D?f; Dgrad f is a
symmetric endomorphism field. A function f with a positive
definite Hessian is convex along any geodesic c¢(D,c’=0):
(fec)' =0.(g(grad f,c") = g(D.grad f,c’) > 0.

CONTENTS

Guideline: observe how global properties are concluded from
infinitesimal (= curvature) assumptions.

1. The setup to get curvature control started.
Natural functions, Jacobi equation, Riccati equation, constant
curvature case, reduction of the n-dimensional case to a 1-dimen-
sional discussion, the Riccati inequality, principal curvature—and
Hessian bounds, generalized Rauch bounds, Bishop-Gromov
volume bounds.

2. Immediate applications.
The Hadamard-Cartan theorem, fixed points of isometries, growth
of the fundamental group, the Ricci-diameter bound with equality
discussion.

3. Busemann functions.
K > 0 and compact totally convex exhaustion, Ricci > 0 and the
splitting of a line as factor.

4. Triangle comparison theorems.
Angle and secant comparisons with upper or lower curvature
bounds. A new proof of Toponogov’s theorem.

5. Applications of the triangle theorems.
Bound for the number of generators of the fundamental group;
critical points of the distance function, cut locus estimates
(Klingenberg, Cheeger, Toponogov), sphere theorems (Rauch,
Berger, Klingenberg, Shikata, Grove-Shiohama).



RIEMANNIAN COMPARISON CONSTRUCTIONS 173

6. Complex projective space and its distance spheres.
Description from scratch: metric, embedding, equivariant isome-
tries, curvature tensor of C P", curvature tensor and short closed
geodesics of the distance spheres.

1. THE SETUP TO GET CURVATURE CONTROL STARTED

1.1 Natural maps and functions. 1f one tries to generalize the
arclength parametrization of curves to get good coordinates for a
Riemannian manifold M, then a natural map from a Euclidean
space R" (e.g. T,M) into M is the exponential map (K.1). It is
defined via an initial value problem for geodesics from a point p:

exp,: TL,M > M
exp,(v) =c(1), where c is the geodesic with  (1.1.1)
c(0)=p, (p)=v.

Particularly natural functions from (parts of) a Riemannian mani-
fold M into R are distance functions (from a point or a submani-
fold), i.e. functions which satisfy

|grad f|=1  (distance function). (11.2)

Integral curves of distance functions are geodesics; namely, let u
be an arbitrary tangent vector then

0=4,g(grad f,gradf)(;)2g(Dugrad f.grad f)

< 2g(Dypq grad f,u)  (symmetry of Dgrad f),
-3)

s0 indeed
Dyypq 8xad f=0. (1.1.3)

The level surfaces are therefore called a family of “parallel”
surfaces.
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1.2 Connections with Jacobi fields (K.2). The differential equa-
tion for Jacobi fields J along a geodesic c,

J'=R(J,¢"Y¢'=0  (J”=D.(D.J)), (121)

is the linearization of the geodesic equation along c. It is thus by
definition that estimates on Jacobi fields as in Rauch’s theorem
(K.3.2) contain estimates of the differential of the exponential map
or the Hessian of distance functions. We only have to relate the
initial conditions for the Jacobi equation to the relevant families of
geodesics.

First, for the exponential map we get

dexp,| (sw):= %expp(s (v+w)) |'_0== J(s), (1.2.2)

J(0)=0, J(0)=w

since
, D 9
J'(0) = 7= 7rexp,(s(v+ tw))l0 .

D(d
(:2) ¥n ( -‘.Kexpp(s(v + tw))Io) L

=%(v+tw)=w.

Rauch type estimates |J’(0)| - h(s) < |J(s)| <|J'(0)|- H(s) therefore
translate into |w|- h(s) < |9 exp,|,,(sw)| < |w|- H(s).

Second, for distance. functions one has a natural unit normal
field N along the level surfaces, N := grad f, and the shape oper-
ator S with respect to that normal is the Hessian of f:

S-u=DN=D,gradf (u tangential to a level surface).
(1.2.3)
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The eigenvalues of S = D grad f are called principal curvatures (of
the level surface).

The sign convention in (1.2.3) is such that the principal curva-
tures of the sphere are positive for the outer normal. This is the
better choice when dealing with level surfaces.

The family of normal geodesics defines natural diffeomorphisms
from one level surface f = const. to nearby ones:

E,(p)=exp,s-N(p), pef'(const.). (1.2.4)

As in (1.2.2) one can describe the differentials of the E, by Jacobi
fields and the specifics of the construction determine the initial
conditions: let p(z) be a curve in a level surface then

O 5O = ZE(P()] _=I(s).  (129)

J(0)=p(0), J(0)=S-p(0)
since

D J D
J(0) = & =—N(p(t)) = S-p(0).
O = 7 355 = g@N((0) 2, 5-5(0)
Since E,(p(t)) is a curve in another level surface f~!(s + const.),
(1.2.5) in fact describes all the shape operators S, of the level
surfaces (along each normal geodesic):

S, J(s)=J(s). (1.2.6)

Following definition (1.2.3), interpretations of the shape operator
usually emphasize the turning speed of the normal along the level
surface. But the shape operator also controls the change of length
of the geodesic projections E, between level surfaces:

2o ZEGW), 3 ,(p(:»)
(12.7)

SE(P(). S, FE(p (1))

(1.2 5) (
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1.3 The Riccati equation for the shape operators of the level
surfaces of a distance function. The claim of this heading, namely
that the shape operators of the level surfaces of a distance function
satisfy the first-order equation (1.3.1) along the normal geodesics is
a key observation. Together with (1.2.7) it allows us to split
Rauch’s estimates for a second-order equation into two first-order
steps—each with a geometric interpretation. Because of its impor-
tance I give three derivatives of (1.3.1) which connect three differ-
ent points of view of the basic comparison construction.

First, differentiate (1.2.6) and use the Jacobi equation:

I(s) = 2 (8,-J(s)) = S;-(s) + 5,-7(s)
= —R(J,N)N(s)=(S;+82)-J(s).

We abbreviate R(J, N)N =: R -J; also, for fixed s we can con-
sider J(s) as an arbitrary tangent vector to a level surface. Then
the last equation is a Riccati equation for S,:

S/= —Ry~- S~ (1.3.1)

Second, insert a parallel vector field U(s) L N into (1.2.3) and
differentiate in the direction d/ds= N = grad f:

D
75 (8.-U(s)) =, - U(s)
D 2
= 75 (Dyygrad f) = D}, ygrad f
D
(note mU=0)

Insert in this equality the definition of the curvature tensor
D}, ygrad f= D} ygrad f— R(U, N)grad f and the definition of

the second differential of a vector field D,’,’ ygrad f(D=r)

el
D,(D -D = — S2-U to obtain (1.3.1
v(Dygrad /) D”Ngradf(l.l.s,x.z.s) S o obtain ( )
again.
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Third, consider a 2-dimensional Riemannian metric in Gaussian
form:

G
ds*=du®+ G*(u,v) dv?,  with curvature K = — <=
The u-lines are geodesics and their orthogonal trajectories are
parallel curves. The rate of change of their lengths gives their
geodesic curvature:

%dev=f%de=fxgds or xg=%.

One further differentiation gives the Riccati equation,

%xg= -K-x. (1.3.2)
The 2-dimensional formula has been known a long time; we also
shall see that the n-dimensional case is close to (1.3.2).

1.3.3. It turns out to be rather easy to reduce the comparison
discussion of (1.3.1) both for upper or lower curvature bounds to
1-dimensional Riccati inequalities—as if we had upper or lower
curvature bounds in (1.3.2) (see (1.5) below). So the original Rauch
line is replaced by:

Step 1. Prove inequalities for the principal curvatures of level
surfaces of distance functions via 1-dimensional Riccati
inequalities.

Step 2. Use Step 1 to integrate (1.2.6) or (1.2.7).

1.4 The constant curvature case. The Rauch comparison theo-
rem (K.3.2) is formulated in such a way that upper or lower bounds
for the curvature seem to play a completely symmetric role. Most
applications so far have gone via constant curvature models. In-
tegration of the Rauch estimates to distance or volume control
always requires in the case of upper curvature bounds some size
restriction, e.g. stay away from some cut locus. That such restric-
tions are not needed in comparisons with smaller curvature models
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(Toponogov, Bishop-Gromov) made these results prime tools in the
development of comparison theory.

I summarize the relevant constant curvature data.

1.41. We denote the hyperbolic space of curvature « <0,
Euclidean space (x = 0), or the sphere of curvature x >0 either
jointly by M,, or, if the sign of « is specified, by H, R", S

1.4.2. Similarly, we use a common notation for the functions
which control the trigonometry of those spaces. Denote the solu-
tions of the differential equation

ff+x-f=0

which have the same initial conditions as sin, respectively, cos by

s, Tesp. C,; se=c,, C, = —KS,.

1.4.3. Distance spheres of radius » have

’

)
principal curvatures = s—:(') =ct (r); ct.=—x—ct?

the length of their great circles = 2#s, (7).

Parallel surfaces at distance r from totally geodesic hyperplanes
have

principal curvatures = %(r).

The Hessian of the distance function has in the radial direction
the eigenvalue 0. For the proof of Toponogov’s theorem I need to
rescale the distance function so that all eigenvalues of the Hessian
become equal. This “modified distance” function is:

, ir? ifx=0
md.(r)==fos,= l—cosr ifx=1
coshr—-1 ifx=-1
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This function also avoids case distinctions in the cosine formula for
triangles (of edge lengths a, b, ¢, in M,):

md, (c)=md (a—b)+s.(a)-s.(b)-(1—-cosy).
1.44. If x < A then we have in appropriate intervals
sa(r) s (r),  a(r) <e(r),  calr)<er(r),

which expresses comparisons of lengths, areas and principal curva-
tures by explicit formulas (compare 1.4.3).

1.4.5. Rauch’s estimates as well as the ones we shall prove are
formulated for Jacobi fields perpendicular (or “normal”) to their
geodesics. This is all one needs since the tangential part of a Jacobi
field is always a linear field and hence explicitly known from the
initial data (independently from the curvature tensor):

Jan=8(J,¢") ¢’ (normalization || =1).

