Cassinian Ovals*

Level function in 3DXM:

\[f(x, y) := (x - aa)^2 + y^2 \cdot ((x + aa)^2 + y^2) - bb^4 \]

The default \textit{Color Morph} varies \(bb = ff^{1/4} \) instead of \(ff \).

The Cassinian Ovals (or Ovals of Cassini) were first studied in 1680 by Giovanni Domenico Cassini (1625–1712, aka Jean-Dominique Cassini) as a model for the orbit of the Sun around the Earth.

A Cassinian Oval is a plane curve that is the locus of all points \(P \) such that the \textit{product of the distances} of \(P \) from two fixed points \(F_1, F_2 \) has some constant value \(c \), or

\[\frac{PF_1}{PF_2} = c. \]

Note the analogy with the definition of an ellipse (where product is replaced by sum). As with the ellipse, the two points \(F_1 \) and \(F_2 \) are called \textit{foci} of the oval. If the origin of our coordinates is the midpoint of the two foci and the \(x \)-axis the line joining them, then the foci will have the coordinates \((a, 0)\) and \((-a, 0)\). Following convention, \(b := \sqrt{c}. \) Then the condition for a point \(P = (x, y) \) to lie on the oval becomes: \((x - a)^2 + y^2)^{1/2}((x + a)^2 + y^2)^{1/2} = b^2. \)

Squaring both sides gives the following \textit{quartic polynomial equation} for the Cassinian Oval:

\[((x - a)^2 + y^2)((x + a)^2 + y^2) = b^4. \]

When \(b \) is less that half the distance \(2a \) between the foci, i.e., \(b/a < 1 \), there are two branches of the curve. When

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
The following image shows a family of Cassinian Ovals with \(a = 1 \) and several different values of \(b \).

In 3D-XplorMath, you can change the value of parameter \(b = bb \) in the Settings Menu \(\rightarrow \) SetParameters. An animation of varying values of \(b \) can be seen from the Animate Menu \(\rightarrow \) Color Morph.

Bipolar equation: \(r_1 r_2 = b^2 \)

Polar equation: \(r^4 + a^4 - 2r^2 a^2 \cos(2\theta) = b^4 \)

A parametrization for Cassini’s oval is \(r(t) \cdot (\cos(t), \sin(t)) \),

\[
r^2(t) := a^2 \cos(2t) + \sqrt{(-a^4 + b^4) + a^4(\cos(2t))^2},
\]

\(t \in (0, 2\pi] \), and \(a < b \). This parametrization only generates parts of the curve when \(a > b \).
By default 3D-XplorMath shows how the product definition of the Cassinian ovals leads to a *ruler and circle* construction based on the following circle theorem about products of segments:

\[CD : CE = CB : CF \quad \rightarrow \quad CD \cdot CF = CB \cdot CE \]

Cassianian Ovals as sections of a Torus

Let \(c \) be the radius of the generating circle and \(d \) the distance from the center of the tube to the directrix of the torus. The intersection of a plane \(c \) distant from the torus’ directrix is a Cassinian oval, with \(a = d \) and \(b^2 = \sqrt{4cd} \), where \(a \) is half of the distance between foci, and \(b^2 \) is the constant product of distances.

Cassianian ovals with a large value of \(b^2 \) approach a circle, and the corresponding torus is one such that the tube radius is larger than the center to directrix, that is, a self-intersecting torus without the hole. This surface also approaches a sphere.
Note that the two tori in the figure below are not identical. Arbitrary vertical slices of a torus are called Spiric Sections. In general they are *not* Cassinian ovals.
Proof: Start with the equation of a torus

\[
(\sqrt{x^2 + y^2} - d)^2 + z^2 = c^2.
\]

Insert \(y = c \), rearrange and square again:

\[
x^2 + z^2 + d^2 = 2d\sqrt{x^2 + c^2}, \quad (x^2 + z^2 + d^2)^2 = 4d^2(x^2 + c^2).
\]

Now multiply the factors of the implicit equation of an Cassinian oval and rearrange

\[
((x - a)^2 + y^2) \cdot ((x + a)^2 + y^2) = b^4,
\]

\[
(x^2 - a^2)^2 + y^4 + 2y^2(x^2 + a^2) = b^4,
\]

\[
(x^2 + y^2)^2 + 2a^2(y^2 - x^2) = b^4 - a^4.
\]

These two equations match because of \(a = d, \ b^2 = 2dc \), after rotation of the y-axis into the z-axis.

Curves that are the locus of points the product of whose distances from n points is constant are discussed on pages 60–63 of Visual Complex Analysis by Tristan Needham. XL.