Indeed, the skew symmetries of R imply J;,, =0 and R(J,,,, ¢')¢’
=0. This and the Pythagorean theorem extend estimates for nor-
mal Jacobi fields to arbitrary ones.

1.5 Reduction of the discussion of (1.3.1) to a 1-dimensional
inequality. All estimates in this section are pointwise. One can
therefore allow that the lower and upper curvature bounds vary
from point to point. This generalization will not be pursued.

1.5.1. Assume a lower bound 8 < K.
To discuss $’= —Ry— S? let u be a parallel unit field along a
geodesic normal to the level surfaces. Then we obtain a first-order
Riccati inequality as follows:
g(Su,u) = —g(R(u, N)N,u) - g(S%u, u),

g(Su,u) < ~K(uAN)—g(Su,u)* < —8—g(Su,u)’.



180 Hermann Karcher

1.5.2. Assume an upper curvature bound K < A.
To discuss S’ = —R, — S? let p(¢) be a curve in one level surface
of the distance function. Consider the 2-dimensional “ruled”
surface

F(s, 1) = expyos - N(p(1)).

Since the s-lines are geodesics we have a Gaussian parametrization
and the geodesic curvatures of the parallel r-curves satisfy (by
1.3.2)

r— _wF_ 2
Ky = K Kgs

k> —A-«2  from (15.3).
Bounds derived from K < A therefore have a 2-dimensional geo-
metric interpretation!

1.5.3. For the ruled surface of (1.5.2),

d ad
F M9 K
K"<K (3sFA :’)tF)'

Proof. The s-lines are geodesics in M and hence in F. The
t-derivative of this family, therefore, gives Jacobi fields J(s) for
both spaces. The covariant derivative DF in F is the orthogonal
projection of the covariant derivative D™ in M. The computation

(ngg(f(sw(s»
2g(-%;1, %;J) —-2g(RM(J, F)F',J)
2g(%'FJ, %;J) —-2g(RF(J, F)F,JT)

therefore proves

g(RF(J,FYF,J)<g(RM(J,F)F,J).
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Volume estimates also fit in this discussion. For any family of
invertible linear maps, L(s), between Euclidean spaces we have
(Flanders 7.10)

2 get(L(s)) = trace(L’- L) - det(L(s)).

We apply this to the differentials JE, of (1.2.4) and with the
abbreviation

a(s) = det(JE,)

we get with (1.2.5, 1.2.6)
2 4(5) = (waces,) - a(s). (1.5.4)

This says that trace S, is the growth rate of the hypersurface
volume a(s)—tangent space-wise.

On the other hand, taking the trace of the Riccati equation
(1.3.1) for S gives

%traces= —trace R, — trace S 2. (1.5.5)

1.5.6. Recall: H:= n—l—-l- -trace S is the mean curvature of the
level hypersurface.

ricci( N, N):= trace(Y — R(Y, N)N) is the Ricci curvature of
M?" in the direction N.

Note that (1.5.4) and (1.5.5) are again controls in two first-order
steps: (1.5.4) controls the volume growth of the level surfaces in
terms of their mean curvature, and (1.5.5) controls the change of
the mean curvature in terms of the Ricci curvature, except that
trace S? and trace S are only related through

Schwarz’ inequality for endomorphisms

15.7
(n—1)-trace S? > (trace §)?, womitts=r-id. 137
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This and (1.5.5) give:

1.5.8. Assume a lower bound (n—1)-p < ric(N, N). Then we
have, for the mean curvature H=1/(n— l)traceS of the level
surfaces of a distance function (1.1.2) along the geodesics normal
to the level surfaces, the Riccati inequality

H < -

n__lric(N,N)-H2< -p—H?
Now (1.5.4) and (1.5.8) are a perfect control. Because of the use of
(1.5.7) one does not have a corresponding result assuming upper
bounds on the Ricci curvature—in fact almost no consequences of
such upper bounds are known.

For equality discussions see (2.4.2, 3.6).

1.6. The Riccati comparison argument. Note the simplicity of
the following arguments. The assumptions for (1.6.1) came from
(1.5.1, 1.5.2, 1.5.8).

Consider two functions f, F which satisfy on some interval

f'<-p—f* F>-p-F~ (1.6.1)
Then

((f-F)-el+P) <0,

1.6.2. CoOROLLARIES. If a) f(ry) > F(r,), respectively,
b) f(r,) < F(ry) then

a) ff)>F(rr) forr<r, (aslongasf<co, F> — ),

b) )< Fir) forr>r, (aslongasf> —o0, F< ).

1.6.3. Assume in addition to (1.6.1)

a) im, _, of(r)= + 0, respectively

b) im, , (F(r)= + o0, then

a) flr)<ct,(r) aslongasf= oo,

b) F(r) > ct,(r) as long as ct,= . (Definition of ct, in (1.43))

Proof. a)Let f be defined and finite on (0, R) and assume for
some r, € (0, R) that f(r))> ct,(ry), ie. f(ry)>ct,(ry—¢) for
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some € > 0. Because of (1.6.2) a) we have on (0, ry) f(r) > ct,(r —¢),
a contradiction since lim, cf,(r — €) = +oo. The proof of b) is
essentially the same.

REMARK. We will apply these estimates to (1.5.1, 1.5.2, 1.5.8) to
get estimates for solutions of the Riccati equation (1.3.1). There are
other ways to deal with (1.3.1). I hope the reader finds it helpful for
an intuitive understanding that the estimates are explained essen-
tially in a 2-dimensional picture.

1.7-1.9 Basic geometric comparison results. Depending on the
choice of the distance function, we obtain from the just proved
estimates various geometric comparison statements. In particular,
distance functions from a point, from a closed geodesic (5.3.1), and
from a hypersurface have been used. For the purpose of this
exposition it will be sufficient to treat here only the distance
function from a point. Executing step 1 of (1.3.3) I first derive
principal curvature estimates; in step 2 these are integrated to
length, respectively, volume comparison results. All the explicit
bounds are sharp for the constant curvature models. Conditions
involving A~1/2 etc. are to be ignored if A <O0.

1.7. Bounds for the principal curvatures of distance spheres. Let
¢(r), 0 <r < R, be a geodesic arc which does not meet a conjugate
point. Within a sufficiently narrow neighborhood U the arc ¢ is
length minimizing and we can define on U a “local” distance
function f from p = c(0). Sections 1.1 to 1.6 apply to such local
distance functions. Estimates for the principal curvatures «,(r) of
the level surfaces or for the Hessian D grad f are reformulations of
(1.6.3). I find the bounds for the Hessian more useful when they are
rewritten for the modified distance function md, o f (1.4.3). This
can be done using

grad(ho f) = (ko f)-grad f

Dgrad(hof)=(h'of)-Dgrad f+ (h"°f)-df ® grad f.
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1.71. If 8 <K, then (1.5.1) and (1.6.3) imply up to the first
conjugate point

k;(r) < cty(r),
or equivalently
Dgrad(mdye f) < (cgo f) - id.

-1/2

If 8 > 0 then conjugate points are not farther than 76 away.

1.7.2. If (n—1)-p < ric, then (1.5.8) and (1.6.3) imply up to the
first conjugate point the mean curvature estimate
1
h(r)==n—_—_—lzxi(r)sctp(r)ﬂhp(r), or
~ Af=trace(Dgrad f) < (n—1)et,(r).

-1,2

If p > 0 then conjugate points are not farther than mp away.

1.7.3. If K<A, then (1.5.2) and (1.6.3) imply for 0 <r <
m-A1/2

ki (r) > cty(r),
or equivalently
Dgrad(mdye f) > (cyo f)-id.

There are no conjugate points in (0, 7 - A~1/2),

REMARK. I repeat that the estimates are sharp in the constant
curvature models. Also note, that (0.3) and (1.7.3) give convexity
statements for the distance functions from a point, ifr <7 /2 - A~/2

1.8. Generalized Rauch estimates. We execute step 2 of (1.3.3),
namely integrate (1.2.6) using the principal curvature estimates of
(1.7). If a Jacobi field J is #0 on some interval, then |J| =
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(J, J")/|J), hence
() -2 (R4
S, S, (J,I) s |
1.8.1. Assume § <K, J(0)=0 and let r,,; be the distance to

the first conjugate point along c. Then (1.7.1) and (1.2.6) imply
|7(r)]|

is nonincreasingin 0 <r <
ss(r)

rconj’
in particular |J(r)| <|J(0)|- s5(r) (Rauch).

1.8.2. Assume K<A, J(0)=0 and r<7-A"'2 Then (1.7.3)
and (1.2.6) imply

J
17(r)| is nondecreasingin 0<r<w-A"1/2,
SA(’)

in particular |J(r) > |J'(0)| - s5(r) (Rauch).

REMARKS. (i) We have already seen in (1.2.2) how these esti-
mates control the change of arclength under the exponential map
(still sharp in the constant curvature models). This arclength con-
trol will be improved to distance control in Section 4.

(ii)) In a situation where the curvatures approach 0 as the
distance r from some distinguished point * grows, one wants the
curvature bounds 8(r), A(r) to depend on r. The generalizations of
(1.8.1, 1.8.2) are easy. The tricky part (which rarely works) is the
improvement to distance control.

1.9.  Bounds for the volume of distance spheres and balls. We
just saw that Rauch’s original comparison results were later im-
proved to monotonicity statements. The same is true for volumes:
first one had Bishop’s comparison results, later Gromov pointed
out that the corresponding global monotonicity statements are true
even beyond conjugate points; they are more powerful and easier
to use (see 2.4.2, 3.6 for applications).
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We saw in (1.5.4) that the trace of the shape operator is the
growth rate of the tangent space-wise hypersurface volume a(s).
This growth rate is controlled in (1.7.2, 1.7.3). One further radial
integration,

o(r) = /O’a(s)dg, (1.9.1)

gives the ray-wise contribution of the geodesic in question to the
volume of the ball. Finally, an integration over all directions at the
center of the ball gives the volumes of spheres and balls. I first state
the ray-wise inequalities.

1.9.2. Assume (n— 1)p <ric. Then (1.5.4) and (1.7.2) imply up
to the first conjugate point

a . . .
= (r) is nonincreasing,
P

where ap(r)=s‘,(r)"’1 is the integral of (1.5.4) in the constant
curvature model M,. Applying this to (1.9.1) gives

v . ) .
5 (r ) s nonincreasing.
()

Proof.

is monotone since (a/a,)(s) is monotone.
1.9.3. Assume K< A and r <m-A/2 Then (1.5.4), (1.7.3) and
(1.9.1) imply (with the same argument as in 1.9.2)

a vV i
@ (r) and v, are nondecreasing.
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At the final step (the integration over all directions at the center
of the ball) the cut locus interferes: Beyond the cut point (of the
center) a geodesic ray does not contribute to the volume of distance
spheres and balls. This cannot be rescued without further assump-
tions in the case of lower volume bounds; on the other hand, this
actually helps in integrating (1.9.2): If a geodesic hits a cut point in
M we can set a(r) =0 for larger r and can integrate up to the cut
point distance in M, even if (1.9.2) is not true that far! Therefore
we have Gromov’s global monotonicity result for distance balls B,.
194. Assume (n—1)-p <ric. Then

vol,_,(dB,c M)
vol,_,(dB,c Mp)

and
vol,,(B,c M)
vol,(B,c M,)
are nonincreasing functions of r with lim, _, , vol-ratio(r) = 1.
1.9.5. Assume K <A and that B, does not meet a cut point of its
center. Then

vol,_,(dB,c M)
vol,_,(dB,C M,)

and

vol ,(B,Cc M)
vol,(B,c M,)

are nondecreasing functions of r with lim, _, , vol-ratio(r) = 1.

2. IMMEDIATE APPLICATIONS OF THE CURVATURE CONTROLLED
BOUNDS

2.1. NONPOSITIVELY CURVED MANIFOLDS (Hadamard, Cartan).
Let M" be complete and assume curvature bounds K < A <0.
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2.1.1. If M is simply connected, then (for each p): exp,: T,M - M
is an expanding ( > 1) diffeomorphism.

2.1.2. If M is not simply connected, then in each homotopy class of
paths from p to q there is exactly one geodesic.

21.3. If M is simply connected and we take f(x):= d(p,x) then
Dgrad(3f?) > id; thus f? is a strictly convex function and all
distance balls are strictly convex.

Proof. From (1.2.2, 1.82) and (1/r)sy(r) > 1 we have
| exp, - w| > |w| everywhere. Therefore exp, is an expanding local
diffeomorphism. If exp, were not injective we would have two
geodesic arcs v,, v, from p to some g € M. By simple connectivity
v, and v, are homotopic. The homotopy can be lifted to 7, M since
exp, is an expanding local diffeomorphism; note that local inverse
images of Cauchy sequences in M are Cauchy in 7, M. But the lifts
of different geodesics give different radial segments and can there-
fore not have a common endpoint. The contradiction proves injec-
tivity, hence (2.1.1).

It is useful to consider 7, M not only as an Euclidean space, but
also with the Riemannian metric § pulled back by the (local)
diffeomorphism exp,. This makes exp,: (T,M, §) > M a locally
isometric map and suggests taking (7, M, §) as a metric realization
of the universal covering M. Different geodesic arcs in the same
homotopy class would then give different geodesic connections in
(T, M, g) for which (2.1.1) holds, proving (2.1.2).

(2.1.3) combines (0.3, 1.7.3) in the case A=0, ie. md,o f=
(1/2)f?* (which is differentiable because of (2.1.1)).

2.2 Fixep PoINTs OF ISOMETRIES (Cartan 1928). Let M be
simply connected and assume K < 0. Then every bounded set is
contained in a unique smallest convex ball. In particular, every
isometry group of M which has a bounded orbit has a fixed point.

Proof (Eberlein). The intersection of two closed balls B,, B, of
radius » and midpoints m,, m, is contained in a smaller ball. Let
P € B, N B, have maximal distance from the midpoint m between
m,, m,; the strict convexity (2.1.3) of x = d(p, x)? together with
d(p, m))<r, d(p, m,) <r implies d( p, m) <r. A ball of smallest
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radius which contains a given bounded set is therefore unique. If
the bounded set is the orbit of an isometry group, then all isome-
tries of the group map a smallest containing ball to a smallest
containing ball; the center of the unique such ball is a fixed point.
Note that the arguments are, verbatim, the same as for the Euclidean
case.

2.3.  Growth of the fundamental group (Svarc 1955, Milnor 1968).
23.1 Let {v,,...,Yy} be a finite set of generators for a group
7. Define the growth function

growth(k) :== Number of elements in # which can be
written as a product of at most k factors in
the generators.

This is justified since if the growth function for one set of
generators grows exponentially (respectively, polynomially of de-
gree d) then it does so for all other finite sets of generators (not
difficult).

2.3.2. Let M be compact and assume K < A <0. Then the funda-
mental group m,(M, p) grows exponentially.

23.3. Let M" be complete and assume O <ric. Then every
subgroup G C m(M, p) which has a finite set T of generators has at
most polynomial growth of degree n.

ReMARK. For bounds on the number of generators see (5.1).

Proof. The fundamental group can be considered as a group
which acts isometrically on the universal cover M. This is easy for
(2.3.2) where we have a nice metric model for M, and from a
sufficiently abstract point of view (2.3.3) is the same. =, is called
the group of deck transformations.

For (2.3.2) we have to define a suitable set of generators. Pick
some j € M and define the Dirichlet fundamental domain

F={qeM;d(q,p)<d(q,yp)forallid#yem}.
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Let D be the diameter of the compact manifold M; clearly F is
contained in the ball of radius D around j. Now define a finite
subset I C ; (which will be shown to generate ;)

[={yem; d(F,yF)<1},

with d(A, B) = min{d(p, q); p €A, g€ B}. The open sets y- F
are disjoint and by the triangle inequality I' - F C B, ;( #). There-
fore T is finite, namely

IT| < vol( Byp,1(5)) - vol(F) ™.

Also T-F>{q€M; d(F,q)<1), hence T*- F> B,(p); there-
fore U,(T*- F)= M and T generates. Moreover, growth(k) = |T'¥|
> vol(B,(p)) - vol(F)~. Finally, (1.9.5) says that vol(B,,(p)) is
at least as large as the volume of a ball of radius k in the
hyperbolic space Hy'. Hence

vol(B,(5)) > vol( BE) = vol(§"~1)- fo"sg-l(r) dr,

which grows exponentially, proving (2.3.2).

The proof of (2.3.3) needs only minor modifications. Since the
Dirichlet fundamental domain for G may not have finite diameter
put F, = FN B( p).

From the generating set I' we need its maximal displacement
L :=max{d(p, yp); y €T}. The sets y - F; are disjoint (for y € G)
and T*- F, c B, ,,,(p) (triangle inequality). Finally we get from
the upper volume bound (1.9.4)

IT*|- vol( Fy) < vol(By.,1(5)) < vol( B,..,, CR") < const-k".

24 Ricci DIAMETER BOUND. Let M" be complete and assume
a positive lower bound 0 < (n —1)p < ric. Then:

24.1. (Myers 1935) diam(M) < 7 - p~1/2 and M is compact.

24.2. (Cheng 1975) If diam(M") = - p~1/2 then M" is isomet-
ric to S;.
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Proof. (2.4.1) follows from (1.7.2) and (K.4.1) (no geodesic
minimizes beyond its first conjugate point.)

Proof of (2.4.2) (Itokawa, Shiohama 1983). The argument shows
the power of Gromov’s global monotonicity extension (1.9.4) of the
volume bound. We may normalize to p =1 (to have 7- p~ /2 =),
From (1.9.4) we have: The volume ratio f(r):= vol(B,) - vol(B?)}
is nonincreasing, in particular 1 = f(0) > f(r) > f(7) for 0 < r< o.
In the sphere S’ we have for p(r) = vol(BF) - vol(S;')~ ! obviously
p(r)+p(mr—r)=1. Let p,ge M be such that d(p,q)=
diam(M) =#. The open balls B,(p), B,_,(q) are then disjoint,
hence

vol(M) > vol( B,( p)) + vol( B, _,(q))
=(f(r)-p(r)+f(m=r)-p(z=r))-vol(s;)
2 f(m) - vol(S") = vol(B,(p)) = vol(M).

Thus we have equality in all estimates involved! First this gives
f(m)=1, hence f(r)=1(0 <r<=). And next B,(p)UB,_,(q)=
M" which says: For each x€ M" (put r:=d(x, p)) we have
d( p, x)+d(x,q)=4d(p, q), so that together the shortest geodesics
from p to x and from x to g are segments from p to gq. All
geodesics starting at p therefore reach g precisely at distance .

2.4.3. Along all of these segments we must have equality in the
estimates leading to (1.9.4). First, the mean curvature of the dis-
tance spheres along each segment is h(r) =h"(r)=ct,(r) (1.7.2,
1.9.2). Equality in (1.5.8) requires equality in (1.5.7), i.e. S,= h(r)-
id. This gives (1.3.1) R(Y, N)N =p- Y (i.e. all sectional curvatures
of 2-planes containing tangents to segments from p to q are = p).
For such R, the Jacobi equation (1.2.1) can be solved explicitly
J(r)=J'(0)-s5,(r) (up to parallel translation), and (1.2.2) implies
that M" can be mapped isometrically to S;' by sending segments
from p to g in M" isometrically to meridians from pole to pole
in S
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3. BUSEMANN FUNCTIONS

3.1. DerFINITION. The Busemann function b of a ray c is
defined as an increasing limit of (shifted) distance functions:

b(x):= lim (1= d(x,¢(1))) <d(x,<(0))

Note d(c(2,), c(t))=1t,—t, if 0 <1, <t,, hence t, — d(x, c(1,)) >
(1, — d(x, c(t,))) by the triangle inequality. We have the Lipschitz
bound |b(x)— b(y)|<d(x, y). The sets {(x € M; b(x)>a} are
called horoballs.

3.2. LocAL SurPORT FUNCTIONS.

CLAIM:  For every y € M there is a unit vector Y € T,M such that
cy(r)=exp,r-Y isaray and

b(x)=b(y)+r—d(x,cy(r))=by ,(x), (3.2.1)
in particular

bey(r))=b(y)+r.

NoTE. By construction ¢, (r) is not in the cut locus C(y) and
hence vice versa (K.4.2); the distance function x — d(x, cy(r)) is
therefore differentiable at y and—because of (3.2.1)—its level
sphere through y stays inside the horoball. The ray ¢, need not be
unique, so b is not differentiable in general, but if so then
grad b(y) =Y.

Proof of 3.2. To construct the ray c,(r) let y,(r) be a minimiz-
ing geodesic from y to c(¢) (¢ the given ray). For a subsequence
(1, = oo) we have convergence of the initial unit directions 7,(0) to
some Y € T M, and cy(r):= exp,r- Y is a ray (since each subarc is
a limit of segments). To prove the inequality, we have by definition

r=d(y,v(r))=d(y,c(1)) - d(v(r), (1))
if 0<r<d(y,c(t))
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and
b(x) = b(y) = lim (1= d(x,(1)) =1+ d(y,e(1))).

The triangle estimate d(x, c(t)) < d(x, cy(r)) +d(cy(r), c(2)) and
the first relation are inserted in the second:

b(x)=b(y)> lim (=d(x,cy(r))=d(cy(r),c(t,)

+r+ d(y,"(r),c(’n)))

> —d(x,cy(r))+r+ tli_{nco —d(y,"(r),cy(r))
= —d(x,cy(r))+r  (by definition of cy(r)).

3.3. Hessian estimates. For the local support functions by ,
we translate (1.7.1, 1.7.2) into:

n—
r

1 (331

If ric > 0 on M then trace Dgrad b, ,(y) > —

if K>0on M then Dgradb, ,(y) > — % id.  (3.3.2)

Inequality (3.3.1) allows us to use the Calabi-Hopf maximum
principle, see (3.7) below. With (3.3.2) we are only one more
argument away from the next result (3.5).

3.4. DEFINITION. A subset A C M is called totally convex if
for arbitrary p, g € M all geodesic connections (not just the mini-
mizing ones) are in 4.

3.5. COMPACT TOTALLY CONVEX EXHAUSTION (Cheeger-
Gromoll-Meyer 1969, 1972). Let M be complete, noncompact,
K > 0. Let ¢, denote the set of all rays from some point p € M, b,
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the corresponding Busemann functions and bm := max b,. Then:

a) The sublevels of Busemann functions {x € M; b(x)<a} are
totally convex.

b) The sublevels of bm are a continuous exhaustion of M by
compact totally convex sets.

3.5.1. Classification (Gromoll-Meyer 1969). Assume in ad-
dition to (3.5) K > 0 then:
a) No level surface of a Busemann function or of bm contains a
geodesic arc, i.e., the minimal level surface of bm is a point.
b) M" is diffeomorphic to R".

3.5.2 Classification (Cheeger-Gromoll 1972). Let M” be com-
plete, noncompact, and K>0. Then M” contains a compact,
totally geodesic, totally convex submanifold S (“soul”) and M" is
diffeomorphic to the normal bundle of S in M".

Proof of (3.5). Let y: [0, L] - M be a not necessarily minimiz-
ing geodesic arc of length L. Assuming b(y(0)) = a, b(y(L))=a,
< a we have to show bo y(?) <a. By possibly shortening y we
may assume a, = a. If the continuous function h(t)=b(y(t))—a
has a positive maximum 2u then

h(t)=b(y(¢))—a—p-L72-t(L~1)

also has an (interior!) maximum > p at some #,. Consider the local
support functions by , of b at y =1y(#,). The local, smooth func-
tions

hY,r(t) = bY,r(Y(‘)) —a-— “'L—z' t(L - t)
also have a local maximum at ¢,, but from (3.3.2)

hy () > — % +2uL™*>0  forlarge r.
The contradiction proves (3.5a).

For b) it is clear that the intersection of totally convex sets is
totally convex. We have to show that the sublevels of bm are
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compact. If not we would find a divergent sequence g, with
bm(q,) < a (assume a > 0 = bm( p), p from (3.5)) and segments v,
from p to g,; by convexity bm oy, < a. Any limit of {v,} is a ray
in the sublevel { bm < a}, contradicting the definition of bm.

Proof of (3.5.1a). Let b be a Busemann function. We improve
(3.32) to

3.5.3. For every y € M there exists € > 0 and R > 0 such that the
local support functions by, , (3.2) satisfy

Dgradby (y)>e€-id, if r=R.

Namely, put 3k := min{sectional curvatures of M in the unit ball
around y}, e=k, R=2+(1/k). The Riccati equation and in-
equality (1.5.1) control the principal curvatures of the level surfaces
of the local support functions by , (of 3.2). Any solution x(r) with
k(0)<e of K’ < —K(uAN)—«x?< —3k (1.5.1) drops on [0,1] at
least to € — 3k < —e¢ and, because of (1.6), then stays below F(r) =
(r—1-(1/¢))"", which solves F’ = —F?, F(1)= —e. For r>R
the by , are defined beyond the pole of F so that, by (1.6.3), their
level surfaces cannot have principal curvatures <e at y. This
proves (3.5.3), which in turn implies that no Busemann function
can be constant on any geodesic arc (no weak interior maximum)
—proving (3.5.1a). (To deal with bm extended 3.2.1 to sup b,(x) >
Sup (by(y) + 7 — by, ,(x)).

b) The proof of the diffeomorphism statement is very similar to
(5.4.3) and I omit it.

The proof of (3.5.2) still requires a lot of work since the minimal
level of bm is not yet the soul. One needs that lower dimensional
totally convex sets are top dimensional in some totally geodesic
submanifold, see [CE].

3.6. Ricci SPLITTING THEOREM (Cheeger-Gromoll 1971). Let
M?" be complete and assume ric > 0. If M" contains a line then this
line splits off as a Riemannian factor, M" = N"~! X R.

3.7. CarLABI-HOPF MAXIMUM PRINCIPLE (1957). Let (M, g) be
a connected Riemannian manifold and f a continuous function on M.
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Assume, that for any x € M and any € > 0 there exists a C®-support
function f, <[, [, {x)=f(x) (see 3.2) with

~Af, =traceDgrad f, .> —e.
Then f attains no maximum unless it is constant.

Proof of 3.6 (Eschenburg-Heintze 1984). Let y be a line in M.
Consider the two Busemann functions b, for the rays c (¢):=
y(£¢). They satisfy

b.(x)+b_(x)= tlin;(t—d(x, v(1)) +t—d(x,v(-1))) <0

and
(b,+5_)(v(1))=0 (maximum!).

The sums of local support functions for b, b_ (3.2) satisfy the
assumptions of the maximum principle (3.7) because of (3.3.1),
which implies b,+ b_=0! The level surfaces of b,= —b_ can
now be touched by large spheres from both sides:

by, (x)<b,(x)=-b_(x)< -b_y,(x), equalityat x=y.

In particular b,= —b_ is differentiable, |grad b,|=1, the radial
rays cy (3.2) are the integral curves of grad b, and all the rays
extend to lines. The proof can be finished with elementary argu-
ments, but another application of the maximum principle works
more elegantly. Every Busemann function b is subharmonic (ric >
0!) (indeed, if b agrees with some harmonic function h on the
boundary of some geodesic ball, then (3.7) implies that b—h
cannot have a positive. maximum, i.e. b < h). Therefore b, = —b_
is sub- and superharmonic, hence harmonic, hence C* and Ab,=0.
Finally we have another equality discussion as in (2.4.3): b, is a
distance function (1.1.2) whose level surfaces have constant mean
curvature 0. (1.5.8) implies 0 < —rice y (< 0). Therefore we must
have equality in Schwarz’ inequality (1.5.7): S =0-id. From this
and (1.3.1) we have R( ,grad b )grad b,=0. The Jacobi equation
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(1.2.1) along the rays has explicit (parallel!) solutions and
F: b7Y0) X R - M", f(x,1t):=exp.t-grad b, (x) is an isometry.

4. THE ALEKSANDROW-TOPONOGOV ANGLE COMPARISON THEOREMS

Results closely related to those in this chapter were used by E.
Cartan in the twenties and by Preissmann (1943) under curvature
assumptions K < 0. Aleksandrow used triangle comparison theo-
rems in the forties and fifties as a substantial tool, in particular in
his theory of convex surfaces. Some years after Rauch, Toponogov
proved in the Riemannian context the n-dimensional angle com-
parison for lower curvature bounds 8 < K (1959). Remarkably, this
theorem is true without any size restrictions. The proof, originally
long and technical, has been considerably simplified.

4.0. DEFINITION. A triangle T in a Riemannian manifold is
given by its three geodesic edges (which I assume minimizing
although generalizations can be handled with the same proof).
Assume lower curvature bounds § < K or upper bounds K< A. A
triangle with the same edgelengths as T in the plane of constant
curvature M,, respectively, M, is called an “Aleksandrow triangle”
T,, respectively, T,. The two segments and the angle between them
is called a hinge; a “Rauch hinge” in M, respectively, M, has the
same edgelength, angle, edgelength as occur at one vertex of 7.

4.1. TRIANGLE COMPARISON THEOREMS ASSUMING K < A.
Size restrictions on T are necessary, namely, T does not meet the cut
locus of its vertices, and, the circumference satisfies (T) < 2mA~1/?

(ignore this, if A <0). Then an Aleksandrow triangle T, exists and
the angles of T and T, satisfy

agay,, B<B, TY<WN (4.1.1)
The third edge c} closing a Rauch hinge in M satisfies

le| > et (4.1.2)
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With the obvious definitions of corresponding points on the edges of T
and T, and secants o, o, between them one has

lo] <oyl (4.1.3)

4.2. TRIANGLE COMPARISON THEOREMS ASSUMING 6 < K
(Toponogov).

4.2.0. An Aleksandrow triangle Ty always exists, more precisely:
a circumference I(T) > 2m8~'/2 (if 8 > 0) does not occur and I(T) =
278712 occurs only on Sg; if (T) < 278 ~'/2 then the three triangle
inequalities in T are sufficient for the existence of Ty.

The angles of T and Ty satisfy (take [(T) < 2m8~'/2%, 4.2.0)
as<a, By<B, %<y. (4.2.1)
The third edge c} closing a Rauch hinge in My satisfies
lel <le3- (42.2)

Secants 0,0, between corresponding points on T, respectively, Ty
satisfy

o] > |os]- (4.2.3)

4.3. REMARKS. Because of the cosine law in M, respectively,
M, (eg. on S™ cosc=cosacosb+sinasinbcosy) it is trivial
that the opposite edgelength of a hinge varies monotonely increas-
ing with the hinge angle. (4.1.1) and (4.1.2) are therefore im-
mediately equivalent, and so are (4.2.1) and (4.2.2). If one considers
the limit of short secants across a vertex, then (4.1.3) implies (4.1.1)
and (4.2.3) implies (4.2.1), again immediately. The converse (4.1.1)
= (4.1.3) and (4.2.1) = (4.2.3) is also true but needs more trigo-
nometry into which I do not want to go. (4.1.3) and (4.2.3) extend
immediately to infinite triangles if A <0 or 8 < 0. They also extend
to Gromov’s limits of Riemannian spaces in which minimizing
curves exist but angles cannot be defined. I shall prove (4.1) using
estimates on dexp (1.2.2, 1.8.2) and Toponogov’s theorem (4.2)
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with the Hessian bounds (1.7.1). It is enough to prove (4.2.3) for
the secants to the opposite vertex, see (4.5.4).

4.4. Proof of (4.1.2). Because of the size restrictions we can

parametrize the edge ¢ of T in exponential coordinates from the
opposite vertex, i.e.

c(t)=exp,X(1), X:[0,1]-T,M (|X|<nA"'/2).
We identify T,M and 7, M, isometrically (e.g. with R") and define
&(t) =exp, X(1), X:[0,1] > T, M,=T,M.

Now follow the procedure outlined in (1.2.2):

=J,(1),

S-

XU)-/\"(I) = -‘%(expps-X(t))

é(t) =dexp,

E(1) = dexp, | (1) = 1);

and the Jacobi fields have initial conditions
. D . D -
30)=0=J(0), 2:4(0)=X(1)= 2J(0)
so that (1.8.2), combined with (1.4.5), proves
|¢(¢)| >|é(r)|,  hencelength (c) > length (&).

Finally length (&) > |c}| since ¢ is some connection of its endpoints
and cg is the shortest one.

REMARK. The corresponding proof of (4.2) gets considerably
more complicated, mainly because one does not want the size
restrictions. Also, the triangle inequality at the very end has to be
used in M rather than in M,, ie. the proof has to start by
parametrizing cj. This causes the corresponding definition of ¢ in
M to run into problems with conjugate points.
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4.5. Proof of (4.2.3).

4.5.1. Because of (2.4.2) (and its simple proof) we can start
with the alternative: either diam(M)=#-8"1/2, then M" is iso-
metric to SJ' or else diam(M) < 7- 8§ ~1/? - 2¢. Of course we know
the sphere, therefcre we have during the following proof all seg-
ments < 78~ 1/2 - 2¢ which eliminates many separate considera-
tions. It helps the exposition without lengthening the full argument
very much if I treat the simpler cases separately.

4.5.2. First assume that no edge of T meets the cut locus of a
vertex. Let r, respectively, ry denote the (differentiable) distance
function from the vertex p € T to get the modified distance func-
tions mdg o r, respectively, md, o ry. Their restrictions to the oppo-
site edge c, respectively, ¢, are—because we stay away from the
cut locus—differentiable functions

hi=mdgorec, H:=mdgorocs. (4.5.3)
They satisfy

h”+8h<1, H"+8H=1 with
h(0)=H(0),  h(jcl) = H(|c])

because of the Hessian estimate (1.7.1).
4.54. Claim. The difference A :== h — H satisfies

A +8:-2<0, A0)=0, A(lc)=0,
which implies
A>0 on [0,|c|].

(In fact, A(0) >0, A(Jc]) >0 is enough, and handles the case of
general secants, (4.3).)

Proof. a)If 8 <0 then A” <(—8)-A shows that A cannot have
a negative minimum, i.e. A > H (4.2.3).

b) If § =0 then A cannot have a negative minimum = —2p
since

Rem At el 2 1(jel = 1)
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would also have an (interior) minimum < —u, contradicting \” <
—2p|c|"%<0.
c) If § > 0 we have from (4.5.1) |c| < 86 ~/2 — 2¢, hence

o,(t)==s.,(t+e)-—s8(%)>0 for0 <t<|c.

Again, suppose A has some negative minimum. Then A:=)\/q,
also has a negative minimum —p at, say, f,€ (0, |c[). But this
contradicts

X(10) = (No,= Ag[) - 0,7%(15) =0,

A"(t5) = (N0, = Ao/’) - 07 *(1o)

- ((X' +8)) -0, + 8-)\-s5('§-)) r0.%(to)

€

< —8'#"33(2) 0. 1(1) <0.

45.5. In a second step we allow the edge ¢ to meet the cut
locus of the opposite vertex p, but not in a conjugate point. Then
each segment from p to c(t,) is locally minimizing beyond c(t,).
So we get differentiable local distance functions

Foc>7,  defined in particular near c(¢,).

The principal curvature estimates (1.7.1) were stated for these local
distance functions. In addition to (4.5.3) we now also have for each
1, € (0, |c)

Bioc=mdyor, ° C||:0—7,10+1],

(4.5.6)

;:)c+8'hloc<1’ hlo‘:}h, thC(IO)=h(t0)'

This is enough to make the proof of (4.5.4) work. At that ¢, at
which the negative minimum of A occurs we replace h by b, and
get also A, > A and X, > X, X, ..(t,) = A(#;). The smooth func-
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tion X, therefore also has a local interior minimum at f,, but
N7.(2o) < O as before.

4.5.7. In the last step we deal with conjugate endpoints of
segments from p to c(¢y). We cannot get local superfunctions
which satisfy the same differential inequality as before, but they
almost do.

Let y(s) be a segment from p to c(¢,) and define for small 5 >0
local superdistance functions, differentiable near c(,), by

Fioe, (X)) =d(x,v(n)) + n>r(x) =d(x,v(0)).

The Hessian of mdg e ry, , has (as in the computation for (1.7.1))
the radial eigenvalue c,(r,, ,) and spherical eigenvalues

ss(n)
$55(riee—m) "

(4.5.8)

Kyp < Clg(Pioe, g — M) Sa(Ti0e,4) = 5(Pioc, ) +

We can assume 7 (c(t,)) >0 (since we do not need to prove
anything if the vertex p lies on the opposite edge, i.e. |a| + |b| = c])
and replace the denominator in (4.5.8) by a constant; this also uses
(4.5.1) once more! With this we get instead of (4.5.6)

hloc,'q = md8 ° rloc,n ° cl[xo

—-7,t+71)°
Pioen=h, By o(10) = h(to), (4.5.9)
hloc.q+ 8- hipe , <1+ const-sy(n),  const.independent of 7.

This is still good enough to make the proof of (4.5.4) work. At ¢,
where the continuous function A has its negative minimum < —p,
the smooth functions A, , all have a minimum. As before

if 8<0 then X7, ,(t,) < —2plc|”*+ const-sy(1),

if §>0 then ~','oc_,'(to)<—-p-8-s,(%)-o¢(to)—l

+const - s5(7),
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which gives the same contradiction (X’,;c(to) < 0) for sufficiently
small 7.

4.6. Triangles T with circumference = 2n8~1/% occur only on S}
and triangles with circumference I(T) > 278~'/? do not occur.

Proof. (i) Again with (4.5.1) we may assume diam(M) <
2m871/2 — 2¢. The proof given in (4.5) formally includes the case
I(T)=278"1/2, but this does not occur: 7, would have to be a
great circle so that each edge meets the antipodal point of the
opposite vertex. Now (4.2.3) requires a segment of length - §-1/2
in M. (i) A triangle with I(T)> 278!/ by continuity gives a
triangle with /(T")=2#8"12% so M = S}—contradicting />
27812,

5. APPLICATIONS OF THE TRIANGLE THEOREMS
5.1. Number of generators for m(M,p) (Gromov 1978).

5.11. Let M" be complete and assume K > 0. Then the funda-
mental group m,(M,p) can be generated by N <2 -5/ elements
(compare 2.3.3).

5.1.2. Let M" be compact. Assume curvature and diameter bounds
— A’ < K, diam(M) < 1 D. Then the fundamental group m,(M,p) can
be generated by N <2-(3+2cosh AD)*?" elements. (If n=2
then this bound is > 5 - genus®, hence never sharp.)

Proof. Define for each a € m(M, p) the “length” |a| as the
length of a shortest geodesic loop in the homotopy class a. Now
define a “short” set of generators {a;,..., ay,...}:

(i) a, is a shortest element in m(M, p)\ {id }.

(i) If ay,...,a, are already chosen, denote by (a;,...,a,) the
subgroup of =,(M, p) which they generate. Then a, _, is a shortest
element in m (M, p)\(ay,..., a;).

5.1.3. CrLamM. No short set of generators contains more elements
than the bound in (5.1.1) respectively, (5.1.2).
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Proof of the claim. By definition |a;| <|a,|< -+ and also

'a,- . aj"l | > max{ Ja;l, Iaj|} (5.1.4)
otherwise a; or a; was not chosen minimally.

Now apply Toponogov’s theorem to the triangle T obtained in
the universal cover M by lifting the shortest geodesic loops which
represent the classes a;, a;, a,aj‘l; the edgelengths of T are then
le), |a), |o;e j"ll. (4.2.1) gives a lower bound for the angle ® oppo-
site the longest edge:

(K>0) |a; o7 <laf?+ay)? — 2|;fa;lcos @, (5.1.5)
ie. ® > 60°;

cosh Ala;|- cosh Aja,| - cosh Aa,a; |

_ A2
(K>-A%) cos®< sinh Aje,[- sinh Afa, '

(5.1.6)

ie.

cosh AD . _p1
cos‘bsm or Ssin i—q)<2+2COShAD.

(The last inequality uses |a,|< D, i.e. generators can always be
chosen <2-diam(M)+e¢, by dividing any loop from p into
segments shorter than e and joining the dividing points with p,
back and forth.)

Finally, consider the initial unit vectors of the short loops
representing ay, a,,... . They are points on the unit sphere in 7,M
with mutual distance > ®. The open balls of radius sin 1% are
therefore disjoint and the inner halfs of these balls are all contained
in the ball of radius (1 + sin?4®)!/2, Therefore their number N is
bounded by the volume ratio, i.e.

L]

+n/2
)

a1\ 1\ .41
Ng2- 1+s1n—2-d> . sm7<l> =2(1+sm

(5.1.7)
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Insertion of (5.1.5) respectively, (5.1.6) into (5.1.7) proves the
theorem.

5.2. Critical points of the distance function. The following def-
inition has turned out to be very useful and suggestive. The
arguments in this section have been developed in connection with
the sphere theorems.

5.2.1. DEFINITION. A point ¢ € M, q +# p, is called not critical
for the distance function from p, if the initial tangents of all
segments gp lie in an open halfspace in T, M. Otherwise q is called
critical.

The following fact justifies the name.

5.2.2. Existence of a gradient like vector field Let A be a
compact set in M with no critical points for the distance function
from p. Then one has a vector field X on an open neighborhood of
A4 such that the distance from p is strictly decreasing along the
integral curves of X.

Proof. For every x € A we have by definition a vector Y, € T M
and ¢, > 0 such that the angle between Y, and any segment xp is
< (m/2) — 2¢,. By radial parallel translation we extend Y, to a
smooth local vector field X, on some ball B(x). We can choose
B(x) so small that for all y € B(x) the angle between X (y) and
any segment yp is <(7/2) —¢,. Denote by B’(x) the concentric
balls of half the radius as B(x) and choose (by compactness of A)
finitely many B’(x;) which cover 4. With nonnegative C®-func-
tions ¢; which are 1 on B’(x;) and 0 outside B(x;) we define a
smooth vector field

1
X:= 2_(p; . E(p,-Xx‘.

The following now holds for each x € UB’(x;): Each segment
xp has an angle </2 with all @, X, (x) which are # 0; therefore
X(x)# 0 and the angle between xp and X(x)is <7/2.S0 X is
the desired vector field on UB'(x;)D A.
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Of course, (5.2.2) alone cannot be of too much help. The dis-
covery was that the existence of “large” distances in M can be
combined with Toponogov’s theorem (4.2.2) to draw rather strong
conclusions about these critical points.

5.2.3. ASSUMPTION. Let M be complete and 0 <8 < K. We
shall consider critical points for the distance function from p. Let
q be a farthest point from p and assume D:=d(p,q)>
(m/2)8~1/2. (Note: In general p is not farthest from q.)

CONCLUSIONS.
5.2.4. g is a unique farthest point and critical for the distance
function from p (compare 6.1.2).
5.2.5. A point x # p, q is not critical for the distance from p
if
a) D is maximal, i.e. D = diam(M)
or
b) if x is far from p, i.e. d(x, p)> (n/2) 871/
Any fixed segment xq can be used to define the open halfspace (in
5.2.1) since all segments xp have angles ¢ > 7/2 (see 5.2.7) with
the chosen segment xq.
5.2.6. Every x € M which is far from ¢ is close to p

d(x,q)> 7872 =d(p,x) < 3871/
In the middle the angle estimate is more precise than in (5.2.5),
d(p,x)=d(x,q)=«(p,x,q)>D 82

Proofs. For uniqueness in (5.2.4) we show that the midpoint m
on a segment between two (assumed) farthest points ¢, § (from p)
has to be at a greater distance. Let p,q,q, be the Aleksandrow
triangle of pqq (4.0) and m, the midpoint of ¢,g,. (4.2.3) implies
d(p, m) > d(ps, my) and from d(p,, q5) = d(ps, 4s) >
(7/2) 8712 we have d(m,, ps) > d(ps, 4s) = d(p, q), as claimed.
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Proof of (5.2.5). For each of the triangles pxq with ¢:=
£( pxq) we have from (4.2.1),
cos 8'/2D — cos(8'/2|gx|) - cos( 82| px|)
sin(8'/2|qx1) - sin( 8/ px|)

cosQ < <0, (5.2.7)

where the last strict inequality follows since uniqueness in (5.2.4)
supplies the following strict inequalities:

a) If D = diam(M) then |px|, |gx| < D.

b) If d(x, p) > (m/2)-81/2 then also | px| < D.

Now (5.2.5b) forces g to be critical in (5.2.4): For any Y € T M
and all 0<e<D—(m/2)87 /% we can take x:=expe-Y in
(5.2.5b). Any limit of segments xp (as € — 0) is a segment gp. For
this limit segment we conclude from £(xgq, xp) > (7/2) (see 5.2.7)
that £(—Y, gp) > (7/2)—in other words: In every closed half-
space of T, M some segment to p starts.

Proof of (5.2.6). Fix a segment gx and choose with (5.2.4) a
segment gp such that a:= £(gp, gx) < (7/2). For the Rauch hinge
in M, corresponding to xgp in M we have (4.2.2)
cos §/2| px|

s cos(8'/2D) - cos(8'/?|gx|) + sin(8'/2D) - sin(8'/?|gx|)cos a
22)

>0.
Finally, if d( p, x) = d(g, x) then (5.2.7) improves to

cos(8'/2D) — cos?(8'/%|gx|)
1 - cos?(8'2gx|)

cos ¢ < < cos(8'2D). (5.2.8)

5.3. Cut locus estimates (see K.5).

5.3.1. (Klingenberg 1960). Let M" be compact, orientable, even
dimensional. Assume curvature bounds 0 < K < 1. Then

The cut locus distance satisfies d(p,C(p)) > .
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This estimate is sharp not only for round spheres, see (6.1.2).

5.3.2. (Klingenberg 1961). Let M" be compact, simply con-
nected (and odd dimensional). Assume curvature bounds % < K < 1.
Then

d(p,C(p))=m.
The (current) best counterexamples to an extension of (5.3.2) are

given in (6.1.4).

5.3.3. (Easy version of 5.3.2). Let M" be compact. Assume
curvature bounds 4 <8 < K <1 and diam(M) > (m /2) 8'/% Then

d(p,C(p))=m.

5.3.4. (Cheeger 1970). Let M" be compact. Assume curvature
bounds 6 < K< 1. Then
a) §>0: d(p, C(p)) > min(m,@-8 "1/2-vol(M)-vol(S§)~Y), this
is sharp for round spheres.
b) §<0: d(p,C(p)) >

min(vr,vol(M) vol(5"2) ' (n-1) -ss"'(diam(M))),
this is never sharp.

5.3.5. (Toponogov). Let M" be complete and noncompact. As-
sume curvature bounds 0 < K <1 (i.e. inf K=0 by 3.2.1). Then

d(p,C(p))>n.

5.3.6. (Compact version of (5.3.5)). Let M be compact. Assume
curvature bounds 0 <8 < K <1, and that for each p € M there is a
q € M with d(p,q) > (n/2)8 /2. Then

d(p,C(p))>m.
REMARK. (5.3.3) is included since its proof is a nice application

of critical points and the proof of (5.3.2) is too long to be given
here. (5.3.6) is included since it explains why in the noncompact
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case (5.3.5) the parity of the dimension plays no role. (5.3.6) also
says that the counterexamples to an extension of (5.3.2) are
“small” —compared to what the curvature bounds would allow.

Proofs. 5.3.7. All proofs start with Klingenberg’s result that a
closest nonconjugate cut point g of p is the midpoint of a geodesic
loop (K.4.4). If the cut locus distance happens to have a minimum
m < at p, then (K.4.5) implies (by reversing the role of p and q)
that we have a closed geodesic y through p and g of length
2m=2mw—2m, 7>0. All proofs then show that such a closed
geodesic cannot exist.

The proof of (5.3.1) uses the famous

5.3.8. SYNGE LEMMA (1926). Let M" be compact, orientable,
even dimensional. Assume K> 0. Then any closed geodesic y has
shorter parallel curves.

REMARK. Synge used his lemma to conclude that if M were not
simply connected there would exist a shortest closed geodesic in a
nontrivial homotopy class—contradicting (5.3.8).

Proof of (5.3.8). Parallel translation around y is an orientation
preserving isometry of the odd dimensional subspace (y’(0))* C
T, M and therefore has a fixed vector—in other words, we have a
closed parallel unit vector field v(¢) L y'(¢+) along y. The strip
c(c 1) := exp, e - v(?) is similar to a band around the equator of
$?, i.e. the closed geodesic y has shorter parallel curves t — c(e, t),
€¢> 0 small. This follows from the second variation formula (K.4
Lemmata 1, 2):

d2
aat ) _

= — ["s(R(v,¥) ¥ 0)de <0,
0 0

since we assumed K > 0.

We finish the proof of (5.3.1) with (4.1.1): Choose three equidis-
tant points y(¢;) on y (from (5.3.7) and consider for small € > 0 the
triangle T with vertices c(e, ¢;) (i=1,2,3) and unique edges of
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length < 2m (using the second variation again). The circumference
of T is short enough so that no edge meets the cut locus of the
opposite vertex and (4.1.1) applies. As ¢e— 0 the edges of T
converge to the arcs of y between the y(z;) (there are no other
segments between the y(¢,)) and thus all angles of T converge to =.
By (4.1.1) the same is true for the angles of the Aleksandrow
triangle T,; its edgelengths converge (as € = 0) to $m = %(7 — 7).
This contradicts spherical trigonometry: lim a(e) = lim b(e) =
lim c¢(€) = 4(7 — n) and the spherical cosine law imply

2
cosy (7 —1)
limcosy(¢) = ——————> -1
0 1+cosy(m—n)

Proof of (5.3.4) (Heintze-Karcher (1978). Either d(p,C(p)) > 7
and we are done, or there is the closed geodesic y of (5.3.7) and we
proceed by estimating the volume of M using the level surfaces of
the distance function from y (compare (1.9)). For every pe M
there is a segment from p to y which (necessarily) meets y
perpendicularly. The set Z of points p for which these segments
are not unique has volume zero and M\ Z is covered by unique
minimizing geodesics to y. Along these we exploit (1.5.1, 1.6).
Choose orthonormal parallel vector fields u,...,u,_,, 4,(0)=7’
along each segment ¢l y. As in (1.7.1) we get for the shape
operator S of the distance tubes around y

8(Su,w)(r) < =8, g(Su,u)< () (j=2.n-D
(5.3.9)
trace S, < —-8%‘;(r) + (n—2)5—:(r).
As in (1.9.2) this implies (along each normal segment c)
a(r)<cg-s§~3(r), 0<r<li(c),

where I(c) < diam(M) denotes the distance up to which ¢ is a
minimizing segment to y. If § > 0 we do not need separate diame-



RIEMANNIAN COMPARISON CONSTRUCTIONS 211

ter bounds (because of (1.7.1) no segment ¢ of length > (7#/2)-
8712 can be minimizing to y). Since nonminimizing geodesics no
longer contribute to the volume of the (outer) tubes we only worsen
the volume estimate if we integrate the bound for a(r) for r <
(m/2)-871/2 respectively, r < diam(M) first at each y(¢) over all
normal directions and then along y:

vol,, _, (level surface at distance r from y)

<I(c) - vol($™72) - cy(r) -55(r)" 77,

and a final radial integration proves (5.3.4):
b) vol(M) < I(c)- vol(S"~2) - (n — 1)~ Iss(diam( M ))"~?,
a) vol(M) < I(c)-vol(§"~2)-(n — 1) s5((m/2)- §~1/2)n1

1 \
< 5= 82 1(c) - vol(S7).

The work to prove (5.3.5) was already done in (3.5): If for some
PEM we had d(p,C(p))<w then we could find a compact
totally convex set B with p € B (3.5b). Changing names we assume
that the cut locus distance assumes its nonconjugate minimum on
B at p. Again we have the loop y from p through the closest cut
point g. By total convexity this loop is in B, hence d(q, C(q)) >
d(p,C(p)) and y cannot have an angle <= at g either (we
repeated 5.3.7). By total convexity of the sublevels of the function
bm (3.5) y has to lie on a level of bm which contradicts (3.5.1).

To prove (5.3.6) we have the short closed geodesic y from (5.3.7).
Choose some pey and let § be a point farthest from p, i.e.
d(p,q)> (m/2)-8"1/2 Since the case § > 4 is covered by (5.3.3)
we assume 8 < 1, ie. d(p,q)>(7/2)-8" 2> x> Length (y).
Next, let g€y be a closest point to g; note y L qg. We apply
(4.2.2) to the 90°-hinge ggp:

0o > 8V2.d(p,q) > 8%d(p,q)-cos8%d(q, g
(Choim ot 2% (p q)mlz)cos (r.q) (¢.9)

to conclude d(q, §) > 37-87/2 (note d(p, q) < 4 length (y) < im
-871/2), Now the contradiction arises for the same reason as in the
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noncompact case (3.5.3): gq is too long to even locally minimiz
the distance from § to the closed geodesic y since the principa
curvatures of the distance sphere around 4 through g are negative
(1.7.1), i.e. convex to the outside.

To prove (5.3.3) consider the set G:={x € M, d(x,C(x)) > 7]
which is closed because of the continuity of the cut locus distance
(K.4.3 corollary). We show G+# @ and open, hence (by the as
sumed connectedness of M) G=M. To prove G# @ choose
¥,§ € M such that d(y, g)=diam(M); to show G open choost
y € {x € M; d(x,C(x))> 4w-87'/?}, i.e. from an open neighbor-
hood of G. In each case assume by contradiction d(y, C(y)) <.
so that we have the geodesic loop y (5.3.7) from y through the
nearest cut point ¢. Of course q is critical for the distance function
from y (two segments in opposite directions). But g is so far from
y that because of (5.2.5, 5.2.4) there is only one critical point
around: the farthest point § from y, i.e. ¢ = g. By definition of ¢
every geodesic from y is minimizing at least up to distance
d(y, q)=d(y, q), so that all endpoints are farthest points and by
(5.2.4) equal to 4. This makes g = g conjugate to y, contradicting
d(y,q)<m.

5.4. Sphere Theorems.

5.4.1. (Rauch, Berger, Klingenberg 1951-1961). Let M" be
complete, simply connected and assume

1<8<K<1  (“i-pinching”).

Then M" is homeomorphic to S™. The constant % cannot be improved,
see (6.1).

5.4.2. (Shikata 1967). A bi-Lipschitz bound for the homeomor-
phism goes to 1 as 8 - 1. The homeomorphism can therefore be
smoothed to a diffeomorphism if 8§ is close enough to 1.

5.4.3. (Grove-Shiohama 1977). Let M" be complete. Assume
0 <8 < K and diam(M) > % 8712 Then M" is homeomorphic to
AN
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5.4.4. REMARKS. The }-pinching theorem (5.4.1) is probably
the most widely known comparison result. Rauch’s version did not
get the sharp constant 4, but he did not use the cut locus estimates
(5.3) either—instead he got such estimates as corollaries. Simple
proofs of (5.4.1) depend on cut locus estimates. Given those, (5.4.3)
is a nice generalization of (5.4.1): upper curvature bounds are
replaced by an (implied) lower diameter bound. Note, that the
diameter assumption also implies cut locus estimates (5.3.3). Exotic
spheres had been discovered a few years earlier, so it was natural to
try and replace ‘“homeomorphic” by “diffeomorphic”. Gromoll
and Calabi proved the first diffeomorphism theorems in 1966; but,
given what I have developed in this chapter, Shikata’s result is most
easily explained. It also points to a difference in the conclusions in
(5.4.1) and (5.4.3) which the formulation “homeomorphic” deem-
phasizes: no metric control on the homeomorphism is obtained in
(5.4.3), while (5.4.1) naturally leads to (5.4.2). Some of the argu-
ments which were developed for the proofs of (5.4) I have put, as
more general tools, into (5.2) and used them in (5.3).

Proof of (5.4.3). Choose p,q€ M such that d(p,q)=
diam(M ). Because of (5.2.4, 5.2.5) we have p and q as the only
critical points for the distance function from p. We modify the
construction (5.2.2) to obtain a vector field X on M with only one
radial source at ¢ and one radial sink at p. First choose two balls
B( p), B(q) which do not meet the cut locus C(p) respectively,
C(g) and define on these the local vector fields not quite as in
(5.2.2): for each y € B( p) respectively, y € B(q) let X,(y) respec-
tively, X (y) be the unit tangent vector of the unique segment yp
respectively, gqy. Now cover M with the concentric balls
B’( p), B'(q) and the B’(x;) of (5.2.2) (for A = M\ (B’(p) U B'(q)).
The vector field X =(1/Z¢,)- 29, X; then agrees with X, near p,
X, near ¢ and has no singularities except p, g. All integral curves
run from q to p and their finite arc length depends differentiably
on the initial direction. Now identify T, M isometrically with a
tangent space T S" and map the integral curves of X proportional
to arc length onto the corresponding meridians of S” from N. This
defines a continuous bijective map M" — S”, hence a homeomor-
phism. The map is of maximal rank differentiable in M"\ {q, p};



214 Hermann Karcher

the problem at g is harmless, but at p no information can be
obtained as to how the angle between integral curves in M is
related to the angle between the corresponding meridians in S”.

Proof of (5.41). Choose p,gq€ M such that d(p,q)=
diam( M). Assuming the cut locus estimate d(y, C(y)) > 7 (5.3) we
conclude from (5.2.6) that every geodesic which starts from p
respectively, g (since it is minimizing up to a distance > 7 > (7/2)

- 8712y reaches the “equator” set

E= {x eM;d(p,x)=d(x,q) (<7877 5.2.6)}

before it reaches the cut locus C( p) respectively, C(q). (5.2.6) also
shows that the gradients of d(g, x) and —d( p, x) make along E
an angle a <7 —82. diam(M) <7 — 8/%r <(7/2) (and a >0
as 8 — 1). The function f(x):=d(q, x) —d(p, x) is therefore dif-
ferentiable near E and grad f# 0, i.e. E is a differentiable sub-
manifold. In particular, the distance from p to E (or g to E)
depends differentiably on the initial direction of the segment from
p (or q) to E, i.e. the radial map from the unit sphere in 7,M (or
T,M) to E is a diffeomorphism. So we call E the equator of M
and the segments from p or ¢ to E half meridians. The homeo-
morphism M" — S§” is now clear: Identify T, M with a tangent
space T, S" and map the “meridians” of M proportional to arc
length onto the corresponding meridians of S”.

About the proof of (5.4.2): The homeomorphism from M” to S”
which we just obtained is of maximal rank differentiable on M\
{EVU {p,q}). The nonsmoothness along E is not serious; more
simply than in the proof of (5.4.3) one can combine grad d, and
—gradd, to a smooth vector field on M\ { p,q} such that the
integral curves are essentially the broken meridians above, only
slightly changed near E to smooth the corners. Crucial for the
application of Shikata’s smoothing result is the control of the
“antipodal map” T(M) — T,;M which maps the initial directions
(€ T M) of the broken meridians to the final directions (€ T, M).
This map is defined by geodesics, its derivative can therefore be
described by Jacobi fields along the broken meridians; the Jacobi
fields vanish at p, g, they match at E and describe the derivative as
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JN, = lq - J'|,. Since Rauch’s estimates (1.8) control the maximum and
minimum growth of Jacobi fields with J(0) = 0, we get the desired
bi-Lipschitz bound from the ratio of the upper and lower bound in
(1.8)

L(8) < j—:(% :8712) =sin"Y(F 87 5 1.

Shikata’s smoothing construction has been simplified since. It also
depends on Hessian bounds for the distance function. But it is high
time to get to the examples, so I omit the smoothing arguments.

6. COMPLEX PROJECTIVE SPACE C P" AND ITS DISTANCE SPHERES

The following properties make these examples relevant to the
preceding comparison theorems.

6.1.1. Complex projective space CP" has a natural Riemannian
metric (Fubini-Study) which has curvature bounds 1 < K < 4.

6.1.2. Diameter = cut locus distance = - A~/ (compare 2.4.2,
5.24,53.1).
6.1.3. CP" is not homeomorphic to S*" (compare 5.3).

6.1.4. The odd dimensional distance spheres of radius r have
curvature bounds

COSI'

0<8()— ~<K<4

r—»(w/z)
and have closed geodesics of length

I 27cosrsinr — 0.
(r)=2mcosr oy

6.1.5. If 8(r): A(r) <3} then Ifr)<2m-A~/? (compare 5.3.2)
and diam(r) < m - 8(r)~'/* (compare 5.3.6).

6.2.1. Definition as a metric space. C P" is defined as the set of
complex lines in C"*!, or, what is the same, as the set of Hopf
circles (e p; ¢ €[0,27]}, ¢ s2e+1c c»+1- Ay two circles have, as
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disjoint compact sets in S?"*!, a natural distance, namely the
length of a shortest great circle arc which joins them; this distance
is <7/2 and == /2 if the two Hopf circles lie in totally orthogo-
nal subspaces of R2"*D =C"*1,

6.2.2. Natural embedding into a Euclidean sphere. Denote by
Sym the vector space of complex linear hermitian symmetric endo-
morphisms of the Euclidean vector space C"*! with the scalar
product

((A,B))=Retrace(l-B)=Re(26ijbij), A, B € Sym.
iy

Define the quadratic map

v:§¥7*lssym,  V(p)(z)= %((z, pY-p+(z,ip)-ip),

that is, ¥(p) is (up to the factor  which is more convenient later)
the orthogonal projection onto the complex line C - p, in particular
V(e'®-p)= V(p). V gives, therefore, an injective map from the set
of Hopf circles into Sym. Since V( p) has two eigenvalues % and all
others 0 we have ((¥( p), V(p))) = 4, so the image lies in a sphere.

6.2.3. Submanifold metric. The map V has constant rank 2n
on S?"*1 therefore the image is a 2n-dimensional submanifold in
Sym. We show more. Curves p(t) on $2"*! which are perpendicu-
lar to Hopf circles are mapped by ¥ onto curves of the same length
in Sym. With its induced submanifold metric the image is therefore
isometric to C P" (as defined in 6.2.1).

Proof. The assumptions are p L p, ip, hence also ip L p, ip. The
tangent vector of V( p(t)) is given by

% V(p(1))(z) = %((z, Pyp+(z, p)p+(z,ip)ip+(z,ip)ip),

hence—with {e,;} an orthonormal basis— ((dV-p, IV -p)) =

2n

% (& V()e), FV(p)e)) = § 45, ).

im=1
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6.3.1. Isometries. Unitary maps U: C"*! > C"*! are isome-
tries of S2"*! which map Hopf circles to Hopf circles, therefore
they give isometries of CP". These extend to isometries of Sym
(conjugations)

V(U-p)=U-V(p)- U,

and ((U-A,U-B))=({A,B)) =({(A-U, B-U)).
For any fixed orthonormal complex basis {v,,...,v,} of C"*!
we have a complex conjugation Xz;- v, := 2Z,-v,. These are also

isometries which preserve Hopf circles: e’®- p=e~'?- p, hence give
isometries of CP", and as before extend to isometries of Sym
(conjugation of the matrices).

6.3.2. Totally geodesic submanifolds. Connected fixed point sets
of isometries of Riemannian manifolds are totally geodesic.

a) The fixed point sets in $2"*! of conjugations are equatorial
spheres cut out by at most (n + 1)-dimg, subspaces. These n-spheres
are orthogonal to the Hopf circles, so ¥ maps them, preserving
length, into the image—but the map is not injective: antipodal
points are on the same Hopf circle. The totally geodesic fixed point
sets in C P" obtained from conjugations in C"*! are therefore real
projective spaces R P" of constant curvature 1.

b) To each subspace C¥*! c C"*! we define a complex reflec-
tion

U:C"+l—*cn+l, Ulck+1:= Id, U|(Chl)L:= —id.

This map leaves the Hopf circles in C**! and (C**!)* fixed, and
no others. As an isometry of CP" (6.3.1) it has lower dimensional
complex projective subspaces CP*, CP""*~1 as totally geodesic
fixed point sets.

6.3.3. The Riemann spheres C P' have curvature 4 in C P". Since
the metric on any CP! c CP" can be computed by intersecting
§2n*+1 with the appropriate C2, it is enough to consider the case
n =1 (real dimension 2). The unitary maps of C? are transitive on
(the Hopf circles of ) S*; this and (6.2.1) give: the metric on C P!
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has constant curvature and diameter 7 /2. This leaves two possibili-
ties: S? with curvature 4 and R P? with curvature 1; but multipli-
cation by i gives C P! an orientation—excluding R P2,

6.3.4. REMARK. The parametrization for S°> c R*=C?

cos(t+¢t,)

. 0 -1
cosa (sin(t+t) 1 0 0
F(a,t,ty) = ° i=
e cos(t—to)\ |’ 0 -1
a O 11 o
sin(z — ¢,)

has the t-lines as Hopf circles since (d/dt)F = iF. The distance
between any two Hopf circles can be obtained from the metric
which measures the length of curves perpendicular to Hopf circles,

2
ds?=da? + (%—sin2a) dr.
It is the metric of a sphere of curvature 4 in polar coordinates.

6.3.5. Symmetric space structure. For every p € §*"*! con-

sider
. n+1 n+1 — —_ ;

U:crts et vl =id, |(pw = —id.
The differential of this isometry (use the submanifold picture) on
the tangent space of the fixed point V(p) is (—id). Riemannian
manifolds M which have to every p € M an isometry o, M > M
such that o,(p) =p, do,|,= —id are called symmetric spaces.

An immediate consequence is that the curvature tensor is paral-
lel. Namely, the differential of an isometry at a fixed point pre-
serves any isometry-invariant tensor; in particular, using do,|, =
—id we get

—(DyR)(U,V)W=(D_R)(~U,-V)-W
= (D,R)(U,V)W.
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Similarly, multiplication by i on each tangent space defines a
tensor field J (J(X):=i-X)) which is compatible with all the
unitary isometries, hence it is parallel:

_(DxJ)(Y) = (D—xJ) ‘(—Y) = (DXJ)(Y)'

6.3.6. CP" is very different from S*". Define the (“Kihler”-)
2-form

o(X,Y)=3g(J-X,Y).

Because of (6.3.5) it is parallel: Dw(X,Y)=g(DJ-X,Y)=0, in
particular, the exterior derivative vanishes: dw=0. Also, w is
obviously the area form when restricted to any C P! (if X € T,C P!,
|X]=1, then X and J(X) are an orthonormal basis of 7;0P1 and
w(X, J(X))=1), hence [¢c pw = (1/4) - 4.

Observe that in $2" (n > 1) we can differentiably contract any S?
to a point and then evaluate [520 = [cone(s2) @ (Stokes) for any
2-form w. We showed that this cannot be done in CP". In the
appropriate language this is expressed as: The second cohomology
of CP" is not zero.

6.4. The curvature tensor of CP", If XY, Z are vector fields
tangential to a totally geodesic submanifold then D,Z is also
tangential and hence R( X, Y)Z is tangential. Let Y be any tangent
vector of CP", then Y,iY span the tangent space of a totally
geodesic C P! of curvature 4, hence

REP(iY,Y)Y=4-iY.

If X17,iY, then X and Y span the tangent space of a totally
geodesic R P2 of curvature 1, hence

RCP(X,Y)Y=1-X if X1Y,iY.

Combining,

REP(X,Y)Y=(Y,Y)-X—(X,Y) - Y+ 3(X,i¥)-iY. (6.4.1)
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Again for any curvature tensor, the first Bianchi identity gives
6R((X,Y)Z)=R(X,Y+Z)Y+Z-R(X,Y-Z)Y-Z
+R(X+Z,Y)X+Z-R(X-2,Y)X-Z.
This and (6.4.1) give the full curvature tensor.

R (X,Y)Z=(Y,Z)-X—(X,Z) Y
2AX,iY)-iZ + (iY, Z)-iX — (iX, Z) - iY,

(6.4.2)

but already (6.4.1) shows that the curvature range is [1,4].

6.5. Metric and principal curvatures of the distance spheres in
CP" Every family of concentric distance spheres S(r) cuts each
totally geodesic C P! through the midpoint of the S(r) into con-
centric distance circles of geodesic curvature 2ctg2 r. We call those
circles Hopf circles on the distance spheres since their tangent field
is obtained by multiplying the radial vector field N by i. Hence

6.5.1. The Hopf circles on a distance sphere of radius r in CP"
have length 2#-cosr-sinr. They are geodesics and principal
curvature lines with principal curvature x,(r) = 2ctg2r.

The radial direction N and a tangent vector L N,iN span a
tangent space of a totally geodesic R P2 of curvature 1. Hence

6.5.2. The R P?’s through the midpoints of distance spheres in
CP" intersect those spheres perpendicular to their Hopf circles
in closed geodesics of length 2 - sin r (namely distance circles in
R P2). These are also principal curvature lines of curvature k,(r) =
ctgr.

REMARK. The Hopf circles on the distance spheres in CP"
shrink by a factor cos r faster than great circles of distance spheres
in S2". As r — /2 the length goes to zero and the distance spheres
in CP" get collapsed to CP""1,
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6.6. The curvature tensor of the distance spheres. Let S, denote

the shape operator and R, the curvature tensor of a distance
sphere of radius r. The Gauss equations are

(REP'(X,Y)Y, X) = (R,(X,Y)Y, X) — (S, X, X)(5,Y,Y)
+(S,X, V).

This and (6.5.1, 6.5.2) give

K,(iNAY)=1+

2cos2r cosr cos r\?
sin2r sinr —(sinr) » (66)

cosr
sin r

K,(X/\iX)=4+( )2 (X LiN), (6.6.2)

cosr
sin r

2
K(XAY)=1+(FF)  (LYLiN).  (663)
So the curvatures have at least the range claimed in (6.1.4). But
since we saw that the eigenspaces of S, are compatible with the
eigenspaces of R€F( ,Y)Y one checks easily that indeed (6.6.1)
gives min K and (6.6.2) max K.
Finally, we get

length of Hopf circles < 2« (max K )~'/*

iff cos?r < (1 + 3sin*) " (or 2 < 3sin?r)
iff min K: max K < 3.

REMARK. Berger (1960) discovered the curvature and cut locus
properties of these metrics on S3. Weinstein (1973) observed that
they occur as distance spheres in CP". They also appear on the
quotient R P3 = SO(3) as the kinematic metric of a rotating solid
body with two equal moments of inertia and one smaller moment.
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